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ABSTRACT

In the recent years digital transformation became one of the most used approaches in building energy consumption optimization. Increased interest in 
improving energy sustainability and comfort inside buildings has created an opportunity for digital transformation to build predictive tools for energy 
consumption. By retrofitting or implementing new construction technologies nowadays the quantity and quality of the operational data collected has 
reached unprecedented levels. This data must be consumed by implementing powerful predictive tools that will provide the needed level of certainty. 
Adopting six sigma’s define, measure, analyze, improve, control (DMAIC) cycle as predictive analytics framework will make this paper accessible 
for both professionals working in energy industry and researchers that are developing models, creating the premises for reducing the gap between 
research and real-world business, guiding the use of data. Moreover, the selected strategy for preprocessing and hyperparameter selection is presented, 
the final selected models showing scalability and flexibility. At the end the architectures, performance and training time are discussed and then coupled 
with the thought process providing a way to weigh up the options. Building energy consumption prediction, it is a relevant and actual topic. Firstly, 
on European level, meeting the targets set by the new European Green Deal for buildings sector is relying heavily on digitization and therefore on 
predictive analytics. Secondly, on Romania level, the liberalization of the energy market created an unpreceded energy price increase. The negative 
social impact might be diminished not only by the price reduction, but also by understanding how the energy is consumed.

Keywords: Machine Learning, Artificial Neural Networks, Building Energy Prediction, Six Sigma 
JEL Classifications: O13, O14, O31, Q47, C45, R11

1. INTRODUCTION

Energy consumption prediction represents one of the main 
concerns of the modern world. Since the Industrial Revolution, 
energy consumption has gained another dimension. Our lifestyles 
and energy consumption habits are increasingly interdependent, 
encompassing demands for electricity, steam, or hot or chilled 
water. The cost of energy is increased by the environmental 
costs associated with the pollution generated by the entire 
conversion process, from raw resources to refined end-user 
products. Prediction models are essential in energy management 
and planning. Buildings’ energy consumption can be improved 

in three ways: system improvement, device improvement, 
and behavior improvement. System and device improvement 
are closely related to technological advances while behavior 
is driven by education and awareness. All three development 
directions should be guided by coherent laws and regulations 
that are eventually aligned on a global scale. Going forward, two 
main approaches to potentially improve construction have been 
identified: new buildings should be more efficiently designed than 
existing buildings and existing buildings should be retrofitted to 
reduce energy consumption. Traditional grid solutions are limited 
to electrical power distribution, while smart grids represent an 
evolution of the traditional grid, enabling a two-way interaction 
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between suppliers and customers (Vrablecová et al., 2018). The 
main aim is to optimize in real time how energy is delivered to 
customers. A smart grid must monitor, learn, predict, and drive 
actions. One of the major challenges in renewable energy is to 
sustain the continuous supply of power from various production 
sites in the desired quantity when required. Smart grid solutions 
play a key role in the successful deployment of green energy 
technologies. Energy management systems are responsible for 
cost minimization and quality optimization and are crucial for 
smart grid operations. In the last 170 years, the growth rate of 
global energy consumption has been around 2.4% per year, 
with no indications that it will decrease (Jarvis et al., 2012). 
During the last 50 years, events such as the rise in oil prices in 
the 1970s, nuclear accidents, global climate change, renewable 
and sustainable energy technology breakthroughs, and the rapid 
growth of emerging economies through industrialization have 
made energy consumption reduction an important research field, 
particularly since the demand shows no signs of slowing down 
(U.S. Energy Information Administration, 2019). The International 
Energy Agency (IEA) reports that buildings represent the largest 
energy-consuming sector and that this sector continues to increase 
annually (International Energy Agency, 2013, 2018; U.S. Energy 
Information Administration, 2020). Models for predicting energy 
consumption are divided into two major classifications: based on 
model type and based on model prediction time horizon. Model 
type can be physical, statistical, machine learning or hybrid, while 
the model prediction time horizon can be short, medium, or long. 
The major advantage of machine learning and statistical models 
is their flexibility. Physical modeling can be detailed and precise, 
but at the same time, it is only appropriate for specific use cases 
(Reimann et al., 2018). Building demand for electricity depends 
on various parameters of the building itself, such as glazing 
percentage and properties, building fabrics, occupancy pattern, 
number of floors, level of internal gains, and building purpose 
(Korolija et al., 2013). Energy consumption prediction for the 
medium and long term represents one of the core information 
sources for strategic and tactical decisions concerning areas such 
as development directions, capital investment, revenue analysis, 
or capacity management.

The new European Green Deal is targeting improvements in the 
way the energy is consumed in the buildings sector. The Council 
of European Union highlights two important areas: renovation 
of the existing buildings to increase their efficiency and eco-
driven design for the new buildings to be built. European Union 
Renovation Wave and Innovation Fund represents two frameworks 
made to enable professionals to tackle the challenges on the way 
to a decarbonized Europe. For the already existing buildings and 
for the new to be built these two frameworks provide the tools, 
including regulations and financing, to optimize and decrease 
energy consumption. On top of them are the NextGenerationEU 
and InvestEU funds that acts like a binder since are aiming areas 
like: lead on energy efficient artificial intelligence solutions, data 
share across EU, usage of technologies to make buildings more 
energy efficient. The access on energy must be viewed from three 
different perspectives. First one is related to the infrastructure and 
its existence, the second is related to the capability of producing 
the quantity of energy needed and the third is related to the 

possibility of the end customer to buy the energy. The access on 
electricity and adoption of the latest technologies is a measure of 
wellbeing. A healthy and sustainable development will reduce the 
gaps between different social classes. Through digitization and 
predictive analytics, the existing and limited resources available 
can be shared in a more even and cheap way, both acting like 
enablers.

Up to 90% of the total energy used during a building’s life cycle 
is used during building operations. Of this percentage, up to 20% 
could be saved through the adoption of a proactive attitude toward 
energy control and fault detection (Ramesh et al., 2010; Teke and 
Timur, 2014), in other words by introduction of predictability. This 
article is providing an overview on the use of neural-based model 
on predictive analytics of building energy consumption. The focus 
is on modeling, by identifying and highlighting the theoretical and 
practical considerations of neural-based algorithms for building 
energy consumption prediction. In the end, the outcome of the best 
performing models are compared in terms of resources spent for 
training and generalization capacity.

Building energy consumption optimization represents a relevant 
and actual topic considering all the initiatives started at European 
level. The guidelines for the upcoming 10 years are clear, and 
the premises are that this topic will remain relevant and actual at 
least until 2050.

2. LITERATURE REVIEW

Artificial neural networks (ANNs) represent one of the most used 
machine learning models for energy consumption prediction 
(Amasyali and El-Gohary, 2018). Data analysis on a house built 
to testing new technologies for improving energy efficiency, 
indoor air quality, and sustainable construction highlighted the 
benefits of a straightforward approach (Biswas et al., 2016). FFNN 
models were used to predict energy consumption based on weather 
data gathered over 3 months. Energy consumption and HVAC 
equipment data were recorded with a five-minute timestamp. 
During the data collection process, the house was unoccupied, 
and the impact of the occupant’s behavior was not included in 
the data. Two ANN models based on Levenberg-Marquardt and 
OWO-Newton algorithms were deployed to predict total energy 
consumption. Input data and network topology were the same for 
both models: three neurons in the input layer, seven neurons in 
the hidden layer, and one neuron in the output layer. This simple 
model architecture proved sufficiently powerful to predict energy 
consumption with coefficients of determination between 0.87 and 
0.91. Comparison of multiple machine learning techniques showed 
that ANN can perform better than linear regression and support 
vector machines on long-term prediction. In total, 4 years of data 
including independent variables such as ambient temperature, 
installed power capacity, resident electricity consumption, and 
gross domestic product were used (Ekonomou, 2010). In the same 
long-term energy consumption paradigm and the same types of 
models, ANN, linear regression, and least-squares SVM were 
compared using gross electricity generation, installed capacity, 
total subscribership, and population as independent variables 
(Ekonomou, 2010). Another comparison between machine learning 
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techniques—this time for short-term prediction, with 15-minute 
resolution data for day-ahead prediction—proved the superiority 
of ANN over other techniques, such as linear regression, support 
vector machine, RBF kernel, and nearest neighbor ball tree (Chae 
et al., 2016). A deep learning approach can be tried using LSTM 
algorithms (Marino et al., 2016). Standard LSTM- and LSTM-
based sequence-to-sequence (S2S) architectures were tested on two 
benchmark datasets, the first with a resolution of 1 h and the second 
with a resolution of one minute. Both datasets were gathered from 
a single residential customer. S2S architecture performed better 
on both datasets, while standard LSTM architecture was unable 
to forecast accurately on the dataset with one-minute resolution 
data. A more extensive analysis was made using LSTM (Sülo et 
al., 2019). A Bayesian regularization neural network approach was 
proposed as a simplified approach for predicting a commercial 
building’s energy consumption (Kim et al., 2019). Since the data 
quantity is limited, the authors predict that overfitting is likely to 
occur. Another simplified approach is sensitivity analysis, which 
has also proven useful in reducing the number of independent 
variables used in the analysis. Comparison of ARIMA, FFNN, 
DNN, conventional recurrent neural networks (CRNNs), and 
LSTM for short-, medium-, and long-term prediction revealed that 
ARIMA, CRNN, and LSTM are close in terms of performance 
for short-term predictions, while for medium- and long-term 
predictions, RNN and LSTM outperformed all other models 
(Nugaliyadde et al., 2019). To overcome the varying nature of 
renewable energy sources, an artificial neural network-based 
predictive model for optimizing and energy usage schedules can 
reduce the effects experienced by customers (Finck et al., 2019). 
Moreover, compared with a conventional approach, such as the 
proportional-integral controller, selected flexibility indicators are 
improved.

There is no single best algorithm for energy consumption 
prediction exists. However, a review of the existing work led 
strong expectations for the selected path. Although FFNN and 
LSTM are completely different models, they still appear in many 
comparatives analyzes. Neural-based modeling approach enable 
researchers to study building energy consumption without having 
priori experience in this field. Being scalable and flexible these 
models outperform existing models. Furthermore, the key is to 
understand neural-based modeling fundamentals, industry needs 
and, in the end, to refine the models to meet the professionals’ 
expectations. On a macro level the enablers for these neural-
based solutions and any other type of data analytics are all the 
frameworks proposed on European level where the regulations 
and fundings are driving digital transformation. On a micro level, 
the incremental adoption of these solutions will depend on the 
quality of the results delivered.

3. THEORETICAL FUNDAMENTALS

3.1. Feed Forward Neural Networks
ANNs have the advantage of providing robustness for non-linear 
problems and offer the possibility of scaling the solution. ANN 
represents a mathematical model of the human nervous system 
(Kumar et al., 2013). FFNNs consist of simple calculation units 
called “neurons” operating in parallel. Neurons are organized in 

layers. Each layer can contain one or more neurons. The input 
layer the same as the output layer represents the only two areas 
of the network in which interaction with the outside environment 
is possible. The input layer is used to feed the network with data. 
The output layer contains the predictions made by the network. 
Consecutive layers are connected, and each connection has a 
synaptic weight attached. Synaptic weights express the importance 
of a given input at a given time (Figure 1).

The learning algorithm represents the procedure whereby 
the synaptic weights are adjusted to minimize the objective 
function (Figure 2). The synaptic weights can be said to store the 
knowledge. Under the supervised learning paradigm, predicted 
values are compared with real values during the training process. 
Based on the resulting error, all synaptic weights are updated. 
The function used to determine the difference between actual and 
predicted values is called the “cost” or “loss”.

Inside the neuron, u is calculated—the sum of the dot product of 
every pair as in equation (1).

Figure 1: Feed forward neural network schema

Figure 2: Artificial neuron mathematical abstraction
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 u=w1x1+w2x2+w3x3+b (1)

On the summation of the dot product can be added a bias, b, 
necessary to add robustness and to avoid getting blocked in a 
local minimum. The activation function is used to trigger or not 
trigger the neuron once the weighted sum of the inputs exceeds 
a limit. Non-linearity is thus introduced into the neuron output. 
This feature is important in actual case scenarios since most of the 
studied problems rely on non-linear data. Going forward with the 
logic, a non-linear model can build non-linear decision boundaries, 
which will lead to a better model fitting. The rectified linear unit 
(RELU) activation function performs the following operation:

 f(x) = max (0,x) (2)

By its nature, it is more computationally efficient than sigmoid 
or tanh activation functions. RELU overcomes the vanishing 
gradient problem, enabling speed and performance (Glorot et al., 
2010). Rectified linear units have become popular among machine 
learning practitioners, with convolutional neural networks used 
simultaneously for image recognition (Kusuma and Afiahayati, 
2018). The output of the neuron, Y is calculated by passing the 
summation of the dot product through the activation function. The 
result can or cannot activate the neuron, based on the threshold.

 Y=f(u)=f(w1x1+w2x2+w3x3+b) (3)

3.2. Feed Forward Neural Networks
Recurrent neural networks are neural networks designed for 
sequential data and predict the next step of the sequence with 
respect to the sequence’s previous steps. CRNNs are discrete-
time dynamical systems that possess an input, an output, and a 
hidden layer (Pascanu et al., 2013). One of their main limitations 
is attributable to the vanishing and exploding gradients (Bengio 
et al., 1994). The synaptic weight that connects hidden layers of 
consecutive states (i.e. t-3, t-2, t-1, t, where t is the current state) is 
the same. If it is too small, the gradient becomes increasingly lower 
until it vanishes. If it is too large, the gradient becomes increasingly 
larger until it explodes. This is an effect of the training conducted 
with gradient-descent based algorithms and computations 
completed by backpropagation through time (BPTT) (Werbos, 
1990). BPTT is similar to the backpropagation (Rumelhart et al., 
1986) used for FFNNs. The main difference is that the gradient 
is calculated individually for each time step of the RNN, and at 
the end, the resulting gradients are added. Another weakness is 
due to the information morphing, which reveals the network’s 
inability to maintain relevant information if the analyzed context 
contains several time steps (i.e., relevant information occurring at 
time step t-15 may be lost until the current state t is calculated). 
To surpass the issues related to the conventional RNN, another 
type of gradient-based method called LSTM was introduced by 
Hochreiter and Schmidhuber (1997) (Figure 3). This solution 
proposes adding gating functions to the state dynamics. These 
functions enable the network’s ability to remember information 
from the earlier stages. LSTM is equipped with three gates: the 
input, output, and forget gates. Compared with the conventional 
recurrent neural network, which has only one neural network in 
each cell, LSTM has four. The cell’s gates—input, output, and 

forget—determine which information is passed or blocked and are 
composed of the neural networks mentioned above. All three gates 
possess sigmoid-activated neural networks with outputs of 0 and 1.

 sigmoid t
e t
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� �
1

1
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 tanh t =
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z t

t t
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where t represents the current state. When the value in the gate 
is 0, the information passing is blocked; when the value in the 
gate is 1, the information can pass through the gate in its entirety.

Long-term memory cells are described using the following 
equations:

 ft=σ (xtU
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o+ht–1W

o) (10)

 ht=tanh (Ct) it (11)

The first equation is the forget gate and is used to decide how 
much of the information will be ignored and how much will be 
stored in the current cell state. Equations (7) and (8) control how 
much of the new computed information will be written in the cell 
state Ct. Ct  is the vector of the new candidate values for the 
current state cell. The current state calculation is a function of the 
previous cell state, Ct-1, multiplied by (taking the decision on what 
to forget from the previous state). To this is added Ct  but only 
after multiplication with the input gate. This multiplication 
basically allows only a certain amount of the input information to 
be part of the current state (9). At the end, the output is composed 

Figure 3: LSTM cell
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of (10) and (11), representing the output gate and the hidden state 
output. The output gate determines what information is used for 
prediction and determines what information is sent to the next 
layer.

Both FFNNs and LSTMs can be trained using gradient-descent-
based algorithms. More generally, gradient-descent-based 
algorithms are used to find the local minimum or maximum of 
a differentiable function. To search for the maximum, the steps 
taken to find the solution are proportional to the gradient. To search 
for the minimum, the steps taken are opposite to the gradient. 
Adam, derived from adaptive moment estimation, is a method for 
stochastic optimization based on adaptive estimates of low-order 
moments for first-order gradient-based optimization of stochastic 
objective functions (Kingma and Ba, 2014). For a given objective 
function J(Ѳ) parametrized by the model’s parameters Ѳ, the 
update equation can be written as follows:

 � �
�

�
t t

t

t

v

m� �
�

1 −
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�  (12)
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m
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 mt=β1mt-1+(1–β1)gt (15)
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2

− −  (16)

where mt  = compute bias-corrected first moment estimate, 
vt
  =  compute bias-corrected first moment estimate, = update 
biased first moment estimate, vt = update biased second raw 
moment estimate, and β1

t  and β2
t  = exponential decay rates for 

the moment estimates at time step t and t-time step. Both FFNNs 
and LSTM are supervised learning algorithms. Supervised learning 
is achieved under the certainty that the target is known and can 
be split into two main sub-classes: classification and regression 
(Fawcett and Provost, 2013). After preprocessing all data sets, the 
retained independent variables had targets associated represented 

by the energy consumption. Energy consumption is a numeric and 
continuous variable, meaning that all models prepared are built 
to be part of the regression sub-class.

4. METHODOLOGY

The study’s entire methodology was aligned with the DMAIC 
framework (Figure 4). DMAIC is the initialism for Define, 
Measure, Analyze, Improve, Control and is Six Sigma’s process 
improvement methodology, ensuring quantifiable and sustainable 
results. Between these five phases, feedback loops are set to ensure 
that project results meet business needs and that expectations are 
realistic (Beemaraj and Prasath, 2013). Usually, in real-world 
applications, Six Sigma-based projects become the mandatory 
step between baseline and improved operations. During the Define 
phase, the problem statement and the project’s goal are defined. 
During the Measure phase, the issues related to data quality and 
quantity were assessed. For example, information on the number 
of floors was missing in proportion of 75.5%. If this study’s 
purpose had been to predict the energy consumption at floor level 
for each building, this would have been impossible. Most of the 
time was spent on understanding and preparing the data. If the data 
quantity and quality are not suited to the project’s scope, then the 
project must be stopped, its scope adjusted, or the project should 
be continued without the scope being refined but at a high risk of 
culminating in no meaningful insights.

The data used in this study were made available by ASHRE 
through a competition carried out on kaggle.com (ASHRAE, 
2019). The scope of this study is to predict the energy consumption 
of 1430 buildings clustered in 16 sites. All buildings are labeled 
based on their primary use: education, lodging/residential, office, 
entertainment/public assembly, other, retail, parking, public 
services, warehouse/storage, food sales and service, religious 
worship, healthcare, utility, technology/science, manufacturing/
industrial, and services (Table 1).

As part of the data preprocessing step, five of the seventeen primary 
use categories were retained while the remaining twelve were merged 
under the other category. The primary use categories ultimately used 

Table 1: Data available by site and primary use (thousands)
Site ID Education Entertainment/public assembly Lodging/residential Office Public services Other Total per site
0 258.5 43.6 237.2 203.7 NA 165.5 908.4
1 192.7 8.7 87.6 140.2 17.5 NA 446.9
2 535.3 183.8 105.3 210.6 52.684 96.488 1184.3
3 787.7 385.7 96.3 200.1 741.9 157.1 2369.1
4 557.3 62.1 29.6 NA 50.5 46.8 746.6
5 428.9 157.5 8.7 96.3 43.7 43.7 779.1
6 113.8 26.3 96.4 69.9 8.7 NA 315.3
7 102.7 NA NA NA NA NA 102.7
8 NA 196.2 NA 55.6 227.9 88.1 567.9
9 551.9 148.2 166.4 140.2 17.5 43.8 1068.2
10 109.4 34.5 26.2 37.3 NA 28.7 236.5
11 42.6 NA NA NA NA NA 42.6
12 175.1 17.2 NA 78.7 8.7 35.1 314.8
13 201.8 52.5 87.5 613.5 43.9 237.1 1236.5
14 227.1 87.5 78.9 330.1 61.1 105.2 890.0
15 293.2 101.8 199.6 126.8 43.1 43.1 807.6
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in the study were: education, entertainment/public assembly, lodging/
residential, office, public services and other (Table 2).

The available data are categorized according to source into three 
categories: weather data, building data, and energy consumption 
data. Weather data are gathered from each site’s location and 
consist of the following variables: Site ID, timestamp, air 
temperature, cloud coverage, precipitation depth, dew temperature, 
sea level pressure, wind direction, and wind speed (Table 3).

In terms of missing data, six out of thirteen independent variables 
required data imputation. Removal of the records with missing 
data was not an option owing to the limited quantity of data. 
Missing data can be caused by faults in data acquisition, errors in 
measurement, insufficient resolution of data sampling, and lack 
of data acquisition hardware. The computational method used for 
handling missing data is the nearest neighbor. The nearest neighbor 
is a univariate imputation schema and relies on the start and end 
points of the gaps within the data to estimate what is in between. 
This method was selected from among two other methods—linear 
and cubic spline interpolation. For the data used during this 
research, the nearest neighbor performed better.

Relying on the theoretical foundations and existing research 
papers, two models were identified as suitable for energy 
consumption prediction: FFNN and LSTM (Figure 5).

The selection of the hyperparameters had two dimensions. The first 
was represented by the model’s ability to generalize and the second 

by the speed of training and testing. Based on the mathematics 
behind ANNs, categorical data cannot be used in any format other 
than numeric data. During the preprocessing step, categorical data 
were transformed into numerical data through encoding. From the 
timestamp data, date and time information were extracted: Year, 
month, day, hour, weekend, working days, working hours. At the 
end of the preprocessing step, a data set consisting of 68 variables, 
including dependent variables, was obtained (Figure 6).

Selection of the number of neurons in the hidden layer and the use 
of a single hidden layer were part of an optimization process aimed 
at finding the balance between the model’s ability to generalize and 
the time required for training. Data modeling and final architecture 
selection are part of DMAIC’s measure and improve phases. The 
optimization process can be visualized as a feedback loop between 
these two phases.

The three metrics used for evaluation are: mean absolute error 
(MAE), coefficient of determination (R2) and training time 
(TT). The average of the absolute error, equation (17), is used 
for comparing different models on the same dataset, while R2, 
equation (18), it is a measure of how well the model can explain the 
variability in the output, this metric making the research eligible 
for comparisons with other models since R2 does not depend on 
the dataset used.

 
n

i i
i=1

1MAE = y -
n

ŷ∑  (17)

Table 2: Count of building by site and primary use
Site ID Education Entertainment/public assembly Lodging/residential Office Public services Other Total per site
0 30 5 27 24 19 0 105
1 22 1 19 16 0 2 60
2 61 21 12 24 11 6 135
3 92 44 11 23 18 85 273
4 66 9 4 0 6 6 91
5 49 18 1 11 5 5 89
6 13 3 11 8 0 1 36
7 12 0 0 0 0 0 12
8 0 24 0 7 11 28 70
9 63 17 19 16 5 2 122
10 14 4 3 5 4 0 30
11 5 0 0 0 0 0 5
12 29 2 0 9 4 1 45
13 23 6 10 70 27 5 141
14 26 10 9 38 12 7 102
15 41 15 28 18 6 6 114

Table 3: Weather data summary
Air temp. Cloud coverage Precip. depth Dew temp. Sea level pressure Wind dir.

Count 139773 139770 139773 139773 139773 139773
Mean 14.4 2.9 0.7 7.3 1016.2 179.3
Std 10.6 3.0 6.8 9.8 7.4 111.8
Min -28.9 0 0 -35 968.2 0
25% 7.2 0 0 0.6 1012.1 80
50% 15 2 0 8.3 1016.4 190
75% 22.2 6 0 14.4 1020.4 280
Max 47.2 9 343 26.1 1045.5 360
Missing data before imputation (%) 0% 49% 0% 36% 8% 4%
Count=Total number of data points; std=Standard deviation; min=Minimum value; 25%=First quartile; 50%=Median value; 75%=Third quartile; max=Maximum value
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n
i i2 i=1

n 2
i ii=1

(y y )
R = 1

(y
–

)

–

ˆ– y

ˆ∑
∑

 (18)

Where ŷ  and yi represents the predicted value and actual value. 
Training time it is a measure of the resources spent on training. Training 
time depends on the hardware and software setup used. For this 
research the setup consists of a Dell Precision 7350 equipped with 
Intel Core I5-8400H @ 2.5 GHz CPU, 32 GB RAM, Nvidia Quadro 
P2000 GPU, Windows 10, and Python 3.6.10. All the algorithms were 
implemented using Keras and TensorFlow on the backend.

5. RESULTS AND DISCUSSION

FFNN architecture allows training that is twice as fast with an 
average of 2188 s and R2 equal to 0.8424 over all primary use 
categories, while LSTM’s average training time is 4402 s and 
average R2 is equal to 0.8461 (Figure 7).

Due to their configurability and scalability neural-based models 
possess the capability of learning and generalizing from different 
datasets having different patterns. The mean absolute error, 
coefficient of determination and training time depend on the 

Figure 4: DMAIC methodology

Figure 6: Final FFNN and LSTM architectures used for prediction

Figure 5: FFNN and LSTM schema

Figure 8: Average MAE comparison by primary use

Figure 7: Average R2 comparison by primary use

primary use and site. This may also be linked to how the data 
are gathered and the extent to which the collected data can 
explain the phenomena. When the method for dealing with the 
missing data was selected, the impact of removing the rows or 
columns containing empty records was assessed. Data removal 
was not an option since these two approaches led to inferior 
results, while data imputation provided better results. Given that 
LSTM is a type of neural network built to model time series, 
the available optimizations are more generous for problems 
requiring prediction of energy consumption than in the case of 
FFNN. FFNN, on the other hand, excels in speed compared to 
LSTM, being least sophisticated. However, LSTM’s mechanisms 
in place for capturing the short and long-term dependencies 
by default is require more training time (Figure 8). Given that 
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smart grid systems’ control systems work optimally in real time 
and computational resources are limited, FFNN models may be 
preferable. The selection of two fixed architectures and completion 
of a total of 192 predictions proved that both FFNN and LSTM 
are flexible and scalable. In a real-world business case the focus 
must be on minimizing the MAE (Figure 9).

6. CONCLUSION

The increased predictability of problems related to the production, 
distribution, and consumption of electrical energy offers a good 
foundation for increasing the adoption of energy obtained from 
renewable sources, economical optimization by introducing 
flexible pricing policies, and reducing electricity consumption. 
At the same time, Six Sigma DMAIC methodology ensures 
that the initial setup for the problem statement and needs, goals, 
and possible blocking points in a clear and simple yet powerful 
framework. Modeling real-world data using ANNs under a Six 
Sigma DMAIC cycle—a robust data mining framework—proved 
to be successful in terms of performance and training speed. 
Moreover, the flexibility and scalability have been proven by 
maintaining the level of performance for extreme scenarios in 
which the available data consisted of either thousands or millions 
of records.

Increasing the performance of the models it is a matter of having 
more data with better quality. Also, a finer discretization of the 
primary use will bring together use cases likely to have the 
same patters. Comparing the results by the primary use can be 
highlighted the fact that one model can capture the phenomena 
better than the other one, with the mention that on a bigger 
resolution (e.g., prediction by primary use and building) both 
models may have better and closer performance. Although one 
solution might look initially the best before deploying it into 
production a rigorous validation process must be conducted.

By selecting R2 as one of the metrics comparisons with other 
similar research papers can be made and a benchmark may be 
set. Moreover, by listing all models’ parameters, software and 
hardware configuration will allow other researchers to perform 
the same experiments.

Comparing the results with those obtained by other researchers 
was not possible due to the way the metrics are typically selected; 
specifically, the metrics allow a comparison of models that are 
trained using the same data set, but do not allow a comparison 

of models trained on different data sets. In this regard, the use of 
the coefficient of determination, the complete description of the 
models’ parameters, and the software and hardware configuration 
will allow other researchers to use this article for comparative 
studies. The performance of the models might be increased by 
adding exogenous variables, such as wind speed, wind shear, 
ambient temperature and pressure, dew point temperature and 
humidity.

The freshly approved Romanian Recovery and resilience plan 
provides 41% of the total amount for green transition and 21% 
for digital transition. In the key of this achievement researchers 
will be able to continue their work.
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