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ABSTRACT

Forecasting the hourly electricity spot price plays a crucial role for agents involved in energy day-ahead markets. However, traditional time series 
processes used for this issue model each hour separately not taking into account the intraday energy market microstructure information. In this paper, 
we appeal to a Functional Data Analysis (FDA) viewpoint that allows modeling and forecasting the intraday electricity spot price of the Colombian 
Electricity Market. Specifically, we use the Hyndman-Ullah-Shang method, which relies on a functional principal component decomposition of the 
nonparametric smoothed price curves, where the short-term forecasts are obtained by using the empirical functional principal components and the 
univariate time series forecasts of the corresponding estimated scores. Results show that one of the main advantages of this approach is that it allows 
to capture the underlying intraday common structural patterns shared by the daily spot price curves, and also behaves well for one-month-ahead price 
predictions compared with standard benchmarks.

Keywords: Day-ahead Electricity Price Forecasting, Functional Data Analysis, Functional Principal Components, Functional Time Series 
Forecasting 
JEL Classifications: C32, C53, C55, Q41, Q47

1. INTRODUCTION

It is well-known that due to the worldwide deregulation process 
and structural reforms carried out during the 1990s, which brought 
significant changes in electricity markets, such as considering 
the electrical energy as a commodity trading upon competitive 
market rules (Huisman et al., 2007; Weron, 2006), there has been 
a growing interest by understanding the underlying dynamic 
structure of the data generating process of the electricity spot price 
for competitive pool-based electricity markets, and accurately 
forecasting it at short-, medium- and long-terms (Conejo et al., 
2005; Weron, 2006; 2014). In Colombia, these reforms were 
established with the Domiciliary Public Services and Electricity 
Laws 142 and 143 (Congress of the Republic of Colombia, 1994), 
creating conditions to ensure an efficient energy supply under 

social, economic, environmental and financial feasibility criteria, 
and to avoid the abuse of dominant positions. As a result, the 
Colombian market became one of the most open markets among 
the developing countries.

Hence, electricity spot price forecast has become crucial for agents 
involved in energy electricity markets, specially, distribution 
companies as well as generators and traders, owing to the price 
may contain information to anticipate decisions related with 
the installed capacity needed to cope with the energy demand, 
minimize investment risks associated to the price volatility, design 
contracts at different maturities and it helps generation companies 
in planning their bidding strategies in order to maximizing 
profits in the short term (Conejo et al., 2005; Shahidehpour et al., 
2002; Weron, 2014; Panchakshara et al., 2014). It is particularly 
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important for the Colombian case because approximately 80% of 
energy is traded through forward contracts.

This task has imposed big statistical challenges mainly due 
to the (1) non-storable nature of electricity, (2) high intraday 
energy demand variability, (3) variable costs are low compared 
to the large fixed costs, (4) high dependence on the hydrological 
component, (5) high price uncertainty, and (6) lack of regulation 
that forces electricity-generating firms to report their variable 
costs to avoid market power and information asymmetries. Thus, 
the spot price has empirical regularities not easily captured by 
statistical time series models designed to storable commodities, 
such as (1) superposed seasonal patterns, (2) mean-reversion, 
(3) presence of sudden and unexpected spikes, and (4) volatility 
(Aggarwal et al., 2009; Conejo et al., 2005; Crespo et al., 2004; 
Huisman et al., 2007; Liebl, 2013; Weron, 2006; 2014).

In the statistical literature, there is a wide range of methods to 
model and forecast the electricity spot price (see Aggarwal et al., 
2009; Weron, 2006, 2014; Weron and Misiorek, 2008) for reviews 
about the subject). Some of these are, for instance, exponential 
smoothing filters, Autoregressive Integrated Moving Average with 
exogenous terms (ARIMAX) type processes, seasonal and long-
memory models, Autoregressive Conditional Heteroscedasticity 
(ARCH) class of processes, state space and unobserved component 
models, mean-reversion jump-diffusion models, Markov regime 
switching processes, semiparametric and nonparametric methods, 
among others. Also, machine learning algorithms such as Artificial 
Neural Networks (ANNs), Support Vector Machines (SVMs), and 
Random Forests (RFs) have been applied.

In Colombia, there are few papers dealing with electricity spot price 
forecasting. Lira et al. (2009) forecasts the daily price considering 
ARMAX and Periodic-ARMAX (PARMAX) processes including 
oil/gas prices, water reservoir levels, river contribution, and load 
demand as exogenous variables. Also ANNs and fuzzy algorithms 
are used. Likewise, Barrientos et al. (2012; 2018) apply ARMAX, 
Vector Error Correction (VEC) and Non-linear Autoregressive 
Neural Networks (NARX) models based on reservoir levels, load 
demand, and energy supply to predict the monthly electricity price. 
On the other side, Bello and Beltrán (2010) models and forecasts 
the daily energy price with ARCH family models.

However, in electricity spot markets the hourly price is determined 
in a day-ahead blind auction through an Independent System 
Operator (ISO) trading 24/7 without exceptions in which agents 
submit their hourly bids of the electricity price and physical 
power deliveries for the next day. Thereby, the 24 intra-day prices 
for each day are settled jointly the previous day. It implies that 
hourly electricity spot prices cannot be viewed as a time series 
process (Huisman et al., 2007), as is assumed in all of the above 
classical time series models, and ignoring the intraday market 
microstructure dynamics present in the day-ahead energy markets.

To tackle this day-ahead forecasting issue, we adopt a Functional 
Data Analysis (FDA) approach (Horváth and Kokoszka, 2012; 
Kokoszka and Horváth, 2017; Ramsay and Dalzell, 1991; Ramsay 
and Silverman, 2005; Wang et al., 2016, and the references given 

there) by considering the hourly spot price time series per day 
as a collection of curves. It is, the sample of random variables 
is assumed as a set of functions belonging to some infinite-
dimensional space F instead of a finite-dimensional one as is usual 
in most statistical applications. Hence, the variables are viewed as 
paths of a smooth stochastic processes Y={Y (x):x ∈χ⊂ R} ∈ F 
defined on some index set χ, where the observed dataset is obtained 
from discretizations at points x_1,..., x_J. Usually, this approach is 
appropriate in cases including irregularly spaced measurements, 
high-frequency data, sparsely observed curves, analysis upon 
derivatives of functions, among others.

Although the field of FDA is relatively new, the number 
of disciplines where it has been applied is huge because of 
technological advances that allow to collect and store high-
dimensional data observed continuously on an interval or 
intermittently at several points (Wang et al., 2016). Applications 
are in bioinformatics, medicine, finance, ecology, meteorology, 
demography, etc. Despite its success, there are few studies on 
modeling and forecasting the electricity price, and also the demand, 
with this setting (Aneiros et al., 2016; Liebl, 2013; Portela et al., 
2018; Shang, 2013; Vilar et al., 2012), and there are no empirical 
studies for the Colombian case.

Here, we apply the model by Hyndman and Ullah (2007); 
Hyndman and Shang (2009), which is based on the functional 
principal component decomposition of the smoothed curves, where 
the forecasts are obtained by using the sample functional principal 
components, and the h step-ahead forecasts of the respective 
scores by fitting a univariate time series model for each of them. 
It has been successfully applied to forecast variables ranging from 
mortality/fertility rates to intraday index returns. Results show that 
it is possible to capture intraday common features present in the 
price curves, and behaves well for short- and also medium-term 
forecasts.

The paper is organized as follows. Section 2 presents the electricity 
spot price data, and explains how the functional data is obtained. 
Section 3 describes the used functional time series forecast method 
by Hyndman and Ullah (2007); Hyndman and Shang (2009). 
Results for hour-specific day-ahead and one-month-ahead price 
predictions are shown in Section 4. Last, Section 5 concludes.

2. DATA

The data shown in the Figure 1 corresponds to the hourly 
electricity spot price (Colombian Pesos per kilowatthour, 
COP/kWh) of the Colombian Electricity Market from 
January 1, 2000 (Saturday) to December 31, 2017 (Sunday), 
{Yτ, τ ∈ [1,Τ]}, Τ = 157800, available at XM (http://www.
xm.com.co/), an affiliate of Interconexión Eléctrica S.A. –ISA- 
(http://www.isa.co/). In normal operating conditions, the price is 
the higher one offered by generators that have been programmed 
to cover the ideal energy dispatch, and represents an unique 
price given by the marginal cost for the Energy Interconnected 
System at each time point (Huisman et al., 2007; Shahidehpour 
et al., 2002; Weron, 2014).



Figure 1: Colombian hourly electricity spot price, January 1, 
2000-December 31, 2017
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2.1. Functional Data
Owing to the 24 intra-day structure of electricity spot prices vary 
substantially across days (Huisman et al., 2007; Liebl, 2013; 
Weron, 2006), the time series can be splitted into daily datasets, 
{ },  ,  1, , Ti iY τ τ = … , i = Mon.,…, Sun., where T denotes the number 
of time data points of the i th day. To follow the FDA approach, the 
samples of hourly time series curves per day were obtained by 
converting the Ti time points into ni= Τi/J daily functions defined 
on [ ] 0,x J∈  with  J = 24 hours (Shang, 2013),

Yi,t(x)= {Yi,τ, τ ∈ [J (t−1), Jt]} t=1,…,n_i , for i = Mon.,…, Sun.,

where the observations are assumed to be discretizations generated 
generated by evaluating, with error εi,t,j a set of unknown smooth 
functions fi,t(x) at points xj satisfying the model,

Yi,t (xj) = f_{i,t}(x_j)+\varpesilon_{i,t,j}), j=1,…,J, εi,t,j is i.i.d (0,1)
 (1)

The sample paths of fi,t(x) for each i and t were estimated from 

the observed pairs x xj i t j
j

J
, ,y � �� �� �

�1
 by applying some 

nonparametric curve estimation method. We applied smoothing 
B-splines using the fda package (Ramsay et al., 2017) in the open-
source R system for statistical computing (R Development Core 
Team, 2018). Smoothing spline finds ,î tf  such that minimizes the 
penalized sum of squared errors1,

( ) ( )( ) ( )( )2 2''
, , ,

1 0

y   
JJ

i t j i t j i i t
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x xf f dλ τ τ
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with f x xi t
l

L

i t l i t l, , , , ,� � � � �
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1

� �  following a truncated basis 

expansion, and the regularization parameter λi controls the amount 
of smoothing, chosen by generalized cross-validation (Ramsay 
and Silverman, 2005).

Due to the high dimensionality of functional data, it is probable 
that some curves attain extreme values at a single or several points, 

1  The solution ,î tf  is a natural cubic spline with knots {x1,…,xJ}.

or have remarkable different shapes from the rest or curves, or both. 
It can have serious effects on modeling and forecasting tasks leading 
to erroneous conclusions. To detect functional outliers, the bivariate 
and functional Highest Density Region (HDR) boxplots proposed 
by Hyndman and Shang (2010) were applied on ,î tf . The bivariate 
HDR boxplot is based on the HDR defined as ( ){ }ˆ :R f fα α= ≥z z

, where  ( )f̂ z  is the bivariate kernel density estimate of the first 
two principal component scores (Appendix I) of the smoothed 
functions, and fα is such that Pr Z �� � � �R� �1 . Points within Rα 
have higher density than those lying outside. The bivariate HDR 
boxplot displays the point corresponding to the mode curve (i.e. 
the highest density point), the 50% inner (the “bag”) and 99% outer 
(the “fence”) HDRs, and points outside the outer HDR which are 
flagged as potential outliers (Hyndman and Shang, 2010, for 
details). An example of this plot for the sample of curves on 
Tuesdays using the R package rainbow (Shang and Hyndman, 
2016) is shown in the Figure 2 (on the left)2. The corresponding 
functional HDR boxplot (on the right) is the mapping of the 
bivariate HDR boxplot to the functional curves, where the dark 
(light) gray region shows the 50% (99%) inner (outer) HDR.

The detected outliers were mainly those days in which the price 
was significantly high, coinciding with the “El Niño” phenomenon 
characterized by warm and wet weather months of April-July during 
2014-2016. Other atypical curves of 2009-2011 corresponded 
to days of the last quarter of 2017, marked by a high energy 
consumption season reflected on price increases. For the rest of 
days, the functional outliers, in general, corresponded to similar 
dates. Figure 3 shows the resulting sample smoothed electricity 
price curves ,î tf  without the identified outliers for Tuesdays. We can 
observe that curves capture the common structural patterns which 
characterize the hourly electricity price variability. It is, the shape 
of curves shows that from approximately 5:00 a.m. the spot price 
tends to increase progressively until 12:00 p.m., reaches a second 
peak around 8:00 p.m., and after begins to decrease progressively.

3. FUNCTIONAL TIME SERIES

3.1. Functional Principal Components
To forecast the electricity price curves for each day, we adopt the 
functional principal component approach by Hyndman and Ullah 
(2007), Hyndman and Shang (2009), and Shang (2010) based on 
the Karhunen-Loève decomposition (Appendix I), i.e. from a basis 
function expansion for each ith day,

        
( ) ( ) ( ) ( ), , , , ,

1

,      , 
iK

i t i i t k i k i t i i
k

x x x xf K nµ β φ ξ
=

= + + <∑
 

(2)

where μi (x) is the ith mean function, �i k k

K
x i

, � �� � �1
 the set of 

orthonormal basis (principal components) functions with 
corresponding dynamic coefficients (scores) �i t k k

Ki
, ,� � �1

, Ki the 

number of basis, and �i t t

n
x i

, � �� � �1
 are centered i.i.d. random 

2 As an illustration of the obtained results and to save space, all figures in the 
paper are presented for Tuesdays. Figures for other days of the week are 
available upon request.



Figure 2: Bivariate (left) and functional (right) HDR boxplots of spot price on Tuesdays. Dark and light gray regions show the bag and fence 
HDRs, resp. The black line is the modal curve. Numbers (on the left) and corresponding colored curves (on the right) outside the fence identify 

atypical days whose list are available upon request

Figure 3:. Electricity price curves ,î tf  on Tuesdays after removing 
functional outliers.
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functions. To estimate μi(x), we used the weighted average proposal 

by Hyndman and Shang (2009), ( ) ( ), ,
1

ˆˆ
in

i i t i t
t

fx xµ ω
=

=∑ , where ωi,t 

are weights assigning more weight to recent observations.

There are several computational methods to obtain the sample 
basis functions and scores (Hyndman and Ullah, 2007; Ramsay 
and Dalzell, 1991; Ramsay and Silverman, 2005; Shang, 
2014). We applied the discretization-based approach which 
is based on the singular vale decomposition Fi = Φi Λi Vi of 
the q×ni centered matrix Fi obtained from a dense equally 
spaced discretization {x1,…,xq}∈[0,J] of the sample centered 
functions ( ) ( ),

ˆ ˆi t j i jxf xµ− , where the (j,k)th basis ( ),î k jxφ  is 
the (j,k)th coordinate of Φi, and the respective score , ,

ˆ
i t kβ  is 

the (j,k)th coordinate of TΦi iF  (Hyndman and Shang, 2009; 
Ramsay and Dalzell, 1991). Figure 4 illustrates an example of 
the functional principal component expansion on the price curves 
on Tuesdays using the R package ftsa (Hyndman and Shang, 

2017) with K=1 obtained by following the method of Shang 
(2013) described below.

3.2. Functional Forecasts
With estimates ( ){ } ( ){ }, , ,

ˆ, , ˆˆi i k i t kx xµ φ β , and from (1) – (2), the 
model reduces to

( ) ( ) ( ) ( ), , , , , , ,
1

ˆ ˆy  ˆ ˆˆ
iK

i t j i i t k i k j i t j i t j
k

x x x xµ β φ ξ ε
=

= + + +∑

Due to orthonormality of basis functions, the scores { }, , 1
ˆ iK
i t k k

β
=

 can 
be independently forecasted with, for instance, an ARIMA process 
(Hyndman and Ullah, 2007; Hyndman and Shang, 2009; Shang, 
2013). Thus, conditional to ( ){ },y : 1, , ,  1, , i t j it n j Jx = … = … , and 

( ){ }, : 1, ,ˆ  i k ik Kxφ = … , the forecasts are
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where , | ,
ˆ

i ii n h n kβ +  is the -step-ahead forecast of βi,n_i+h,k.

The optimal number of principal components Ki was chosen with 
the validation method of Shang (2013) in which the sample of 
curves for each day is splitted into a training set with n n li i

* � �  
functions, and a validation set with l=52 curves corresponding to 
weeks of the year. Then, an accuracy measure is calculated with 
the forecasts for functions in the validation set based on the 
functional model fitted with the training set. For a potential number 
of basis Ki=1,…,10, Table 1 reports the Mean Absolute Percentage 
Error (MAPE), mean | |,ph j� �, where:
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( )

* * *

*

, , |
,

,

ˆy Y
100%. 1, , ,  1, , .

y
+ +

+

−
= ⋅ = … = …i i i

i

j ji n h i n h n
h j

ji n h

p h l j
x

x
J

x



Gallón and Barrientos: Forecasting the Colombian Electricity Spot Price under a Functional Approach

International Journal of Energy Economics and Policy | Vol 11 • Issue 2 • 2021 71

The ki ranges between 1 and 2, except to Sundays. Last row shows 
the proportion of variation explained by the optimal ki first principal 
components varying between 97% and 99%3. Results were obtained 
with the R package ftsa (Hyndman and Shang, 2017).

4. FORECAST RESULTS

With the historical data of electricity spot price from January 
1, 2000 to December 31, 2017, the optimal number of basis 
functions Ki, the corresponding empirical principal components 

( ){ }, 1
ˆ iK
i k k

xφ
=

, and h-step-ahead forecasts , | ,
ˆ

i ii n h n kβ + , we obtain 

24 hourly-specific h day-ahead forecasts according to (3). Although 
the main interest of the paper focuses on one day-ahead (h=1), 
forecasts we also carry out one-month-ahead price predictions for 
January 2018, where h=5 for Mondays, Tuesdays and Wednesdays, 
and h=4 for Thursdays, Fridays, Saturdays and Sundays for this 

3 Similar results were got with the Root Mean Square Percentage Error 
(RMSPE), [mean ( )2

,h jp ]1/2.

particular month. The reason for medium-term predictions obeys 
the constant need by agents (mainly price-taker producers and 
retailers) in the Colombian Electricity Market to its balance sheet 
estimates, to engage bilateral agreements, and risk management.

As illustration, the Figure 5 shows the point forecasts for Tuesdays 
with its respective 80% interval forecasts using the nonparametric 
bootstrap method proposed by Hyndman and Shang (2009) and 
Shang (2013), with B=1000 bootstrap samples. We can see that 
forecasts exhibit the common structural features of the hourly 
electricity price variability described in Subsection 2.1. Besides, as 
it was expected, the spot price curve forecasts reveal a time-trend 
pattern in the sense that these follow a time-step-ahead horizon 
ordering. It is, an ordering from a greater predicted price for the 
most recent step-ahead horizon (shown in red) to a lower forecasted 
price for the most distant step-ahead horizon (shown in violet).

Forecasts were compared with those from functional and non-
functional bench-marks. We used a Functional AutoRegressive 
(FAR) process of order one (Besse and Cardot, 1996), 

Table 1: Mean absolute percentage error
K Mondays Tuesdays Wednesdays Thursdays Fridays Saturdays Sundays
1 46.574 51.017 66.707 51.269 50.119 55.113 43.750
2 46.637 51.722 66.547 51.379 50.425 55.199 43.739
3 46.634 51.697 66.550 51.373 50.384 55.209 43.738
4 46.662 51.697 66.562 51.382 50.373 55.193 43.727
5 46.666 51.703 66.566 51.383 50.386 55.193 43.729
6 46.662 51.693 66.570 51.380 50.386 55.198 43.729
7 46.660 51.702 66.563 51.377 50.386 55.198 43.724
8 46.661 51.693 66.562 51.377 50.384 55.196 43.724
9 46.662 51.693 66.563 51.374 50.384 55.198 43.727
10 46.658 51.694 66.569 51.376 50.382 55.198 43.727
Prop. 0.9779 0.974 0.9914 0.9821 0.9838 0.9858 0.9993
Prop: proportion of variation explained by the optimal first principal components (in boldface)

Figure 4: Mean function, first functional principal component and score on Tuesdays



Figure 5: Forecasts of hourly electricity spot price on Tuesdays for 
January 2018 with 95% nonparametric prediction intervals
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y yx x x xi t i t i t, , ,� � � � � � � � � � �� � ��� � 1 ¼ µ , with ρ a bounded 

linear autoregressive operator on a Hilbert space H, μ(x) ∈ H, and 
εi,t a sequence of i.i.d. zero-mean errors in H. It was fitted with the 
package far (Damon and Guillas, 2015). As non-functional 
alternatives, we used the seasonal multiplicative ARIMA 
(SARIMA) and Neural Network Autoregressive (NNAR) models, 
which  are  two wel l -known processes  used  in  the 
energy price forecasting literature (Weron, 2014). The 
S A R I M A ( p , d , q ) × ( P, D , Q ) s  p r o c e s s  i s  g i v e n  b y 

� �P
s

p
d s D

t q Q
s

tB B B B B B� � � � �� � �� � � � � � �� � �1 1 Y , where 

ϕp and ΦP are ordinary and seasonal autoregressive pth and Pth 
degree polynomials, θq and ΘQ ordinary and seasonal moving-
average qth and Qth degree polynomials, resp., B the backward 
shift operator B z zk

t k:�� �� , and s the seasonal period. The identified 
model was a SARIMA (1,1,0)×(1,1,0)168, s=168=24 × 7. The 
fitted NNAR was single-hidden-layer NNAR(p,P,k)s with 
p =24 ordinary and P = 1 seasonal autoregressive inputs, and 

k=13 nodes, given by y f wxt
j

k

j j t j t
T� � � � �

�
�± ± µ0

1

, with 

( )11, y , , y , y− − −= …t t t p t sx , and fj ( )⋅  the sigmoid activation 
function. The reason for a seasonal components obeyed to the 
hourly periodic pattern found in the autocorrelation function.
We also considered two models of the exponential smoothing 
family: the Double-Seasonal Holt-Winters (DSHW) model 
(Taylor, 2003), which is an extension of the Holt-Winters method 
to handle high-frequency multiple seasonal patterns, and the 
exponential smoothing state space model with Trigonometric 
Box-Cox transformation, ARMA errors, Trend and Seasonal 
(TBATS) components (De Livera et al., 2011), which in turn is a 
generalization of the DSHW model. All non-functional methods 
were fitted with the package forecast (Hyndman et al., 2018).

According to MAPE results in the Table 2,4 the Functional Time 
Series (FTS) model performs better than benchmarks for both 

4  Similar results were obtained by using other forecast performance metrics.

short-term (one-day-ahead) and medium-term (one-month-ahead) 
forecasts. For the FTS model, the errors oscillated between 4.1% 
and 8.9% (6.7% in average) for short-term forecasts, and between 

Table 2: MAPE for 1-day and 1-month ahead forecasts
Day One-day ahead forecasts

FTS FAR SARIMA NNAR DSHW TBATS
Mondays 6.02 7.71 12.86 14.64 13.31 9.91
Tuesdays 8.90 7.67 17.33 9.19 14.00 10.00
Wednesdays 8.37 8.73 18.30 17.9 11.85 9.56
Thursdays 6.90 4.23 10.27 5.47 8.57 5.16
Fridays 3.50 6.95 11.84 12.05 10.99 3.24
Saturdays 8.87 14.08 19.23 19.94 19.61 17.8
Sundays 4.10 10.73 4.19 11.04 7.83 5.39
Mean 6.72 8.53 12.86 14.64 13.31 9.91
Day One-month ahead forecasts

FTS FAR SARIMA NNAR DSHW TBATS
Mondays 10.28 10.27 15.42 19.02 18.94 9.84
Tuesdays 8.47 7.24 12.4 17.43 15.27 9.11
Wednesdays 6.54 8.33 10.89 18.77 8.23 8.09
Thursdays 6.83 10.53 9.65 22.75 25.37 13.05
Fridays 7.04 14.08 14.44 20.14 19.78 9.79
Saturdays 10.13 19.72 29.36 24.08 37.57 32.19
Sundays 12.82 23.60 18.62 18.53 25.06 15.75
Mean 8.87 13.40 15.42 19.02 18.94 9.84
Minimum MAPE values in boldface

Table 3: DM test statistics for the forecast accuracy of the 
FTS model versus FAR, SARIMA, NNAR, DSHW, and 
TBATS benchmarks
Day Absolute-error loss

FAR SARIMA NNAR DSHW TBATS
Mondays −1.85 −4.03 −1.77 −6.43 −3.50

(0.03) (0.00) (0.04) (0.00) (0.00)
Tuesdays 0.71 −1.75 −0.92 −6.06 −0.64

(0.76) (0.04) (0.18) (0.00) (0.26)
Wednesdays −1.63 −3.61 −3.67 −1.64 −2.00

(0.05) (0.00) (0.00) (0.05) (0.02)
Thursdays −1.00 −2.07 −1.88 −2.41 −1.44

(0.16) (0.02) (0.03) (0.01) (0.08)
Fridays −2.06 −4.07 −3.42 −1.75 −1.51

(0.01) (0.00) (0.00) (0.04) (0.07)
Saturdays −5.24 −3.64 −8.78 −3.73 −2.94

(0.00) (0.00) (0.00) (0.00) (0.00)
Sundays −4.50 −1.80 −3.44 −2.58 −3.05

(0.00) (0.04) (0.00) (0.01) (0.00)
Squared-error loss

FAR SARIMA NNAR DSHW TBATS
Mondays −1.63 −4.97 −3.37 −3.27 −3.30

(0.05) (0.00) (0.00) (0.00) (0.00)
Tuesdays 0.76 −2.23 −1.33 −6.23 −1.00

(0.77) (0.01) (0.09) (0.00) (0.16)
Wednesdays −1.66 −2.45 −2.93 −1.68 −1.83

(0.05) (0.00) (0.00) (0.05) (0.03)
Thursdays −1.15 −1.74 −1.57 −2.04 −1.48

(0.13) (0.04) (0.06) (0.02) (0.07)
Fridays −2.15 −2.78 −2.23 −1.57 −1.48

(0.02) (0.00) (0.01) (0.04) (0.07)
Saturdays −3.39 −2.29 −4.21 −2.42 −2.18

(0.00) (0.00) (0.00) (0.01) (0.02)
Sundays −2.21 −1.71 −2.35 −1.87 −2.01

(0.01) (0.04) (0.01) (0.03) (0.02)
p-values in parenthesis
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6.5% and 12.82% (8.9% in average) for medium-term forecasts. 
Among benchmarks, the FAR model was the best competitor of 
the FTS process followed by the TBATS model. In general, the 
worst forecaster was the NNAR model, followed by DSHW and 
SARIMA processes. Also for Saturdays and Sundays the one-
month-ahead forecast errors were bigger than in the weekdays; 
this result is also found in Aneiros et al., (2016) for the electricity 
market of mainland Spain.

Besides, to evaluate the one-day ahead forecast accuracy of the 
FTS model with respect to the benchmarks over one-month out-
of-sample window, the Diebold-Mariano (DM) test (Diebold and 
Mariano, 2002) was used. The null hypothesis is that the FTS 
model compared with the benchmarks have the same forecast 
accuracy, H dt0 0: E � � � , where ( ) ( ). ,t FTS t l td g e g e= − , l = FAR, 
SARIMA, NNAR, DSHW, TBATS, is the loss differential between 
both forecasts with g(e) some loss function for the forecast error 
e. The alternative hypothesis is that the forecasts of the FTS method 
are more accurate than the benchmarks, H dt1 0: E � � � . The test 
statistic is ( )ˆ/ N 0,1

D
DM d σ= → , where d  is the mean of dt and 

σ̂  the consistent sample standard deviation of d . Table 3 reports 
the test statistic values using the absolute- and squared-error loss 
functions, and the respective p-values. Results show the FTS model 
has a statistical significant predictive behavior for forecasting the 
electricity spot price in most of cases, rejecting the null hypothesis 
at 5% level of significance, except to the FAR process for Tuesdays 
and Thursdays, and the TBATS model for Tuesdays, Thursdays 
and Fridays.

5. CONCLUDING REMARKS

In this paper we applied the functional time series model proposed 
by Hyndman and Ullah (2007); Hyndman and Shang (2009), which 
is based on a weighted functional principal component analysis, 
for forecasting the hour-specific h-ahead electricity spot price 
from the Colombian Electricity Market. The functional approach 
of the model allows to capture the intraday market microstructure 
dynamics in the day-ahead energy market in which the 24 intra-day 
prices for each day are established simultaneously the previous 
day, issue that is ignored in the classical time series models.

Specifically, we obtained one-day-ahead, and also one-month-
ahead spot price curve forecasts. Results showed that out-of-
sample predictions are able to pick up the intraday common 
structural characteristics in the spot price, and also have superior 
forecast performance in comparison with the FAR, SARIMA, 
NNAR, DSHW, and TBATS benchmarks, with Mean Absolute 
Percentage Errors of 6.7%, in average, for short-term forecasts, and 
8.9% for medium-term forecasts. The results were also supported 
by applying the Diebold-Mariano test.

A natural extension of this work could be to include exogenous 
fundamental variables relating with the hourly electricity spot 
price in order to improve the forecasting accuracy, such as water 
reservoir levels and load demand patterns. This possibility was 
not taking into account owing to the difficulty in obtaining some 
of these data, and because these regressors are available, usually, 

at low frequencies (e.g., daily, weekly and monthly). This issue is 
an open direction left for future work. For example, Shang (2013) 
gives a theoretical possible guidance by considering a functional 
time series model with discrete and functional regressors. 
Additionally, a work toward the near future is to compare the 
results with those obtained by machine learning algorithms such 
as gradient boosting and its extensions, and time-series models 
borrowed from Deep Learning using RNN (Recurrent Neural 
Network) architectures as LSTM (Long Short-Term Memory) 
and GRU (Gated Recurrent Unit) networks (Lago et al., 2018).

6. ACKNOWLEDGMENTS

The authors thanks Laura Marquéz, M. Sc. student in Economics, 
for her valuable help with the database. This research was 
supported by the Grant 13238 from the Comité para el Desarrollo 
de la Investigación (CODI), University of Antioquia, Colombia.

Appendix I: Functional principal component analysis

The functional PCA (e.g., Dauxois et al., 1982; Hall and Hosseini-
Nasab, 2006., Tran, 2008; and Shang, 2014 ) relies on the spectral 
analysis of the covariance operator K of Y(x) in the class L2 (χ) of 
square-integrable functions on χ,

K: L2 (χ)⟶L2 (χ)

� � �
�

 K � �� � � ��K v v dv,

where K:χ×χ⟶R is the continuous covariance function of Y(x),

K(u,v)=E[Y(u)−μ(u)(Y(v)−μ(v))], u,v∈χ

By the Mercer’s lemma, the spectral decomposition of K is 
defined as

( ) ( ) ( )K , ,       1, 2, k k k k k kK u v v dv u k
χ

φ λ φ φ λ φ= = …→= ∫
where {ϕk ∈ L2 (χ)} is an orthonormal sequence of continuous 
eigenfunctions, and {λk} the corresponding non-decreasing 
sequence of non-negative eigenvalues.

The scores of Y(x) are � � �
�

k kY dxx x x� � � � � ��� �� � �
�
�
�

��

�
�
�


�
� , which 

are zero-mean uncorrelated random variables with variance λk.

Finally, the truncated Karhunen-Loève expansion at the first K 
terms provides the best approximation of Y(x), given by

( ) ( ) ( )
1

µ β φ χ
=

≈ + ∈∑
K

k k
k

x x xY        x
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