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ABSTRACT

In the last 20 years, many huge ups and downs have been seen in not only oil prices but also in other spot and derivative’ energy prices too. This study 
has two main purposes. The main purpose of the study is to detect bubbles and their beginning and ending dates in energy derivatives futures prices. 
Crude oil WTI, natural gas, and heating oil monthly prices are analyzed for the period beginning from 1990 to 2018. Following detecting bubbles, 
Markov Regime Switching Autoregressive (MSAR) models and Markov Regime Switching Vector Autoregressive (MSVAR) models are used to 
analyze the movement of the regime-switching mechanism between the bubble dates. The general evidence indicates that the switching mechanism 
during bubble periods has some mutual similarities as generally their direction is to regime 1 as recession with low/negative returns and high volatility. 
Following positive return periods in energy prices, mostly after the high return/high volatility periods, the market actors might face bubble collapses.

Keywords: Energy Futures, Bubble, Generalized Sup Augmented Dickey-Fuller, Markov Switching 
JEL Classifications: G12, G13, G14, Q41

1. INTRODUCTION

Energy prices have undergone major changes since the 1990s. Oil 
prices, which tended to decline for political and economic reasons 
in the 1990s, fell to as low as 12 US dollars after the Asian Crisis 
and soon they began to rise again in 2002. The highest price has 
been seen for oil prices is 140 US dollars on 1 June 2008. Similar 
rises have been seen in other energy prices as natural gas and 
heating oil too. Especially natural gas prices have been in many 
huge ups and downs. The natural gas prices exceeding 12 US 
dollars in 2005 and 2008 are under 3 US dollars in 2019. As well 
as other energy prices, the heating oil prices exceeding 3.90 US 
dollars are around 1.96 in 2019. Analyzing those 2-4 times price 
differences have got increasing importance for researchers.

Huge price increases and speculative attacks are easily seen in 
financial markets many times. The behavior and expectations 
of investors may cause many different anomalies. Information 

coming to the market may cause a needed major price change or 
any price change from any information may cause the following 
investor attack. Those movements are generally explained by 
herding behavior. The size of the globalized financial markets, 
and the power to influence the spot market, are also on the 
academicians’ agenda. Speculative movements and return 
expectations cause price bubbles in many different financial 
markets. The spot and derivative energy markets, which have an 
important transaction volume, may also have been affected by the 
herding behavior of investors.

Knowing price bubbles are the separations of financial assets from 
the random walking process, they are also explained as becoming 
distant from their real value. In his 1985 study, Tirole describes 
the main actors causing the price bubbles as durability, scarcity, 
and common beliefs associated with behavioral finance. In the 
following study, De Long et al. (1988; 1990) explain bubbles 
related to some non-rational behavior with the noise traders’ 
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misperceive expected returns. There are also other authors explain 
that behavior with simple feedback rule and the dynamics of the 
financial markets (Day and Huang, 1990; Chiarella 1992). As 
mentioned in many studies, psychological factors cause investors 
to invest systematically in the same direction. Beginning with 
the first known price bubble tulipmania in the 1630s, those 
behavior cause bubbles in many types of commodity markets as 
precious metals (Baur and Glover, 2012), agriculture (Diesteldorf 
et al., 2016) or oil products (Su et al., 2017).

On the other hand, when the subject of price bubbles is considered 
in terms of commodity-based derivative instruments, reasons 
specific to that commodity, especially supply and demand, are 
the first reasons analyzed. However, the studies carry evidence 
that supply and demand partially explain the price changes. 
According to Arezki and Blanchard (2014), the low demand in 
2014 only explains 20-35% of the price decrease. In another 
study using Structural Vector Autoregressive (SVAR) model, 
oil supply shocks and global oil demand shocks are found as the 
explanatory variables for 50 and 35% of oil price fluctuations 
(Caldara et al., 2016).

It is aimed in this study to model the prominent ups and downs in 
energy prices, especially the oil contract, and to correlate these 
ups and downs with both the regime structure of the market and 
the bubbles. We try to find the answer if the returns and volatility 
in the energy markets give preliminary information to the market 
actors about the formation of a bubble. During the bubble periods, 
the market can be in different regimes as it might be in a recession 
regime, a moderate growth regime, or a growth regime. Therefore, 
Markov Regime Switching (MRS) models, which distinguish these 
regimes according to their return and volatility characteristics and 
connect the transition between regimes to a Markov process, will 
help to find the real answer to our question. For the three energy 
products futures contracts crude oil WTI, natural gas, and heating 
oil, the bubbles are also detected by Sup Augmented Dickey-Fuller 
(SADF) and Generalized Sup Augmented Dickey-Fuller (GSADF) 
tests. Significantly, these tests are successful at investigating the 
bubble dates, however, these results are not enough to analyze 
the general price behavior. Following detecting bubbles, with the 
help of MSAR models, the movement of the regime-switching 
mechanism between the bubble dates is shown. Moreover, the 
results are expanded with the MSVAR model, which analyzes the 
mutual switching mechanism of all energy derivative variables 
together.

2. LITERATURE REVIEW

As in the other studies in the field of finance (Koy, 2018; Su et al., 
2020; Zeren and Ergüzel, 2015), there is widening literature on 
examining the price discovery on energy products by nonlinear 
models (Vo, 2009; Kordnoori et al., 2013; and Zlatcu et al., 2015) 
and widening literature on detecting bubbles on energy prices 
either. For instance, with data sampled from 1985 to 2010, Shi 
and Arora (2012) estimate three different models of speculative 
behavior using oil price data during 2008. Their estimations also 
show that an increase in the probability of being in a bubble 
surviving regime can come before or during the collapsing 

regime of the bubble. In another study, by expressing the standard 
present-value model in the state-space form, Lammerding et al. 
(2012) divide the fundamental part of the oil price from the bubble 
component. They also use a Bayesian Markov-switching state-
space approach with two regimes as stable and explosive phases 
to detect bubbles.

GSADF test which we also used in this study is a new model 
developed by Philips et al. in 2015. Using GSADF, Su et al. (2017) 
find six bubbles in oil in 21 years period ending in 2016. The dates 
of the bubbles are dated to specific events as in the other studies 
on oil bubbles. Likewise, examining the 1876-2014 period Caspi 
et al. (2018) finds 13 bubbles. In the study combining the real oil 
price and the nominal price-supply they also apply GSADF tests 
to price-supply ratios for the period 1920-2014.

Sharma and Escobari (2018) identify bubble periods for three 
energy sector indices for crude oil, heating oil, and natural gas, 
and they analyze five energy sector spot prices for West Texas 

Figure 1: GSADF for crude oil 

Figure 2: GSADF for natural gas
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Intermediate (WTI) brent, heating oil, natural gas, and jet fuel 
with the help of SADF and GSADF tests. Similarly, bubble tests 
are also used for detecting bubbles in renewable energy industries 
include wind, solar, and hydro (Wang et al., 2019). Applying 
the GSADF test, the evidence shows multiple bubbles in both 
three sectors for the period 2005-2019 in China. Herrera and 
Tourinho (2019) find multi-bubbles in Brent but not in WTI for 
a longer period in a weekly range between 1990 and 2019. They 
also analyze the fundamental value calculated from the arbitrage 
condition between the spot oil market and the futures oil market. 
In a similar period from 2001 to 2020, employing GSADF test, 
Khan et al. (2021) finds three bubbles for different data ranges as 
week and quarter for brent oil.

Apart from bubble studies, there are many studies analyzing 
energy prices with nonlinear models. Moreover, different types of 
Markov Switching (MS) models are used in some of the studies. 
In Fong and See (2002), the effect of volatility in daily returns on 
crude oil futures are examined using the main types and regime-
switching types of Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) models. Vo (2009) explains the 
behavior of oil prices to forecast their volatility by the Bayesian 
Markov Chain Monte Carlo methodology with the regime-
switching mechanism. In another hybrid model, Kordnoori et al. 
(2013) model the fluctuations of Brent oil prices by integrating the 
limit probability distribution of a Markov chain and Gumbel Max 
distribution according to short term, middle and long term periods.

Zhang and Zhang (2015) analyze Brent and WTI crude oil prices 
before and after the 2008 financial crisis with MS models. Their 
findings show that markets for crude oil have got three regimes 
before and after the crisis. Comparing the MS Multifractal volatility 
model to the other GARCH type models, Wang et al. (2016) 
indicate that MS volatility models perform better in forecasting 
for crude oil. Fantazzini (2016) has got a similar perspective to 
our study that identifies the bubble periods with the GSADF test 
in the first step, and he applies the log-periodic power law (LPPL) 
model in the following step. In a similar perspective, examining the 

intrinsic time of price volatility and metric of volatility horizons, 
García-Carranco et al. (2016) find that price volatility dynamics 
are characterized by two different universal metrics of volatility 
horizons during the bubble and non-bubble periods.

The causality of geopolitical risk on oil prices and financial 
liquidity is studied by Su et al. (2019) by wavelet analysis in Saudi 
Arabia for the period 1998-2018. The findings indicate that oil 
price and financial liquidity are related in the time domain when 
GPR is high. They also detect both short-term and medium-term 
relations among oil price, financial liquidity and geopolitical risk 
in different frequencies. Applying the time-varying parameter-
stochastic volatility-vector autoregression model, Su et al. (2020) 
investigate the contributions of partisan conflicts, the dollar 
index and U.S. oil production on the oil price for the period 
1990-2018. As consistent with the literature, the impact of the 
partisan conflicts is found less than that of the dollar index, and 
the negative effect of the dollar index was strengthened after the 
global economic crisis.

3. METHODOLOGY AND DATA

We use monthly closing prices of crude oil WTI futures contracts, 
natural gas futures contracts, and heating oil futures contracts for 
the period beginning from 1990 to 2018. Due to the fact that the 
high price movements have been observed especially since 1990 
and have increased gradually in the last 20 years, the entire period 
is taken as the sample period. The empirical analysis in the study 
is composed of three steps. In the first step, the bubble in prices is 
analyzed by the Generalized Sup Augmented Dickey-Fuller Test 
(GSADF) using E-views program. Following detecting bubbles, 
MSAR models are used to analyze the switching mechanism 
between different regimes among the bubble dates. In the third 
step, with the help of the MSVAR model, the mutual switching 
mechanism of all energy derivative variables is analyzed using 
OxMetrics. While the bubbles are detected in the levels of the 
variables, the MRS models need to test in the stationary series. 
The logarithmic or logarithmic differences of the variables that 
are stationary are investigated using the augmented Dickey–Fuller 
(ADF), Philips–Perron (PP), and Kwiatkowski-Philips-Schmidt-
Shin (KPSS) unit root tests.

3.1. Sup Augmented Dickey-Fuller Test
Philips et al. (2011) developed the SADF test which is one of the 
right-tailed unit root tests. The analysis allowed for a null random 
walk process with an asymptotically negligible drift.

yt dT yt t� � � ��K � 1 µ , µ N Ãt
iid~ ,0 2� � , ∅=1 (1)

d = constant,

T=sample size,

ŋ › ½

The empirical regression model in formula (1) includes an intercept 
but it does not include a trend. When we suppose a regression 
sample starts from the rth1  fraction of the total sample and ends 

Figure 3: GSADF for heating oil
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at the rth12  fraction of the sample, while r2 = r1 + rw and rw is the 
(fractional) window size of the regression, the model is:

� � � �yt y y µr r r r t r r
i

t i t�� � � �� ���1 2 1 2 1 21 1i

k

k=lag order,

� �t
iid

r rN~ ,0
1 2

2� � ,

Tw = ⌊Trw⌋ = Number of the observations in the regression

ADF statistic (t ratio) based on this regression is signified by ADF
r

r

1

2 .

This right-tailed unit root test estimates the Augmented Dickey-
Fuller (ADF) model repeatedly on a forward expanding sample 
sequence conducts a hypothesis test based on the sup value of the 
corresponding ADF statistic sequence.

rw=window size

window size expands from r0 to 1.

The ending point of each sample r2 is equal to rw.

The ADF statistic for a sample that runs from 0 to r2 is denoted 
by ADFr20 . The SADF statistic is defined as supr2∈[r01] ADF

r
0
2 and 

is denoted by SADF (r0).

3.2. Generalized Sup Augmented Dickey-Fuller Test
The GSADF test based on the idea of repeatedly running the ADF 
test on a sample sequence. GSADF test allows the starting point r1 to 
change within a feasible range. This range is from 0 to r2−r0. Moreover, 
the GSADF test can be defined as the largest ADF statistic over the 
feasible ranges for r1 and r2 (Philips et al., 2012; 2015(a); 2015 (b)).
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After including an intercept into the model and the null hypothesis 
is a random walk without drift (i.e. dT-n with n › ½ and constant d), 
GSADF test statistic’s limit distribution is:
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rw= r2−r1 and W is a standard Wiener process.

If the total number of observations (T) in GSADF is small (large), 
r0 needs to be large (smaller). r0 should be enough to ensure there 
are enough observations for adequate initial estimation. If T 
is large, a smaller r0 is needed, then the test does not miss any 
opportunity to detect an early explosive episode (Phillips et al. 
(2011)). Thus the random and explosive processes are successfully 
distinguished from each other in a GSADF test.

3.3. Markov Switching Autoregressive Model
In MRS models the regime-generating process is an ergodic 
Markov chain with a finite number of states defined by the 
transition probabilities (Krolzig, 2000).

pij = Pr(st+1 = j|st = i); Pij �
�� 1
1j

m

; i,j ={1.,m} (5)

st follows an ergodic M-state Markov process with an irreducible 
transition matrix. P(st+1=1|st = 2) = p12 is the transition probability 
from state 1 to state 2:

P p p p pm m mm� � ��� �11 1 1
 (6)

The probability of which regime is in operation at time t 
conditional on the information at time t = −1 only depends only 
on the statistical inference on st−1

Pr s Y X S Pr s st t 1 t t 1 t t 1( | ; ; ) ( | )� � ��  (7)

The probability of any observation being in any state is called 
the ergodic probability. The ergodic probabilities for a two-state 
model are given as (Bildirici, 2010):
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Hamilton (1989) first implemented the MRS model to analyze 
business cycles. One of the main types of MRS models is the 
Markov Switching Model of Conditional Mean (MSM) where the 
regime switches according to the conditional mean (µt), and the 
other model is Markov Switching Intercept (MSI) model where 
the regime switches according to the constant (cst). The Markov 
Switching Intercept and Heteroscedasticity (MSIH) model is a 
third model that has proven to be strong in explaining financial 
time series is. The models can be written as:

MSM Model: yt - µt = ɸ (yt-1 - µt-1) + ut 
(9)

MSI Model: yt – cst = ɸyt-1 + ut 
(10)

MSIH Model: yt– cst = ɸyt-1 + ut + Ω
1/2 (11)

ɸ is an n x n matrix of regime-dependent autoregressive coefficients.

ut is an (n*1) unobservable zero-mean white noise vector process.

yt-1 is the lagged values of the dependent variable.

Matrix Ω1/2 represents the factor applicable to state st in a state-
dependent Cholesky factorization of the variance-covariance 
matrix of the variable (y) Ω st.
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Ω st =Var [yt|ϗt-1,st]; (12)

ϗt-1: denotes time t-1 information of all past observations and states.

A two-state bivariate Matrix Ω1/2 is (Guidolin, 2016):

� � � � �st s s s st t t t
� 1

2
12
2

12
2

2
2

, , , ,  (13)

4. EMPIRICAL RESULTS

In this section, the empirical results are given in three parts. The 
first part gives the results on detecting bubbles with the help of 
GSADF tests. In the second part, the results of MS models are 
given. And finally, the third part explains the switching mechanism 
between bubble dates with the help of two different methodologies 
as GSADF tests and MS models.

4.1. Detecting Bubbles with GSADF Tests
The results of GSADF tests are given in Table 1. The statistics 
are compared with the critical values obtained from the Monte 
Carlo simulation with 1000 replications for each observation. It 
is concluded that multiple bubbles are found in all three energy 
derivative contracts during the sampling period for the probability 
of 99%.

Figures 1 to 3 include GSADF tests’ results as images. The green 
lines in the figures are the futures prices, the green lines are critical 

values of the test and the calculated sequences are shown in blue. 
Generally, the areas above the red critical values of the blue line, 
indicate bubble possibilities.

With the help of the GSADF test, three bubble periods have been 
found for crude oil As seen in Figure 1 the first and second bubble 
dates are very close to each other. The first one occurs between 
June 2005 and October 2005. The following second bubble begins 
in December 2005 and ends by September 2006. After 9 months, 
the last bubble in the observation period occurs. It begins in June 
2007 and ends by October 2008.

In Figure 2, the blue line exceeds over redline online 1 time. This 
bubble period is beginning from November 2000 ends in January 
2001. This is the first bubble that occurs in the sample period 
includes the prices for all three contracts.

The possibility of price bubbles for heating oil is seen 3 times in 
the sample period in Figure 3. The first one is seen from July 2005 
to October 2005. These dates are also in the first bubble period 
for crude oil (crude oil: June 2005-October 2005). After 2 years, 
in September 2007 another bubble occurs. This bubble appears 
following the last crude oil price bubble begins in June 2007, and 
it lasts 1 month before the crude oil bubble, in September 2008 
(crude oil: October 2008). Finally, the last bubble for heating 
oil and also for the whole three commodities occurred between 
November 2014 and January 2015.

The bubble periods found in GSADF tests are shown in Table 2. 
According to the evidence, both crude oil and heating oil have got three 
bubble periods, however, natural gas has got only one bubble period.

4.2. Unit Root Tests
To obtain reliable results in MRS models, the stationary series 
should be used. ADF, PP and KPSS tests are used to the natural 
logarithms of series. The unit root tests’ results in Table 3 show 
that, when we take differences to the natural logarithms, all 

Table 1: Test statistics for GSADF
Finite sample critical values

Test stat. 90% 95% 99%
Crude Oil WTI Window size: 37

4.531674 (0.0000) 2.910424 2.231080 1.982021
Natural Gas Window size: 37

3.314644 (0.0010) 2.931459 2.235399 1.973033
Heating Oil Window size: 37

3.738451 (0.0000) 2.910424 2.231080 1.982021

Table 3: Unit root tests
ADF Philips Perron KPSS

T-stat. Prob. Lag Bandwidth Adj. T-stat. Prob. Bandwidth L-M Stat.
Crude Oil

I (0) −1.7532 0.4036 1 10 −1.4817 0.5419 15 1.7794
I (1) −5.7538 0.000*** 1 15 −15.1669 0.000*** 11 0.0972

Natural Gas
I (0) −2.2488 0.1896 11 3 −2.7113 0.0731 15 0.8910
I (1) −8.6697 0.000*** 8 9 −18.7256 0.000*** 9 0.0917

Heating Oil
I (0) −1.4406 0.5626 0 2 −1.4697 0.5480 15 1.8448
I (1) −17.9463 0.000*** 0 4 −17.9368 0.000*** 4 0.0670

I (0): Natural logarithm and I (1): Natural logarithmic differences. Lag length is determined according to the Akaike information criterion. Maximum lags are determined “2”. *, ** and 
*** respectively, 0.10, 0.05, and 0.01 indicates the level of statistical significance 

Table 2: Bubble periods
1st 2nd 3rd

Crude Oil June 2005-October 2005 December 2005-September 2006 June 2007-October 2008
Natural Gas November 2000-January 2001
Heating Oil July 2005-October 2005 September 2007-September 2008 November 2014-January 2015
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variables become stationary. According to the results, the first 
differences of the natural logarithmic variables should be used 
in the next steps.

4.3. Markov Switching Models and Cycle Dates
In the second step, autoregressive models with different numbers of 
regimes (2 or 3) and different lags are applied to time series data for 
crude oil, natural gas, and heating oil. Taking linearity as our null 
hypothesis, and following Davies’ (1987), a P < 0.05 considered a 
statistically significant rejection of the null hypothesis. In several 
models that have been found, the model that best explains the nonlinear 
relationship is the MSIH model with three regimes which are specified 
by the intercept (I) and volatility/heteroscedasticity (H). The estimation 
procedure implemented in the “Ox Metrics program” identifies regime 
1 as the recession regime, regime 2 as the moderate growth regime, 
and lastly regime 3 as the expansion regime of the model.

Table 4 gives the information criterions for the selected Markov 
Switching Models. The selected model for crude oil is the MSIH 
(3) AR (3) model. It has three regimes and three lags. The models 
describing the switching mechanism for natural gas and heating 

oil are MSIH (3) AR (5) with three regimes and five lags. Lastly, 
the MSVAR model with three variables has got three regimes too.

Transition probability represents the likelihood that the indexes 
will stay in the original regime or switch to another regime. Table 5 
presents the transition probabilities. It is a remarkable finding that the 
transition from the first regime to the third regime is relatively high 
for crude oil (0.3412) and heating oil (0.2016). A similar situation is 
also noticeable in the MSVAR (model 4) model, which examines the 
mutual switching mechanism (0.3427). Similarly, the transition from 
regime 1 to regime 3 is higher than other transition possibilities for 
natural gas (0.2206) and model 4 (0.3081). When the transitions from 
the second regime, which has lower volatility than other regimes, to 
other regimes are examined, the direction of the regime for natural 
gas and heating oil dominated towards the first regime.

Regime properties are exhibited in Table 6. The moderate growth 
regime with the lowest volatility is the most observed in all four models. 
The second regime of the crude oil model has the highest duration 
value with 53 days. This value shows that, if the oil price enters the 
moderate growth regime, it can remain on this regime for an average 

Table 4: Information criterions for markov switching models
Model Variables Model log-likelihood AIC HQ SIC LR Linearity DAVIES (5%)
1 Crude Oil MSIH (3) AR (3) 152.07 −1.9770 −1.9098 −1.8084 43.91 0.00
2 Natural Gas MSIH (3) AR (5) 188.28 −1.0105 −0.9340 −0.8186 42.99 0.00
3 Heating Oil MSIH (3) AR (5) 341.36 −1.9136 −1.8371 −1.7217 51.73 0.00
4 Crude Oil

Natural Gas
Heating Oil

MSIH (3) VAR (1) 1116.92 −6.2678 −6.0806 −5.7978 179.04 0.00

Table 5: Transition probabilities
Variable Regime 1 Regime 2 Regime 3

Model 1 Crude Oil MSIH (3) AR (3) Regime 1 0.6587 4.541e-005 0.3412
Regime 2 0.0188 0.9811 0.0000
Regime 3 0.0000 0.08327 0.9167

Model 2 Natural Gas MSIH (3) AR (5) Regime 1 0.6176 0.2231 0.1593
Regime 2 0.0922 0.7477 0.1601
Regime 3 0.2206 0.0959 0.6835

Model 3 Heating Oil MSIH (3) AR (5) Regime 1 0.5650 0.2335 0.2016
Regime 2 0.0392 0.9177 0.0430
Regime 3 0.1422 0.0157 0.8421

Model 4 Crude Oil
Natural Gas
Heating Oil

MSIH (3) VAR (1) Regime 1 0.5734 0.0840 0.3427
Regime 2 0.0577 0.8993 0.0431
Regime 3 0.3081 0.2935 0.3984

Table 6: Regime properties
Variable Number of Observation Probability Duration

Model 1 Crude Oil MSIH (3) AR (3) Regime 1 14 0.0430 2.93
Regime 2 266.9 0.7803 53.02
Regime 3 60.2 0.1767 12.01

Model 2 Natural Gas MSIH (3) AR (5) Regime 1 96 0.2850 2.61
Regime 2 128.5 0.3796 3.96
Regime 3 114.5 0.3355 3.16

Model 3 Heating Oil MSIH (3) AR (5) Regime 1 52.7 0.1559 2.30
Regime 2 171.4 0.5069 12.16
Regime 3 114.9 0.3372 6.33

Model 4 Crude Oil
Natural Gas
Heating Oil

MSIH (3) VAR (1) Regime 1 68.6 0. 2022 2.34
Regime 2 219.7 0. 6370 9.93
Regime 3 54.7 0.1608 1.66
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of 53 days. It takes attention in the natural gas model that the number 
of the observation (129-115), probability (0.38-0.34) and duration 
(3.96-3.16) of regime 2 and regime 3 are very close to each other.

4.3. The Relation between Bubble Dates and Cycle 
Dates
The cycle dates are given in Tables 7-10. The cycle dates 
which are between bubble dates are signed with grey and 
bold in Tables. The switching is possible from any regime 

to another one (regime 1 to regime 2, regime 1 to regime 3, 
regime 2 to regime 1, regime 2 to regime 3, regime 3 to regime 
1, regime 3 to regime 2), however, the results show that the 
switching mechanism during bubble periods have some mutual 
similarities.

Among the 4 models, it is seen that oil changed fewer regimes 
than others. Three consecutive bubbles in crude oil have hardly 
ever switched in the regime. It is an important finding that all 
three bubbles take place in the second regime with low volatility 
and positive returns between 2005 and 2008. Only a regime 
change took place at the end of the third bubble in 2008. The one 
switching for crude oil is from regime 2 to regime 1. Next, natural 
gas switches 1 time during its only bubble period from regime 3 
to regime 1 in 2001.

In the first bubble period in 2005, heating oil switches from regime 
3 to regime 1. In the following 2007-2008 bubble, the regime 
switches from regime 2 to regime 3, then it switches to regime 1. 
Finally, the last bubble occurs in the first regime in 2014-2015.

Table 8: Cycle dates of natural gas
NATURAL GAS – MSIH (3) AR (5)

Regime 1 Regime 2 Regime 3
1990:12-1991:4 [0.8989]
1991:12-1992:2 [0.9954]
1992:11-1993:1 [0.7742]
1993:12-1993:12 [0.4121]
1994:2-1994:2 [0.7129]
1994:7-1994:8 [0.9079]
1994:11-1995:1 [0.7281]
1996:7-1996:8 [0.9810]
1996:12-1997:3 [0.7707]
1997:11-1998:1 [0.9333]
1998:7-1998:8 [0.9307]
1998:11-1998:11 [0.6500]
1999:1-1999:2 [0.8602]
1999:11-1999:11 [0.9829]
2001:1-2001:9 [0.9760]
2001:11-2002:1 [0.8602]
2003:3-2003:3 [0.9896]
2003:6-2003:7 [0.9326]
2004:8-2004:8 [0.8946]
2004:12-2004:12 [0.8592]
2005:12-2006:6 [0.8799]
2006:8-2006:9 [0.7901]
2006:12-2006:12 [0.9699]
2007:6-2007:8 [0.9724]
2008:7-2009:4 [0.9978]
2009:8-2009:8 [0.9235]
2010:2-2010:3 [0.8913]
2010:8-2010:8 [0.9197]
2011:9-2011:9 [0.6271]
2011:11-2012:3 [0.9444]
2014:7-2014:7 [0.6712]
2014:12-2015:3 [0.8323]
2016:2-2016:2 [0.9962]
2017:1-2017:2 [0.7713]
2018:12-2018:12 [0.9964]

1991:5-1991:7 [0.6858]
1992:3-1992:4 [0.6633]
1993:2-1993:2 [0.5331]
1993:5-1993:11 [0.8518]
1994:3-1994:6 [0.7127]
1994:9-1994:9 [0.4867]
1995:2-1995:9 [0.9175]
1996:2-1996:5 [0.7159]
1997:4-1997:7 [0.8226]
1998:2-1998:5 [0.8324]

1998:12-1998:12 [0.4535]
1999:12-2000:2 [0.7189]
2002:5-2002:7 [0.5437]
2003:8-2003:11 [0.8615]
2004:1-2004:7 [0.8038]
2005:1-2005:6 [0.7992]
2007:2-2007:5 [0.6953]
2009:5-2009:7 [0.7849]
2010:4-2010:6 [0.7143]
2010:9-2011:8 [0.9101]

2011:10-2011:10 [0.5015]
2012:4-2012:5 [0.6993]
2012:11-2013:2 [0.8054]
2013:5-2013:10 [0.8271]
2014:2-2014:6 [0.7929]
2014:8-2014:11 [0.8530]
2015:4-2016:1 [0.8296]
2016:3-2016:4 [0.6009]
2017:3-2018:9 [0.9353]

1990:10-1990:11 [0.9970]
1991:8-1991:11 [0.9942]
1992:5-1992:10 [0.8832]
1993:3-1993:4 [0.8644]
1994:1-1994:1 [0.9609]

1994:10-1994:10 [0.7008]
1995:10-1996:1 [0.8258]
1996:6-1996:6 [0.9806]
1996:9-1996:11 [0.9165]
1997:8-1997:10 [0.9993]
1998:6-1998:6 [0.5500]
1998:9-1998:10 [0.6939]
1999:3-1999:10 [0.9270]
2000:3-2000:12 [0.8816]
2001:10-2001:10 [0.9977]
2002:2-2002:4 [0.8566]
2002:8-2003:2 [0.9162]
2003:4-2003:5 [0.5465]

2003:12-2003:12 [0.9967]
2004:9-2004:11 [0.8304]
2005:7-2005:11 [0.9387]
2006:7-2006:7 [0.9994]

2006:10-2006:11 [0.9988]
2007:1-2007:1 [0.9698]
2007:9-2008:6 [0.9159]
2009:9-2010:1 [0.9064]
2010:7-2010:7 [0.5741]
2012:6-2012:10 [0.9395]
2013:3-2013:4 [0.6855]
2013:11-2014:1 [0.8569]
2016:5-2016:12 [0.7874]
2018:10-2018:11 [0.8305]

Table 7: Cycle dates of crude oil
CRUDE OIL – MSIH (3) AR (3)

Regime 1 Regime 2 Regime 3
1998:10-1998:11 
[0.5231]
2008:9-2008:12 
[0.9228]
2014:10-2015:1 
[0.7886]
2018:10-2018:12 
[0.7788]

1991:3-1998:9 
[0.9711]

2001:2-2008:8 
[0.9193]

2009:6-2014:9 
[0.9672]

2016:5-2018:9 
[0.9465]

1990:8-1991:2 [0.9467]

1998:12-2001:1 [0.9392]

2009:1-2009:5 [0.8898]

2015:2-2016:4 [0.7993]
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In the last table, the dates of the cycle of Model 4 are given. 
Model 4, shows the mutual switching mechanism with all 
three variables in an MSVAR model. When we examine all 
the bubble dates of the three variables within the scope of the 
common regime change, it is seen that the direction of the 
regime-switching is predominantly towards the second regime 
and the third regime.

While the first bubble between all (natural gas) begins in 
November 2000, the regime is in high growth. In the next month, 
it switches to the recession, then it comes back to Regime 3. The 
next bubble shown in crude oil prices and heating oil prices begins 
in June 2005 in a moderate growth regime. In 2 months the regime 
switches to the recession. A few months later another bubble begins 
in December 2005 in the moderate growth regime. In this bubble 

Table 9: Cycle dates of heating oil
HEATING OIL-MSIH (3) AR (5)

Regime 1 Regime 2 Regime 3
1990:10-1991:4 [0.6971]
1991:11-1991:12 [0.8044]
1994:3-1994:3 [0.5405]
1997:1-1997:2 [0.6838]
1997:12-1998:2 [0.3881]
1998:11-1998:11 [0.5074]
2000:12-2001:2 [0.6142]
2001:9-2001:11 [0.5939]
2003:3-2003:4 [0.7245]
2005:10-2005:11 [0.6523]
2006:9-2006:9 [0.5927]
2006:12-2006:12 [0.6015]
2008:8-2009:2 [0.7770]
2010:5-2010:5 [0.4773]
2012:5-2012:5 [0.6692]
2014:10-2015:1 [0.6306]
2015:7-2015:7 [0.5263]
2015:9-2015:12 [0.5973]
2016:7-2016:7 [0.6397]
2018:11-2018:12 [0.7872] 

1991:5-1991:10 [0.6278]
1992:1-1993:9 [0.9119]
1994:4-1995:11 [0.9172]
1997:3-1997:11 [0.6614]
2001:3-2001:5 [0.4862]
2003:5-2004:6 [0.8529]
2005:12-2006:8 [0.7650]
2007:1-2008:1 [0.8150]
2009:8-2010:4 [0.6047]
2010:6-2012:4 [0.9204]
2012:6-2014:9 [0.9291]
2016:8-2018:10 [0.9025]

1993:10-1994:2 [0.5578]
1995:12-1996:12 [0.7160]
1998:3-1998:10 [0.5882]
1998:12-2000:11 [0.8933]
2001:6-2001:8 [0.5332]
2001:12-2003:2 [0.8116]
2004:7-2005:9 [0.8896]

2006:10-2006:11 [0.4967]
2008:2-2008:7 [0.6559]
2009:3-2009:7 [0.7067]
2015:2-2015:6 [0.7654]
2015:8-2015:8 [0.6010]
2016:1-2016:6 [0.7449]

Table 10: Cycle dates of model 4
MODEL 4-MSIH (3) VAR (1)

Regime 1 Regime 2 Regime 3
1990:6-1990:6 [0.4688]
1990:10-1991:2 [0.9192]
1994:2-1994:2 [0.6799]
1996:7-1996:8 [0.6723]
1996:10-1996:10 [0.6836]
1996:12-1997:1 [0.6277]
1998:6-1998:6 [0.4953]
1998:8-1998:8 [0.6514]
1998:10-1998:11 [0.9096]
1999:2-1999:2 [0.5494]
1999:5-1999:5 [0.6282]
1999:10-1999:12 [0.6363]
2000:3-2000:4 [0.7859]
2000:7-2000:7 [0.9173]
2000:9-2000:10 [0.6089]
2000:12-2000:12 [0.9971]
2001:5-2001:11 [0.6941]
2003:4-2003:4 [0.9359]
2005:9-2005:11 [0.4525]
2006:1-2006:2 [0.4844]
2006:7-2006:10 [0.8396]
2008:7-2009:1 [0.8944]
2009:8-2009:9 [0.6028]
2014:10-2015:1 [0.8652]
2015:7-2015:7 [0.7617]
2015:11-2015:11 [0.6708]
2016:1-2016:2 [0.4996]
2018:10-2018:12 [0.8781]

1991:5-1991:11 [0.8835]
1992:1-1993:12 [0.9312]
1994:5-1994:12 [0.8124]
1995:2-1996:4 [0.8669]
1997:3-1998:5 [0.9035]
1999:7-1999:9 [0.7929]
2001:3-2001:4 [0.4239]
2001:12-2003:1 [0.8975]
2003:6-2004:8 [0.8919]

2004:10-2005:7 [0.8936]
2005:12-2005:12 [0.4166]
2006:3-2006:6 [0.8275]
2007:1-2008:6 [0.9245]
2009:6-2009:7 [0.7256]
2009:10-2014:9 [0.9015]
2015:5-2015:6 [0.5111]

2015:8-2015:10 [0.5091]
2016:3-2018:9 [0.9355]

1990:7-1990:9 [0.8667]
1991:3-1991:4 [0.9951]

1991:12-1991:12 [0.9988]
1994:1-1994:1 [0.9849]
1994:3-1994:4 [0.9403]
1995:1-1995:1 [0.7516]
1996:5-1996:6 [0.6857]
1996:9-1996:9 [0.4954]

1996:11-1996:11 [0.4285]
1997:2-1997:2 [0.6919]
1998:7-1998:7 [0.4305]
1998:9-1998:9 [0.8374]
1998:12-1999:1 [0.4391]
1999:3-1999:4 [0.8871]
1999:6-1999:6 [0.7593]
2000:1-2000:2 [0.9996]
2000:5-2000:6 [0.6826]
2000:8-2000:8 [0.9861]

2000:11-2000:11 [0.5932]
2001:1-2001:2 [0.6801]
2003:2-2003:3 [1.0000]
2003:5-2003:5 [0.9633]
2004:9-2004:9 [0.7692]
2005:8-2005:8 [0.9553]

2006:11-2006:12 [0.8278]
2009:2-2009:5 [0.7351]
2015:2-2015:4 [0.9945]

2015:12-2015:12 [0.4729]
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period, the regime switches 3 times between moderate growth 
and recession. The third bubble for crude oil includes the second 
bubble of heating oil at the same time. The bubbles begin and stay 
in regime 2 for a year, then regime switches to 1.

Finally, the last bubble period occurs in the recession regime and 
it does not switch to another one.

5. CONCLUSION

Considering energy prices have undergone major changes since the 
1990s, this study focuses on two main purposes. While detecting 
bubbles’ beginning and ending dates in energy derivatives 
futures prices, the switching mechanism during bubble dates are 
determined. Supply and demand are the first reasons analyzed for 
the huge price changes in commodity futures. Depending on the 
growth in the global economy after 2002, the increase in demand 
led to a rapid increase in oil prices. Although this increasing 
process continued until the 2008 crisis, it is observed that there 
were different bubbles in oil prices before the crisis. Moreover, 
the evidence in the studies notes that the supply and the demand 
partially explain the price changes. Under these conditions, 
analyzing the price behavior between bubble dates in a model 
that explains the regime of the economy as recession or growth 
should be explanatory.

In the study, we use monthly closing prices of crude oil WTI futures 
contracts, natural gas futures contracts, and heating oil futures 
contracts for the period beginning from 1990 to 2018. According 
to GSADF tests, which are successful at detecting bubbles, 
while natural gas has got one bubble period, others have got their 
different bubble periods. These estimations provide support for 
the findings of Caspi et al. (2018), Su et al. (2017), and Sharma 
and Escobari (2018).

While the switching is possible from any regime to another one, 
the results show that the switching mechanism during bubble 
periods has some mutual similarities as generally their direction 
is to regime 1 as recession with negative/low returns and high 
volatility. The findings show that during the bubble periods of 
crude oil, only one regime change from regime 2 to regime 1 is 
seen at the end of the third bubble in 2008. Moreover, all three 
bubbles take place in the second regime, which is a regime with 
low volatility and positive returns. It is interesting to note that 
periods where volatility is relatively low (as regime 2-moderate 
growth) and price changes are not very high can end with bubble 
collapses.

In the only bubble period of natural gas, the regime switches from 
3 to 1. Next, for heating oil regime switches from 3 to 1 in 2005, 
switches 2 to 3, then it switches to regime 1 in the following 
2007-2008 bubble, and finally, the last bubble occurs in the first 
regime in 2014-2015.

The most switching between bubble periods for the whole four 
models is seen from regime 3 which is the regime with high 
volatility and positive returns to regime 1 with high volatility 
and low/negative returns. Following the positive return periods 

in energy prices, bubble collapses may appear. If the volatility 
increases while the returns continue to be positive, market actors 
should be cautious. The fact that sometimes the asset bubbles have 
already taken place in low volatility regimes before moving on 
to high volatility periods (going to collapse), installing warning 
alert systems is difficult. Nevertheless, according to evidence, 
we can say that high volatility periods with high returns mean 
that investors and policymakers should be careful about bubble 
collapses.
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