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ABSTRACT

Power companies aim to maximize their profit which is highly related to the bidding strategies used. In order to sell electricity at high prices and 
maximize their profit, power companies need suitable bidding models that consider power operating constraints and price uncertainty within the market. 
Price taker units have no power to affect the prices but need to determine their best bidding strategy to maximize their profit assuming a quadratic 
cost function and uncertain market prices. Price taker units also need to evaluate their bidding strategy under different price scenarios. In this paper, 
we first model the bidding problem for a price taker unit and then propose quadratic programming, nonlinear programming and marginal cost based 
bidding models under price uncertainty. We use case studies to study the computation burden and limitation to reach a solution. We also propose a 
simulation methodology to evaluate the performance of each bidding strategy for different market prices in an effort to help decision makers to assess 
their bidding decisions.

Keywords: Bidding, Nonlinear Programming, Quadratic Programming, Simulation, Electricity Markets 
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1. INTRODUCTION

Electricity is generally accepted as different from other 
commodities. It is still not storable economically, and its demand 
is instantaneous, so it must be produced and used in real time 
while the demand is continuous. These unique characteristics of 
electricity and the necessity of real time balance create a need 
for coordinated markets in which power plants, transmission 
grid, and distribution lines have to be in a close but well-defined 
relationship. The price is strongly load dependent, highly volatile, 
seasonal and consumption dependent. The elasticity of electricity 
demand to price is low as electricity is a unique commodity, and it 
is difficult to replace it. Also, small consumers are not affected by 
instant price changes as a utility company usually provides their 
electricity. The parameters are stochastic, which gives a stochastic 
behaviour to the electricity price. Energy consumption, fuel costs, 
availability of fuels, equipment capacity and market participants’ 

behaviour are stochastic and unknown to other players. The market 
prices are set based on the economic principles where all sellers’ 
agree to deliver the cumulative demand and all buyers’ agree to 
buy the offered quantity at a determined price level. The bilateral 
energy markets have their own structure; and the price is unique 
in that it is determined between the buyer and the seller. In poolco 
and power exchanges, on the other hand, the buyers and sellers 
receive the market price determined in auctions after the buy and 
sell offers are submitted.

The main objective of the market is to provide a perfect competitive 
environment in which an Independent System Operator (ISO) is 
responsible for the coordination of physical operations that 
include scheduling the generation, making sure they continue the 
balance of supply and demand, supporting services for reliability, 
and coordination with other markets. ISO oversees the system 
operation; determines the transmission schedule; and has the right 
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to take measures against players that do not respect the generation 
or the consumption plan. Perfect competition and oligopoly are 
two models of interest in the deregulation of the electricity market. 
Thermal plants such as coal and gas fired units have nonlinear 
cost functions; and their marginal costs are related to the quantity 
of produced electricity. In practice, a deregulated market is not 
considered perfectly competitive due to the limited number of 
suppliers. A supplier tends to bid higher than its marginal cost as 
a solution to Strategic Bidding Problem (SBP) (David and Wen, 
2000).

A power supplier or producer aims to maximize its profit and 
decrease its risks, and he needs to submit bids to the market 
considering its constraints and market conditions. The markets 
that the bids are submitted to can be classified as day-ahead, hour-
ahead, real time; and the reserve market in which the actual time 
remaining for operation differs. A submitted bid might be accepted 
if the price is lower than the Market Clearing Price (MCP), and 
the offer will be cleared with the market price. On the other hand, 
if the offered bid is above the hourly MCP, then the offer will not 
be selected; and there will be no revenues. Assuming a uniform 
bidding mechanism, all bidders will be paid with MCP as it is 
important to be in accepted bids for the price taker units since 
they do not have the power to affect the market price. On the other 
hand, for the pay as bid (PAB) type mechanism, the bidder will 
receive what he has offered if his bid is accepted. Then, the main 
objective of SBP is to determine the proper price and quantities 
for the power that will be submitted to the market. Knowledge 
about MCP is the most important parameter for the decision 
making process about bidding blocks. A block consists of a price 
and corresponding power quantity. If a player is a market maker, 
then he can affect the market price using his power capacity as 
in oligopoly models such as Cournot (Kian et al., 2005) or the 
supply function equilibrium (Rajaraman and Alvarado, 2003). 
These models need the cost data of the market players, which 
are often not available. They also face some issues such as lack 
of equilibrium or the existence of multiple equilibriums. On the 
other hand, if the future values of MCP can be accepted as a 
random variable like in (Valenzuela and Mazumdar, 2003) and 
(Yucekaya et al., 2009), MCP can be considered exogenous, and 
can be included in the decision making process (Mazzi et al., 
2017). Such an approach is even more suitable for price taker 
units as they do not have the power to affect the MCP. It is shown 
that generating units can be considered separately if the price is 
assumed exogenous (Valenzuela and Mazumdar, 2003). When 
analysing a price taker and other players in a competitive market, 
the behaviours of other players are ignored, and the problem of 
the price taker player is simplified. Such an approach requires the 
price taker player to predict the final price of the market according 
to which he will take an action. If the interactions need to be 
analyzed, game theory is commonly used to analyze the behaviours 
of the players and finding the equilibrium. Agent based simulation 
models also provide a framework to reach the equilibrium; and 
they are commonly used when the complexity of the problem 
increases (Yucekaya and Valenzuela, 2013). These models also 
help to observe the interaction between players when they aim 
to maximize their individual objective function until all of them 
reach an equilibrium. As the day-ahead market is repeated daily, 

the players are able to learn the rules and observe the consequences 
of their strategies and reactions of other players. The market prices 
might converge to stable distributions for off-peak periods or when 
the demand forecast is simplified. On the other hand, repetition 
also gives suppliers the option to change their bidding strategies 
if an opportunity arises as a result of factors such as transmission 
congestion, higher demand, and rule change (Mathur et al., 2017a).

There are many efforts in the literature to analyse the bidding 
mechanism in the markets. The bidding strategies used in the 
market are discussed in (David and Wen, 2000), (Prabavathi 
and Gnanadass, 2015) and (Mathur et al. 2017b). They present a 
detailed review of the bidding strategies in competitive markets.

As bidding problem has dynamic interaction and market 
operations, both optimization and heuristic approaches are used to 
model and solve the bidding problem for market players. Optimal 
control (Liu and Wu, 2006), game theory (Song et al., 2003) 
and (Kian and Cruz, 2005), Lagrangian relaxation (Zhang et al., 
2000), dynamic programming (Jiang and Powell, 2015), bilevel 
programming and swarm (Zhang et al., 2010), information gap 
decision theory (Nojavan et al., 2015), Shuffled Frog Leaping 
Algorithm (Kumar and Kumar, 2014), point estimate method 
(Peik-Herfeh et al., 2013), stochastic cournot model (Sharma et al., 
2014), stochastic optimization (Davatgaran et al., 2018), and (Song 
and Amelin, 2017), and simulation (Yucekaya, 2013) are some of 
the recent research areas on the bidding problem. It is also possible 
to use hybrid models and include operational characteristics to 
model and solve the bidding problem. Senthilvadivu et al. (2019) 
propose a hybrid technique that includes recurrent neural network, 
support vector machine, and the lightning search algorithm to 
develop bidding strategies aiming to reach maximum profit for 
suppliers and consumers. Nazari and Ardehali (2019) propose a 
bidding strategy development method in day-ahead and spinning 
reserve markets considering emission and wind, pumped storage, 
and thermal system.

The research for price maker and price taker bidding strategy 
need to be separated (Sadeghi-Mobarakeh and Mohsenian-Rad, 
2016). Song and Amelin (2017) develop a bidding strategy for 
a price-maker retailer with flexible demands including the risk 
levels. Kohansal and Mohsenian-Rad (2015) develop a stochastic 
optimization framework to determine bid and a corresponding 
quantity for the market. Such studies need to analyse the impact 
of their bids on the market price. There are some studies that 
only focus on developing price taker bidding approaches such 
as Conejo et al. (2002); De Ladurantaye et al. (2007); and Fleten 
and Pettersen (2005). Mazzi et al. (2017) propose a stochastic 
optimization method for a price taker unit that is bidding in a 
two-settlement way, and PAB electricity market. They generate 
electricity market prices and use scenarios for the day-ahead and 
balancing market. Mathur et al. (2017) propose a genetic algorithm 
based method for price taker units in which they consider both 
symmetric and asymmetric information for the decision making 
process.

In this paper, as a contribution to literature, we model the SBP 
for price taker electric power generators, and find a solution 
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using quadratic and nonlinear programming given that the power 
producer has imperfect price estimations. However, an optimal 
solution can only be obtained within a reasonable computational 
time for a limited number of price scenarios as the computational 
time increases exponentially as the size of the problem increases. 
We also propose a marginal cost based bidding methodology where 
a power producer can submit its marginal cost as a bid. It is worth 
mentioning that the prices are accepted as exogenous and a market 
player has no perfect information for the upcoming prices. Hence, 
the offered bids need to be evaluated for different price scenarios. 
In order to evaluate a bidding strategy for any given market price 
scenarios, we propose a spreadsheet based simulation algorithm 
to evaluate bids and help companies with their decision analysis.

The remainder of this paper is organized as follows. Section 
2 provides a description of the market design and bidding 
mechanism. The formulation of the problem with different 
methods is introduced in Section 3. Section 4 provides a case 
study for different price scenarios in an effort to measure the 
performance of the proposed methods. Finally, in Section 5, the 
concluding remarks are provided.

2. THE MARKET DESIGN AND BIDDING

2.1. The PJM Market Design
Federal Energy Regulatory Commission in the USA proposed 
a Standard Market Design (SMD) concept in 2002 for the 
standardization of electric power markets in the USA. This design 
and its variants are adopted by many other markets in different 
regions (Cramton, 2017). The objective of a typical SMD is to 
develop a market structure that brings together the physical system 
and the financial operations. This is achieved by defining the roles 
and the interaction of system components. SMD also deals with the 
system governance, market operations, risk management, market 
monitoring and conflict resolutions that might occur among the 
members. The PJM interconnection is a federally regulated and 
non-profit organization that manages the transmission of wholesale 
electricity in 13 states involving more than 65 million people. 
PJM’s members include power generators, transmission owners, 
electricity distributors, power marketers, and large consumers. 
PJM assumed its ISO position in 1996, and introduced bid based 
pricing and locational marginal while it acts independently in 
managing the wholesale electricity market.

SMD aims to increase competition; hence, it is a good place where 
suppliers and consumers meet under the supervision of an ISO and 
economic fundamentals. The balancing of supply and demand is 
always crucial in an economic market. However, it is vital for an 
electricity market since the lack of electricity when needed can 
lead to very costly consequences.

2.2. Bidding in PJM Power Market
The market players need to submit bids for both buying and selling 
the power in the day ahead market. An offer includes at most ten 
price and corresponding quantity pairs. These blocks need to be 
submitted to the day ahead market until noon before the actual 
operation day. The players might estimate the hourly MCP’s but 
need not communicate with each other, and need to keep their 

offers and cost data as a secret. SMDs usually use uniform price 
auctions and PAB auctions to govern the market mechanism. After 
the bids are submitted, and the market is settled by the system 
operator, all the dispatched generators in the uniform price auction 
are paid the market price whereas they got paid their bid price in 
PAB auction. The selection process for winning generators and the 
equilibrium price are the same for both designs with the difference 
that the generators would make different revenues. A supplier or 
generator expects to maximize its profit once its generation cost is 
deducted. When the player is a price taker unit, his first objective 
is to be selected as a dispatched unit; and for that, he needs to 
submit a price lower than the MCP. On the other hand, if the MCP 
is lower than his marginal cost he might be making a loss instead 
of a profit if he submits a price lower than his marginal cost. PJM 
also limits the offered prices with a price cap. The day ahead bids 
are financially binding commitments; and the day ahead prices 
remain fixed for all transactions scheduled in the day ahead market. 
The deviations from the day ahead prices are expected; and the 
real time prices are used to price these deviations. On the other 
hand, if a generator bids into the market, and fails to deliver as 
scheduled, he is still liable for the quantity for which he will be 
charged at the real time market price.

A generator offer for the PJM market is composed of two 
components: the price and quantity of electricity that a supplier 
is willing to generate. Offers are submitted in blocks of price 
quantity pairs. PJM allows submitting at the most ten blocks for 
a generator offer. Figure 1 illustrates a valid offer curve in PJM 
power market. Each generating unit also submits its minimum run 
time, minimum down time, no-load costs and start-up costs to the 
PJM market. PJM runs the “two-settlement” software to determine 
the hourly commitment schedules and the LMPs. Generating units 
that have minimum run times that exceed 24 h are asked by PJM 
to submit binding offer prices for the next 7 h.

3. THE PROBLEM FORMULATION AND 
SOLUTION APPROACH

The suppliers and buyers bid into the market in an effort to maximize 
their objective, which is to maximize its profit and minimize its 
cost, respectively. If the supplier has a capacity enough to impact 
the price, then he might manipulate the market with his actions. 
On the other hand, if the supplier has a limited capacity, he has to 
follow the market flow and accept the MCP. We assume a thermal 
power generator, which obtains its revenue by selling its power 
to PJM market. Such a generator has no power to affect MCP in 
the day-ahead market, and is willing to accept the hourly price to 
generate committed quantity (Yucekaya et al., 2009). SBP then can 
be modeled for a price taker unit in which its decisions do not affect 
the market prices. In order to submit to the day ahead market, N 
price-quantity blocks at the most need to be determined each day 
considering the capacity and estimated market prices. Given that the 
purpose of this paper is to analyze and test the proposed models, we 
exploit a fundamental model for generating market prices, instead 
of using real market data. MCP values at each hour are assumed 
as random variables whose probability distribution has known 
parameters, and they are fed to the model as exogenous values.
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The bids are valid for the day ahead market for the next day, and 
this process is repeated each day. For such a generator, there are 
N pairs of decision variables bi and ∆qi need to be determined. 
The variable ∆qi denotes the amount of energy increase in block 
i to get the bid price bi for delivery at any hour of the next day 
which are represented by the vectors ∆q and b, respectively. As 
the SMD assumes uniform bidding, if the MCP at hour t is equal 
to or higher than the bi, then the last offer at this price or lower 
are accepted and got paid by MCP. Thus, the total energy to be 
produced at time t and sold to the market at a price Pt is given by:

q qt i
i

I Pt
�

�
� �

1

( )

, where I P j b Pt j t( ) � �Max  such that  

  for t=1.T; i=1.I(Pt) (1)

The profit for the day-ahead market for a 24-h period can be 
assumed as the total revenue gained from power sales at each 
hour, and the cost of generation is deducted for the generated 
power quantities. Note that the generator makes a revenue if it 
generated power during hour t at the market price, Pt ($/MWh). 
As Pt is a random variable, then the total profit over a period of 
T hours is also a random variable. For the cases where there are 
price scenarios, K samples of the hourly prices which have an equal 
probability of occurrence can be assumed. Then, the objective 
becomes maximizing the expected profit over the time period T 
(usually 24 h) considering prices at each hour t of sample k as Pt

k 
and generated power of at each hour t of sample k as qt

k. Under 
the light of these assumptions, the bidding problem P(Δq, b) can 
be represented as follows:
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There are some constraints that are related to market conditions, 
and generator operations as stated below. A bid price is limited 
with the price cap as in Eq. 3. A bid quantity increase and total 
commitment cannot be above the generator capacity (Eq. 4 
and Eq. 5). A bid is selected only if the bid price is lower than 
MCP (Eq. 6). The cost of the energy produced by the generating 
unit depends on the amount of fuel consumed and is typically 
approximated by a quadratic cost function (Eq. 7). The coefficient 
a1 represents the fixed cost or no-load cost for each hour. The value 
a2 represents the linear cost which is proportional to the amount of 

power produced. The parameter a3 is the quadratic cost coefficient, 
and it is related to the amount of fuel used to produce electricity.
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3.1. Quadratic Programming Model
The supplier aims to maximize its expected profit considering that 
the market prices are uncertain and he has constraints related to 
generation. Given that the submitted bidding strategy is valid for 
24 h, and there are 24 hourly prices, one might reach a solution 
by finding a bid price for each hour. However, the number of 
price-quantity blocks N is limited to 10; and then at most 10 pairs 
of price and quantity pairs need to be determined and submitted 
to the market.

Quadratic Programming (QP) is one way to find an optimal solution 
to the bidding problem. However, it can solve relatively small-
sized problems as the solution space gets larger when the number 
of prices increases. By setting the number of samples to one, and 
the number of maximum bidding blocks equal to the number of 
hours of the time horizon, a quadratic programming model can 
be formulated. Notice that when the market price consists of one 
sample and the number of blocks are equal to the number of hours, 
the optimal bidding price of a block of power is equal to one of 
the market prices. Therefore, the bidding problem in Eq.2, 4, and 
6 is reduced to the following mathematical representation:

 Max Z = [ ]Pq a q a qt t t t
t

T

� �
�
� 2 3

2

1

 for t=1...,N (8)

Subject to the following constraints:
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   q qt i
i

t

�
�
��

1

 for t=1...,N (10)

	 	 	 Δqi ≥ 0 for i=1...,N (11)

As the objective function has a polynomial component, and the 
constraints are linear, a solution for at most 10 hourly prices can 
be found by using such an approach. However, if the supplier has 
more price scenarios than he expects, it will not be possible to 
include all samples in this method.

3.2. Nonlinear Programming Model
It is still possible to force the bid prices to be in close proximity 
of the expected hourly prices, and also include more samples if 
additional constraints are added. Nonlinear Programming (NLP) 

Figure 1: A generator’s offer curve in the PJM day-ahead market
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is the process of solving a problem that includes equalities, 
inequalities, constraints, and an objective function some of which 
is nonlinear. The proposed problem has nonlinear equalities which 
make the computation time larger than expected. The process finds 
a set of unknown real variables that makes the objective function 
maximized or minimized. The market prices are unknown when the 
bidding decision is made; hence the problem should be developed 
for scenarios instead of only one price sample. Having the same 
problem as in Eq. 2, the NLP will have the following constraints:

       Mz i P bt
k

t
k
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Eq. 3, 4, 5, and 7.

Note that M is a large number, and z and r are binary variables 
that force the bid prices to be in close proximity to market prices. 
It is expected that a solution can be found for a limited number 
of price samples using NLP. It is also important to note that the 
bidding is a daily process, and a solution should be determined 
each day within a limited time frame.

3.3. Marginal Cost Bidding
In a perfectly competitive market, each player is expected to 
submit its costs as it will get paid by MCP when selected if it is 
in a uniform price auction. Such an approach is practical as an 
offer is selected only if the MCP is larger than the bid price. As an 
alternative, the power supplier could split the maximum capacity 
into N blocks of identical sizes, and offer them at prices equal to the 
marginal costs of producing each block. As the number of blocks 
is limited in different markets, N can be determined based on the 
market. Then, for the same problem of Eq. 2, the constraints can 
be formulated as below.

  �q Q
Ni �
max

 for i=1..N. (20)

  b a a qi t
k� �

2 3
2  for k=1..K; t=1..T; i=1..N. (21)

Eq. 3, 6, and 7.

Such an approach will let the generator run for different levels 
of market prices as the bidding strategy will have N different 
prices. The amount of power the generator will supply will be 

different at each price level, and the generator will increase the 
chance of being selected as a unit for dispatch in the market. This 
approach needs no computational time; hence, it might be preferred 
by the suppliers who need a reliable but less time-consuming 
methodology, given that the bidding is a daily process, and it has 
tight time schedules for bid submission.

3.4. Bid Simulator
In order to evaluate a bidding strategy for given market price 
scenarios, a simulation methodology can be utilized. The 
simulation method should include different price samples, and 
should be able to work for different cost functions. We develop a 
simulation model called the Bid Simulator that includes market 
price scenarios and calculates hourly profits according to the 
market prices to evaluate a bidding curve.

This fundamental model generates a set of electricity market price 
forecasts, which is required as an input to our proposed offering 
strategy. If the market price at a particular hour is larger or equal 
to any given price bid, the supplier would sell power. Otherwise, 
it would not sell power at that hour. In order to generate market 
price samples, the simulation methodology uses the Monte Carlo 
method and mean and variance of the historical prices. The pseudo-
code for the simulation is given in Figure 2.

It is obvious that a bidding strategy can return a different profit for 
different market price scenarios. The methodology provides the 
expected profit of each bidding strategy over K price samples, and 
supportive statistical outputs to the decision maker such as statistical 
outputs, probabilistic distributions and confidence intervals. It is also 
worth mentioning that a bidding strategy that is found using QP, 
NLP or marginal cost based bidding can still be evaluated over K 
price samples. Also, expected profits can be analyzed to make better 
analyses considering that those solutions are found for limited price 
samples; and simulation includes K price samples.

4. NUMERICAL STUDIES FOR BIDDING

The proposed models are tested in the PJM market mechanism 
using PJM market prices. The power producer needs to determine 
his/her bidding offer which consists of at the most 10 prices 
($/MWh) and corresponding quantity MWh pairs to be submitted 

Figure 2: Pseudo code of the simulation model

0: Determine bid prices and quantities, bi and ∆qi
1: Generate K price samples each for 24 hours
2: For each K
3:             For each hour t
4:   For each block i in the bidding curve
5:                 If bidding price bi <= market price Ptk
6:           Calculate hourly profit 
7:               Else 
8:                     Hourly profit=0
9:    Next block i 
10:  Next hour
11:                       Daily Profit = Sum (Hourly profit)
12:  Next sample
13:  Average Profit = Sum (Daily Profit )/K
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Table 2: Optimum solution to NLP problem
Block 1 2 3 4 5 6 7 8 9
bi ($/MWh) 45.01 45.54 46.10 46.16 46.39 46.52 46.56 46.87 47.56
qi (MWh) 51.19 65.47 130.94 138.08 165.46 180.93 211.88 222.59 261.28

Table 3: Bid prices and quantities for marginal cost bidding
Block 1 2 3 4 5 6 7 8 9 10
bi ($/MWh) 45.25 45.50 45.75 46.00 46.26 46.51 46.76 47.01 47.26 47.52
qi (MWh) 30 60 90 120 150 180 210 240 270 300

Table 1: Optimum solution to QP problem
Block 1 2 3 4 5 6
bi ($/Mwh) 45.50 45.90 46.10 46.80 47.10 50.20
qi (Mwh) 59.52 107.14 130.95 214.28 250.00 300.00

Figure 3: Market price samples from PJM day ahead market

to ISO until noon each day. ISO will collect sell bids and buy 
bids consecutively will run the Security Constrained Economic 
Dispatch mechanism in which the resources are assigned based 
on their offer characteristics; and day ahead market price is 
determined for each hour based on the cumulative supply and 
demand. The market price data is released regularly paying 
attention to confidential cost data of each supplier. As the proposed 
methodologies consider price taker bidding strategies, we have 
arbitrarily selected 10 price samples from PJM power market. 
Figure 3 shows the price samples.

Note that PJM market is one of the largest power markets, and 
the shape of the market prices is affected by habits and work 
hours. The demand is low at night, but it starts to increase as 
people go to their daily routines, and it is higher in the evening 
with different patterns on weekdays, weekends, and on public 
holidays. We consider a thermal generator whose cost function 
is c(q) = 45q + 0.0042q2 with a maximum capacity of 300 MW. 
Such a generator can be considered a price taker, and he has 
no power to affect with such a capacity the day ahead market 
price. The supplier is willing to accept the market price, and 
he needs to submit a bid strategically in an effort to cover 
different price levels and maximize its expected profit. The 
supplier might target specific hours in the day-ahead market, 
and prefer to reach an optimum solution. For such a case, the 
QP model can be used to solve the problem by setting the time 

horizon to 10 h as it is equivalent to the number of bidding 
blocks. The solution for 10 h market prices is given in Table 1. 
After solving the above model using Cplex, the optimal profit 
is found to be $1772.48.

In order to increase the reliability of his bidding strategy, the 
supplier can include more price samples and can find a bidding 
strategy. As QP is limited with the number of blocks, the bidding 
problem under market price uncertainty is solved with NLP. 
The problem is structured in AMPL and submitted to one of 
the NEOS Servers MINLP to get a solution. After a number 
of iterations and computational time, a solution is found for 
3 day price samples. Table 2 provides the optimum solution. 
The objective function of the optimum solution was $44,779.83. 
However, it takes about 5 h to solve the problem with 3 price 
samples and 300 Mwh capacity. If we increase the capacity to 
1500 Mwh and try to solve the problem with the same price 
samples, we could not find an optimal solution after a 24-h run. 
Results show that it is not likely to solve the problem with more 
than 3 price samples.

The marginal cost bidding model requires splitting the maximum 
capacity into equal block sizes. PJM accepts a maximum of ten 
energy blocks in its daily bidding process, so the maximum 
capacity can be split into 10 blocks, and the marginal cost of these 
quantities can be offered to the market. We solve the problem by 
using the same generator with the price samples given in Figure 2. 
Table 3 gives the price and quantities for marginal cost bidding.

If a high variability is expected at the market prices, the supplier 
prefers the marginal cost based bidding model in an effort to 
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decrease his risk, cover the different price levels, and increase the 
chance of being selected as a dispatched unit. The marginal cost 
model is evaluated for both price samples used in QP and NLP. 
The profit found for 10-h price sample is $1766.58 where the 
optimum solution in QP is $1,772.48. The profit found in 3 day 
price samples is $44,750.86 where the optimum solution in NLP 
is $44,779.83. Although the profit increases by 0.33% and 0.06% 
in QP and NLP respectively might seem to be small, such numbers 
represent huge gains considering the volume of the transactions 
for each operation day. We also verified the solutions using a bid 
simulator.

It is also possible to increase the number of price samples and 
evaluate the effectiveness of each bidding strategy using a bid 
simulator. The success level of a bidding strategy is related to 
its effectiveness against different market price scenarios. A bid 
simulator is designed to include the desired number of market 
prices from different power markets to increase the reliability of 
a bidding strategy. The solution to the marginal cost based bidding 
model is to evaluate in the bid simulator using 10 price samples 
given in Figure 3. The supportive statistics for the decision making 
process is given in Table 4.

It is also possible to calculate the mean profit with a defined 
confidence interval. 5% confidence interval for the mean profit 
is $49709.59 and $49954.39. The distribution of the profits 
along with the probabilities are provided in an effort to support 
the decision making process. Figure 4 provides the cumulative 
distribution function of the profits.

5. CONCLUSIONS AND POLICY 
IMPLICATIONS

The bidding process is daily and the suppliers need to make a 
decision within a limited time frame. The bidding strategy should 
be carefully determined according to the price taker or price maker 
nature of the unit. In this paper, the strategic bidding model for 
price taker units is analysed; and possible solution approaches and 
their limitations are explained. It is shown that QP is able to find a 
solution for small problems where the number of price scenarios 
is limited. NLP can find a solution for more price scenarios, but 
as the problem gets larger, it gets difficult to find a solution. The 
solution method should require low computational time as there 
is a tight schedule each day. As another alternative, it is shown 
that a generator can turn its marginal cost into bidding blocks and 
submit them to the market.

The simulation methodology is used to evaluate the bidding 
offers found in Quadratic Programming, nonlinear programming, 
and marginal cost bidding, as well as to present the statistical 
results for each offer. The bid simulator can be used to extend the 
analysis to increase the number of price samples, and the presented 
statistical results can be used. Also, a sensitivity analysis can be 
performed for the decision making process. The presented models 
and solution approaches, besides filling a gap in the literature, can 
be used by market players if they do not affect the market price 
and have imperfect information about market prices. The paper 
proposes fast and reliable solution methods to the strategic bidding 
problem that can be adapted by the suppliers, and the proposed 
simulation methodology has the potential to help decision makers 
when evaluating a bidding strategy.
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