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ABSTRACT

Carbon is a waste that becomes a new economic commodity. It has been traded like stock prices in commodity markets. Owing to its new status, 
research on carbon price movements as a new economic commodity linked to gas has gained a considerable amount of interest. A deeper observation 
of the future of world gas prices can also be an indicator of the stability of this commodity. We use the state-space model as a statistical basis for 
modeling the daily movement of carbon values and gas prices. As a result, as we have calculated, the state-space model is able to predict and provide 
in-depth observational information on the relationship between carbon and gas. The economic implications show that carbon is not only good for the 
environment; its trading in the stock exchange also indicates that it can be a new stable and sustainable economic commodity.
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1. INTRODUCTION

Climate change is currently a worldwide concern due to 
its negative impact. One of the reasons of extreme climate 
changes is the amount of carbon released into the environment. 
The 2020 Annual Climate Report of the NOAAs stated that 
temperatures have increased at an average rate of 0.08°C 
per decade since 1880, with an average increase of 0.18°C 
since 1981. Therefore, to solve problems generated by 
climate change, wise and responsible carbon management 
is necessary. Several management procedures have been 
recommended, including reforestation and intensification 
of farm management, provided that all efforts are carefully 
monitored to ensure that the costs of carbon management are 
not burdensome (Sinnott-Armstrong and Howarth, 2005). 
Continuously spurred economic growth has resulted in faster 

growth in emissions, especially carbon; thus, even greater 
efforts are needed to tackle it (Garnaut et al., 2008).

The world’s economists are also involved in thinking and 
contributing to the reduction of the impact and amount of carbon. 
Carbon is currently used as an economic commodity, with the 
scheme of each entity having a share of carbon release, resulting 
in a demand for excess carbon from other entities; thus, carbon 
becomes a new economic commodity (NEC) that is traded. One 
of the alternative policies that can be recommended to restrain 
the growth of carbon emissions is to develop a carbon energy 
market, in addition to increasing the efficiency of regulations with 
regard to energy (Setyawan et al., 2020). Carbon emission pricing 
and trading has been a key feature of the worldwide regulatory 
response to climate change through the European Union Emissions 
Trading Scheme (EU ETS) since 2005. It is a cap-and-trade scheme 
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whereby companies must submit one emission allowance for 
every metric ton of emitted carbon dioxide (Batten et al., 2021). 
Therefore, consumers and producers in the ETS market should 
consider changes in the volatility of carbon prices affected by 
shocks arising from energy price changes.

In ensuring the sustainability of the market for carbon commodities, 
the methods of observing volatility and predicting future carbon 
values can be the basis for consideration. In this study, we compare 
the daily price of carbon with the daily price of natural gas to 
determine whether the price of carbon can also be influenced by 
external factors. Some previous studies forecasting the energy 
prices have been widely conducted, such as that of Hendrawaty 
et al. (2021), who forecasted crude oil prices, and Ambya et al. 
(2020), who estimated natural future gas. Moreover, carbon prices 
are a complex data that is typical of economic systems; they exhibit 
uncertainty, nonlinearity, mutation, and instability caused by 
interactions among many factors and their heterogeneous external 
environment (Chevallier, 2011).

One method that can be used in forecasting is the state-space method. 
State space is an approach of jointly modeling and predicting several 
interconnected time series data, and have dynamic interactions 
(Aoki and Havenner, 1991). State-space model is an approach used 
to simultaneously model and predict several interconnected time 
series data, whose variables have dynamic interactions and are in 
unobserved time series data (state vector).

2. STATISTICAL METHODS

State-space model was first introduced by Kalman (1960). It is 
used to jointly model and predict several interconnected time 
series data, and have dynamic interactions (Wei, 2006). State-space 
model describes a multivariate through additional variables (state 
vector). State vector contains a summary of all information from 
the previous value and the present value of a time series relevant to 
the prediction of future values (Chuang and Wei, 1991). According 
to Chuang and Wei (1991) and Akaike (1970), the state space 
represents a stochastic process from a stationary. This model is 
defined as the state transition equation

zt+1=Fzt+Get+1 (1)

t=1,2,…T

and the output equation

xt=Hzt or xt=[Ir,0] zt (2)

where
x: observation vector with dimension r×1
zt: state vector with dimension s×1,s≥r, where r is xt

and s-r is the last element required for forecasting xt future
F: a coefficient matrix of size s-s called the transition matrix, which 
determines the dynamic properties of the model
G: a coefficient matrix of size s×r called the input matrix, which 
determines the variance structure of the transition equation

For model identification, the r rows and G columns are arranged 
into an identity matrix (Ir) of size r×r

H: Coefficient matrix measuring r×s, which is called the 
observation matrix

ei: Random residual vector, which is normally distributed with 
dimension r with mean 0 and covariance matrix e-e.

The equations of state are also known as system or transition 
equation. The output equation is also called the measurement or 
the observation equation. The random error et is also called the 
innovation or shock vector. The observation equation in the SAS 
procedure is as follows:

Xt=[Ir,0] Zt (3)

where Ir denotes the identity matrix r×r. SAS will extract Xt from 
Zt without being presented in the measurement equation.

2.1. Information Criteria (IC)
Information criteria are used as a reference in selecting the best 
model. In the state-space model, the best model selection criteria 
used is the Akaike information criterion (AIC). The best model 
is the model that has the smallest AIC value (Akaike, 1970). 
The AIC for the VAR model uses the maximum log-likelihood 
approach as follows:

( ) ( )_
nLn L lnln
2

p̂  −  (4)

Then, the AIC for the p can be calculated using the following 
equation:

2
p _AIC nlnl ˆn p pr= +  (5)

where
n: number of observations
r: dimension of the process vector xt

covariancep : Determinant of matrix, which is white noise in AR 

modeling (p).

2.2. Canonical Correlation Analysis
The types of correlation often known in the case of univariate 
are simple, partial, and multiple correlations. In the case of 
multivariate correlation, the correlation analysis is better known 
as canonical correlation analysis. Canonical correlation analysis is 
employed to simultaneously identify and quantify the relationship 
between two groups of variables. Canonical correlation analysis 
is not as easy as the simple, partial, and multiple correlations. 
Therefore, in the canonical correlation analysis, the correlation 
between the independent cluster and the dependent is not only 
the correlation between the independent variable and dependent 
(Tsay, 2014).
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Determination of the state vector elements is through a series 
of canonical correlation analysis of the sample autocovariance 
matrix. In the state space, variables with significant correlations 
are included in the state vector, but variables that are not real 
are excluded (Lutkepohl, 2013). Chuang and Wei (1991) stated 
that state vectors are uniquely determined through canonical 
correlation analysis between a set of values for the current and 
past observations (xn, xn-1,xnp) and a set of observed values for the 
current and future events (xn, xn+1|n,xn+p|n), where Pn is a vector of 
the values of the current and past events relevant to the prediction 
of xn+1 and predictor space fn=(xn, xn+1|n,xn+p|n) and fn is a vector of 
the current and future events.

In the canonical correlation analysis, the submatrix is determined 
from the covariance matrix based on the block Hankel matrix:

�
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P-value refers to the VAR model with the smallest AIC value. The 
canonical correlation analyst refers to the block Hankel matrix of 
the sample covariance matrix as follows:

(0) (1) (2) ( )

(1) (2) (3) ( 1)

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ( ) ( 1) (ˆ ˆ ˆ2) (2 )

 
 Γ Γ Γ Γ 
 Γ = Γ Γ Γ Γ +
 
 
 
Γ Γ + Γ + Γ 





   



p

p

p p p p

where ( )ˆ j , j 0,1, ,Γ =  2p is the sample covariance matrix.

The components of a predictive vector xn+i|n allow for a non-
independent linear relationship. Thus, canonical correlation 
analysis is conducted on all components of the data space

Pn=[x1,n, x2,n,xr,n,x1,n–1,x2,n–1,xr,n–1,x1,np,x2,np,⋯,xr,np]

and the components of the predictor space

fn=[x1,n,x2,n,xr,n,x1,n+1|n,x2,n+1|n,xr,n+1|n,x1,n+p|n,x2,n+p|n,⋯,xr,n+p|n]

Canonical correlation analysis forms a series state vector, zn
j . To 

calculate the canonical correlation value, a series fn
j  of subvectors 

fn is examined and forms a submatrix consisting of rows and 
columns of corresponding to the component fn

j . The smallest 
canonical correlation of will be used in the selection of state vector 
(SAS Institute Inc. 2003).

2.3. Selection of State Vector Components
According to (Chuang and Wei, 1991), the canonical correlation 
between xn=[x1,n,x2,n,⋯,xr,n]’ and pn is 1,…, 1, 0. State vector is 

then pooled to xn and the first subset on a series fn
1 collected into 

[x1,n,x2,n,⋯,xr,n,x1,n+1|n]’. The smallest canonical correlation of 1Γ̂  
is seen, whether it is greater than or equal to 0. If >0, x1,n+k|n is 
entered into the state vector. If it is equal to 0, then the linear 
combination of fn

j  is not correlated with pn. Thus, the x1,n+1|n 
component and some x1,n+k|n are removed from the state vector. 
The selection of the state vector is complete when there are no 
more elements from fn to be added to or removed from the state 
vector. For each run of a series of canonical correlation analyses, 
the smallest significant canonical correlation is calculated based 
on the AIC (Wei, 2006).

C=–nln ln (1–ρmin
2)–2[r(p+1)-q+1] (6)

where
q: Dimension of ft

j  in the current period or process
r: The order of the state vector
p: The order of the VAR process.

If C < 0 and ρmin is equal to 0 or ρmin > 0. If ρmin > 0, x1,n+1|n is then 
added to the state vectors.

To test the significance of the canonical correlation,, one approach 
that can be used is the Chi-squared (χ2) test with the following 
hypotheses:
H0: =0
H1: 0

If χhit
2>χ(db)

2, then H0 is rejected, which means correlation canonical 
significance.

2.4. Parameter Estimation
According to (Wei, 2006), after the state space is identified, one 
of the state spaces uses the maximum-likelihood approach. This 
procedure is conducted iteratively, and the estimates are obtained 
from canonical analysis and used to obtain efficient estimators for 
F and G. In this estimation process, one of the elements in F and 
G must have a constant value, such as 0 or 1.

For a series of n observations x1,x2,xn because xt=(I–FB)–1 Get, B 
as backshift operator, we get xt=H(I–FB)–1 et and Gett=[H(I–FB)–1) 
G]–1 x that the log likelihood function is obtained as follows:

ln L(F,G,∑|x1,x2,xn)–(n/2) ln|∑|–(1/2)tr –1S (F,G) (7)

where

S F G e e

t

n

t t
',� � �

�
�
1

2.5. Kalman Filtering
Kalman filtering is the most common approach for statistical 
estimation. This has been demonstrated by (Harrison and Stevens, 
1976), who stated that all forecasting methods are special cases 
of Kalman filtering. In this case, Kalman filtering can handle 
changes in the model, parameters, and variance or diversity. 
Kalman filtering consists of two independent estimates to form 
a weighted estimate. Estimates can be based on past knowledge 
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or new information (data). Kalman filtering aims to combine the 
two information to obtain improved estimates. This is similar to 
the Bayesian approach, which combines “prior” and “sampling” 
information to obtain a posterior distribution (Makridakis, 1999).

According to Chuang and Wei (1991), Kalman filtering is a recursive 
procedure used to perform from state vectors. Kalman filtering is a 
recursive updating procedure that involves forming an initial estimate 
of the state and then revising the estimate by adding corrections to 
the initial estimate. The magnitude of the correction is determined 
by how well the initial guess predicts the new observation.

Forecasting accuracy tx̂ (l)  depends on the quality of the 
estimate tẑ  from the state vector zt. When a new information 
is available, the state vector, the same is done for the forecast 
theorem approach. We get: p(xt–1) p(zt–1,xt)p(yt–1)|xt) posterior 
distribution p(xt) becomes the prior distribution to find out 
the new posterior distribution, namely, p(xt+1), where the 
observation xt+1 is available. In this case, assume that the posterior 
distribution of the state vector zt at time t, i.e., p(xt) follows the 
normal distribution with the mean zt and the covariance matrix 

( )t t t tp x ~ N (ẑ , )Γ Γ .

At time t + 1, when the observation xt+1 is available, the state 
vector can be updated, and a new posterior distribution p(xt+1). 
xt+1 is equivalent to the forecasting erroret+1, so to get p(xt+1), you 
only need to find the posterior distribution of (et+1,xt), namely, 
( )t 1 t t 1 t 1p e ,  x  ~ N ( )ẑ ,+ + +Γ ,

where

( ) 1
t 1 t t 1 t 1 t 1F R H'ˆz x HR H' e+ −
+ + + += Ω +  (8)

( )t t 1 t 1 tˆ ˆFx K (x x 1 )+ += + −

� �t t t t
'

tR R H' HR H HR� � � �

�

�� � �� �1 1 1 1

1

1  (9)

� �� � �R K HRt t t1 1 1

� �� �� �� �I K H F FG G
t t
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�

Where: 
K R H' HR Ht t t

'
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�
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1

�  and R F F G G't t
'

� � � �1 � .

Equations (8) and (9) are basic recursive formulas used 
to update the mean and covariance matrix as well as the 
distribution of the state vector zt+1 after the new observation 
that is xt+1 is available. The guess of state is t 1ẑ +  is the sum 
of t  1Fẑ + , which is the assumption from the observation to the 
t forecasting error 1 step forward that is t 1 t  1 te x (l)x̂+ += − . 
Matrix Kt+1 is also called the Kalman-gain, which determines 
the weight for forecasting error.

3. RESULTS AND ANALYSIS

3.1. Description of Research Data
In the initial process, the research process generally describes the 
data used. The data in this study consists of daily gas prices (with 

the symbol “GP”) and carbon (with the symbol “CO2”), and both 
are time series data. Table 1 shows that the amount of data that we 
observed was 90, with mean values of 2901 and 18.61 for GP and 
CO2, respectively. The daily gas data is at a minimum of 1640 and 
a maximum of 5867, whereas the carbon data is at a minimum of 
4.41 and a maximum of 75.26.

In the next step, we tested the correlation between variables. This 
is commonly carried out in economics research to ensure that 
the variables are related at an early stage, so that more difficult 
processes in research can be predicted to succeed. The following 
correlation test results are presented in more detail:

Table 2 demonstrates that the daily gas and carbon price variables 
have a positive and perfect relationship by looking at Pearson’s 
correlation coefficients of 1.0. Furthermore, we have to ensure 
daily data on stationary gas and carbon. In this process, we perform 
differencing. Considering the importance of information about 
the differencing data, we present descriptive statistics after the 
process is conducted.

Table 3 shows that the amount of final data that we observed 
was 89, with mean values of 1.191011 and 0.780337 for GP and 
CO2, respectively. Furthermore, the two variables have reached 
the level of stationarity, which is the main requirement in 
forecasting with state-space models. In the level 1 differencing, 
the gas and carbon variables are stationary. So, if it is assumed 
that Xt and Yt are the observed values of GP and CO2, let xt and 
yt be the values of GP and CO2, respectively, after differencing 
and subtracting the mean difference. The series of NECs are 
modeled as follows:

NEC=[xt yt ]=[(1–B) Xt–1.191011 (1–B) Yt–0.780337]

where B is the backshift operator.

In the next step, we analyze the value of the AIC on the 
autoregressive model according to the series. Of course, we 
consider the smallest AIC value; at lag 3, we get a value of 
1260.117. The smallest AIC value presented in Table 4 determines 
the number of autocovariance matrices; the results will be used in 
performing the canonical correlations.

Table 1: Descriptive statistics
Variable n Mean SD Sum Minimum Maximum
GP 90 2901 765.98146 261061 1640 5867
CO2 90 18.61500 15.83186 1675 4.41000 75.26000
GP: Gas price, CO2: Carbon, SD: Standard deviation

Table 2: Correlation test
Pearson correlation coefficients Correlation Test, n=90
Prob > |r|under H0: Rho=0

GP CO2
GP 1.0000 0.31241

0.0027
CO2 0.31241

0.0027
1.0000

GP: Gas price, CO2: Carbon
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Analysis of the schematic representation of partial autocorrelations 
will be shown on Table 5. This stage will provide information on 
which elements of the autocorrelation matrix at different lags are 
significantly greater than or less than 0. More details are presented 
in Table 5.

Table 6 presents the third-order autoregressive model identified 
with the confirmed AIC statistic as plausible, because the 
partial autocorrelation for lags greater than 2 is not significant. 
Furthermore, the Yule–Walker estimates for the autoregressive 
model are performed to give the coefficient matrix output of the 
autoregressive vector model at each lag as follows:

or can be expressed as follows:

[xi yi]=[a10 a20]+[–0.14399–8.5133–0.000003–0.11178] 
[x t–1 y t–1]+ [–0 .05267  28 ,7089  0 .00206  0 .05011  ] 
[xt–2 yt–2]+0.03931[_ 28,67226 0.00099 0.26602 ][xt–3 yt–3]

3.2. Determination of State Vector
In performing correlation analysis on vectors, we used canonic 
correlation of order 3 to explore the relationship between two 
multivariate variables (vectors) in the study, all measured in the 
same set. The canonic correlation can be seen from the third-order 
autocovariance matrix, which has been previously analyzed. The 
criterion is that if the value of the information criterion is negative 
or not real, it will be removed from the state vector, whereas 
the information criterion is entered into the state vector. Table 7 
provides information on test values from the canonic correlation 
analysis.

In Table 7, the output above indicates that the IC value of the canonical 
correlation y(T + 1|T) is positive of 3.79242. To fulfill our belief in 
the correct state vector of the chi-squared test value in Table 7, the 
results are significant using chi-squared (X2) we get X2 hits = 5.368963 
<X0.05(5)

2= 11.070. This means that the canonical correlation is not 
significant; thus, the component is not included in the state vector.

Therefore, from the testing of the significance of canonical 
correlation analysis, the real components obtained are xt, yt, and 
yt+1|t. This component becomes the final state vector component 
as follows:

From the form of notation in Table 8, we write the following 
equation:

zt=[xt yt yt+1|t]

After these steps, the information generated canonical correlation 
analysis and initial autoregression as the basis for forming the 
initial estimate of the state space.

3.3. State-Space Model
The information obtained from the stage of selecting the VAR 
order and determining the state vector through a series of canonical 
correlation analyses is used to generate an initial estimate of the 
state-space model parameters. The initial value of the parameter 
estimation process iteratively is efficient estimators for F and 
G obtained using five iterations, after which the following is 
obtained:

[ ]F  0.11089 8,16405 0 0 01  0.001478 0.192451 0.629 68 ˆ 8= − −

[ ]G  1 0 01  0.000162 0.17 6 ˆ 68= −

 [ ]172057.5 _  115.04 115.04 6.967175 = − −  

Table 3: Descriptive data after differencing
Variable Mean SE Number of observations Differenced status
GP 1.191011 417.8008 89 Has been differenced. With period (s)=1
CO2 0.780337 2.872792 89 Has been differenced. With period (s)=1
GP: Gas price, CO2: Carbon, SE: Standard error

Table 4: Information criterion for autoregressive models
Lag=0 Lag=1 Lag=2 Lag=3 Lag=4 Lag=5 Lag=6 Lag=7 Lag=8 Lag=9 Lag=10
1261.399 1267.653 1265.104 1260.117 1263.018 1270.147 1277.759 1278.214 1281.789 1282.111 1288.931

Table 5: Schematic representation of partial 
autocorrelations
Name/Lag 1 2 3 4 5 6 7 8 9 10
Price . . . . . . . . . .
CO2 . + + . . . . . … .
+ is>2*SE, − is < −2*SE, s between. SE: Standard error

Table 6: Yule–Walker estimates for minimum akaike 
information criterion
 Lag=1 Lag=2 Lag=3

Price CO2 Price CO2 Price CO2
Price −0.14399 −8.5133 −0.05267 28.7089 0.039315 28.67226
CO2 −0.0003 −0.11178 0.002068 0.05011 0.00099 0.266026
CO2: Carbon

Table 8: Selected state-space form and preliminary 
estimates
State vector
Price (T; T) CO2 (T; T) CO2 (T+1;T)

Table 7: Canonical correlation analysis
Price 
(T; T)

CO2 
(T; T)

CO2 (T+1;T) Information 
criterion

χ2 DF

1 1 0.403226 3.79242 15.26009 6
Price 
(T; T)

CO2 
(T; T)

CO2 
(T+1;T)

CO2 
(T+2;T)

Information 
criterion

χ2 DF

1 1 0.446482 0.24532 −4.47587 5.368963 5 
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Furthermore, the iterative fitting and maximum likelihood 
estimation shown in the output in Table 9:

Finally, we can achieve the goal of modeling daily gas 
and carbon price forecasting data with state space. The 
Table 10 shows estimates with maximum likelihood, not 
initial estimates.

The main equation of the state-space forecasting model for gas 
and carbon data is as follows:

zt+1=Fzt+Get +1

t

t

t 2|t 1

t
1.t 1

t
2.t !

t 1|t

x 0,11089 8,16405 0
y F 0 0 1

y 0,001478 0,192451 0,629868

x 1 0
e

y 0 1
e

y 0,000162 0,17686

+ +

+

+
+

  − − 
   =   
     
   

    +          −  

and

var [e1.t+1]=[172057.5–115.04–115.04 6.967175]

Figure 1: Forecasting of gas
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Table 10: Selected state‑space form and fitted model
State vector

Price (T;T) CO2 (T;T) CO2 (T + 1;T)
Estimate of transition matrix
−0.11089 −8.16405 0
0 0 1
0.001478 0.192451 0.629868
Input matrix for innovation
1 0
0 1
0.000162 −0.17686
Variance matrix for innovation
172057.5 −115.04
−115.04 6.967175 
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Figure 2: Forecasting of carbon

The above equation can be described as follows:

xt+1=xt+1|t+e1,t+1

yt+1=yt+1|t+e2,t+!

yt+2|t+1=0.001478xt+0.192451yt+0.629868yt+1|t+0.000162 e1,t+1–
0.17686 e2,t+!

The forecasting of gas and carbon based on the Kalman filtering 
is presented in the following figures:

Figures 1 and 2 present the results of the forecasting of gas and 
carbon, which exhibit an increasing trend. As can be seen from 
the figures, the volatility of gas data tends to be more aggressive 
than the carbon data, which increases at an even slower rate. 
Gas and carbon data have jointly increased in recent times. This 
indicates a condition where there is an interrelationship between 
gas and carbon.

4. CONCLUSION

Overall, this study aimed to observe the daily price of gas and 
carbon, which is suspected to have a relationship. Carbon has 
become a NEC that demonstrates a positive movement. As a 
result, the daily prices of gas and carbon are stationary in the 
second- and first-level differentiation, respectively. Furthermore, 
there is a unidirectional causality relationship between the daily 
prices of gas and carbon. More importantly, with carbon being an 
economically valuable commodity, it is hoped that it will reduce 

the amount of carbon released so that extreme climate change can 
be avoided, and green energy can be started.
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