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ABSTRACT

The Colombian electricity market is based on a hydrothermal power generation market with a strong dependence on exogenous variables such as 
fossil fuel prices and climatology factors. Besides, the Colombian economy is characterizable by relevant mining-energy activities. Therefore, the 
main objective of this research was to evaluate the directional spillovers between the electricity spot prices and gas, coal, and crude oil prices and 
thus provide relevant information for the electricity market agents to identify the risk related to energy commodity price fluctuations. The dataset 
used in this research consists of monthly logarithmic returns of energy prices between September 2009 and December 2019. The main finding shows 
that the system’s average connectedness is 13.6%. Besides, the electricity spot prices are net shock receivers of volatility, and 20% of their dynamic 
is related to fossil fuel price fluctuations.

Keywords: Directional Connectedness, Hydrothermal Power Generation Markets, Volatility Spillovers, Energy Prices, Vector Autoregression 
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1. INTRODUCTION

The Colombian electricity matrix is structured by 68% of hydric 
sources and 31% of thermal sources. Besides, renewable sources 
such as wind and solar represent only 0.21% (Oviedo-Gómez et al., 
2021b). Therefore, this electricity market is defined as a hydrothermal 
market, which is characterized by significant differences in the 
marginal costs of the generation sector, a heavy dependency on 
weather factors and fossil fuel prices, and a small renewable 
generation capacity (Fernández-Blanco et al., 2017; Mosquera-
López et al., 2017). According to Werlang et al. (2021) and Wang 
et al. (2013), fuel prices are a driver of electricity prices because 
their shocks impact the opportunity costs of hydropower plants and 
increase the uncertainty of operation in the electricity system.

On the other hand, Colombian exportations are based on mining-
energy commodities such as crude oil, coal, and nickel. According 

to Oviedo-Gómez and Candelo-Viafara (2020), the volatility 
of energy commodities’ prices causes significant effects on 
macroeconomic variables such as economic activity, investment, 
the trade balance, and the real exchange rate. Hence, it leads us to 
ask whether there is a relationship between electricity and fossil 
fuel prices due to the Colombian economy and electricity market 
characteristics. Besides, several authors observed a bidirectional 
relationship between electricity and fossil fuel prices. The first link 
describes that coal, natural gas, and oil prices increase the running 
cost of thermal plants. For example, it is observed a negative and 
high relationship between electricity and gas prices. Therefore, 
natural gas prices are a determinant of electricity prices even in 
an electricity market with significant renewable energy sources 
(Abban and Hasan, 2021; Chevallier et al., 2019; Moutinho et al., 
2022; Mwampashi et al., 2021; Uribe et al., 2022). The second 
link shows that the electricity prices’ peaks impact natural gas, 
coal, and oil prices in the short term (Mjelde and Bessler, 2009; 
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Mohammadi, 2009; Moutinho et al., 2011; Scarcioffolo and 
Etienne, 2021).

Therefore, the objective was to evaluate the directional spillovers 
between the Colombian electricity spot prices and the prices of the 
three most relevant sources of thermal sources: gas, coal, and crude 
oil. The methodology applied was proposed by Diebold and Yilmaz 
(2009; 2012; 2014), and it allows the volatility connectedness to 
be analyzed. The method is based on the variance decomposition 
of the forecast error of the generalized vector autoregression 
model (VAR) with n-dimensions and does not depend on Cholesky 
identification. Besides, it offers information about the size, target, 
and source of spills (Restrepo et al., 2018). The most relevant result 
showed that the electricity spot prices are pure shock receivers 
of fuel fossil price fluctuations. Consequently, the study provides 
information on the risk of fossil fuel prices and their volatility for 
the electricity system.

The paper is structured, after section 1, as follows: In section 2, the 
methodology applied is described. Section 3 presents the dataset, 
and in section 4, the main findings and discussion are reported. 
Section 5 presents the conclusions.

2. METHODOLOGY

The relationship of volatility connectedness between the energy 
prices in a hydrothermal power generation market was analyzed by 
the method proposed by Diebold and Yilmaz (2009; 2012; 2014). 
The methodology is based on the variance decomposition of the 
forecast error of a generalized VAR model proposed by Koop et al. 
(1996), and Pesaran and Shin (1998). Therefore, the generalized 
VAR model does not depend on Cholesky identification, and it 
allows invariant decomposition to the ordering of the variables.

2.1. Correlated Shocks
From a reduced-form VAR model (Sims, 1980):

 1 1 ,ν − −= + +…+ +t t p t p ty A y A y u  (1)

where yt is a K-dimensional vector of endogenous variables, ν is 
a fixed K-dimensional vector of intercept terms, Ai is a coefficients 
matrix with K x K dimensions, ut is a K -dimensional white noise, 
i.e., E (ut) = 0, E u ut t u

'� � � �  and E u ut s
'� � � 0  for s ≠ t. The 

covariance matrix Σu is assumed to be nonsingular if not otherwise 
stated.

Besides, the VAR (p) model can be written in the companion 
VAR(1) form as follows:

  Yt=ν+AYt-1+Ut, (2)

Where
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. On the other hand, if it assumes the VAR(p) 

models as stable, then its moving average (MA) representation 
can be obtained by successive substitution for Yt-i. Therefore, it 
can be written as follows:
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Where J  = [ I K ,0 K×K(p-1)]  i s  the select ion matr ix and 
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0
� Ai  for i = 0,1,…. Thus, these matrices 

are recursively computed as Φ0 = IK, and � �i i jj

i
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 for 

i = 1,2,…, with Aj = 0 for j > p. The matrix Φi =[ϕkj,i]K×K is also 
called the response of the variables k to unit shock ujt, j = 1,2,…K, 
with i periods.

According to Lütkepohl (2005), the forecast error variance 
decomposition (FEVD) at the hth horizon is:
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If one decomposes Σu=E(ut ut’)=PΣw P’ with Σw=IK then defines 
Θi=Φi P such that Θ0 = Φ0 P = P, and Θi≥1 = Φi P = JAiJ’.
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fraction of the contribution of shock j to the forecast error variance 
of the variables k. Diebold and Yilmaz (2009) define the spillover 
index to measure the spillover connectedness across the energy 
prices as follows:
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However, Diebold and Yilmaz (2012) used a generalized VAR 
model to avoid the ordering of the variables. In the generalized 
VAR approach, the FEVD is computed at horizon h = H as follows:
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where ek is a selection vector with kth element unity and zeros 
elsewhere, Φh is the coefficient matrix multiplying the h-lagged 
shock vector in the infinite moving-average representation of the 
non-orthogonalized VAR, Σ is the covariance matrix of the shock 
vector in the non-orthogonalized VAR, and σjj is the jth diagonal 
element of Σ.
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2.2. Total Connectedness Table
Diebold and Yılmaz (2014) defined the total connectedness table 
(Table 1), which describes the different connectedness measures 
between the energy prices. In the table, the N×N block describes 
the variance decompositions, its diagonal elements represent the 
own energy prices spillovers, and off-diagonal elements correspond 
to the pairwise directional spillovers. Thus, for each row, the sum 
of its off-diagonal elements equals the share of the H-step-ahead 
forecast error variance of the interest variable coming from the other 
variables’ shocks. The column labeled “From others” contains the 
row sum, and the row labeled “To others” contains the column sum.

However, generalized FEVD does not guarantee the row sum or 
column sum of one. Therefore, the variance decomposition must 
be normalized as:
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2.3. Directional Spillovers
Total directional connectedness “From others” to energy price ith 
is defined as:
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By contrast, directional volatility spillovers “To others” from 
energy jth as:
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Therefore, it is defined net total directional connectedness 
measures as C C Ci

H
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simply C C Cij
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j i
H

i j
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2.4. Impulse Response Function
The impulse response functions (IRF) are estimated to describe 
how the electricity spot prices react over time to energy commodity 
prices’ shocks.

3. DATA

The dataset is a balanced time-series panel with monthly frequency 
from September 2009 to December 2019. The sample period was 
selected due to the data available with no methodological changes, 
and the current supply scheme for the generation sector is included 
(CREG 051 of 2009, article 10). Likewise, 2020 data were not 
selected because the Colombian electricity demand decreased 
significantly during the first quarterly of the COVID-19 pandemic, 
and the fossil fuel prices slumped, especially the oil prices that 
reached negative values (Hendrawaty et al., 2021; Oviedo-Gómez 
et al., 2021b). Thus, Table 2 describes the variables, specifying 
data sources and units.

In contrast, Figure 1 presents the variables’ dynamics during the 
sample period. The electricity spot prices showed high volatility, 
especially during 2015 and 2016, due to El Niño-Southern 
Oscillation (ENSO) shock, which caused a peak price. On the 
other hand, crude oil prices slumped in 2014 due to the demand 
reduction by Asian countries. Similarly, coal prices showed two 
relevant decreases: in 2011 by a demand reduction and in 2018 
by agreements to mitigate greenhouse gas emissions. Regarding 
natural gas prices, their dynamic is related to supply and demand 
variations. Meanwhile, Table 3 shows descriptive statistics and 
unit root test (augmented Dickey-Fuller-ADF) of the variables 
after their transformation in logarithmic returns.

4. EMPIRICAL RESULTS AND DISCUSSION

According to the Schwarz Criterion (SC), a VAR model with three 
lags was estimated and the forecast horizon used was 10 months 
ahead. Based on the FEVD, the volatility connectedness and the 
total dynamic volatility spillover index were constructed. Besides, 
Table 4 describes the total connectedness estimates of energy 
prices. The diagonal elements are their own variance share, and 
the row sum corresponds to the total directional spillovers “From 

Table 1: Total connectedness table
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Table 4: Total connectedness table
CP GP OP EP “From others”

CP 89.70 2.98 4.10 3.23 10.30
GP 2.63 86.09 7.49 3.79 13.91
OP 6.10 2.13 89.68 2.09 10.32
EP 1.22 10.56 8.04 80.18 19.82
“To others” 9.95 15.67 19.62 9.11 13.59
Net −0.35 1.76 9.30 −10.71
The energy price that transmits the shock is shown in the column, while the energy price 
that receives it is shown in the rows. The i – jth value is the estimated contribution to the 
forecast error variance of energy price i coming from innovation to energy price j. The 
diagonal elements (i = j) (bold type) describe their own energy price spillovers, while the 
off-diagonal elements (i ≠ j) represent the pairwise directional spillovers. The column 
appointed “From others” reports the total volatility spillovers received by each energy 
price (rows) from the rest of the system and the row appointed “To others” describes 
the total volatility transmitted by each energy price (columns) to the rest of the system. 
Source: Authors’ analysis

Table 3: Descriptive statistics of electricity spot prices and energy commodity prices
Statistical parameters EP OP GP CP
Mean 0.0071 −0.0014 −0.0028 −0.00081
Median 0.022 0.011 −0.013 −0.0035
Maximum 0.92 0.21 0.38 0.23
Minimum −0.92 −0.25 −0.37 −0.18
SD 0.33 0.078 0.12 0.062
Skewness 0.18 −0.62 0.58 0.48
Kurtosis 3.67 3.86 4.27 4.46
t-ADF −11.09*** −8.51*** −11.83*** −8.62***
Data correspond to monthly logarithmic returns. *** indicates that the null hypothesis of a unit root is rejected at a 1% level. Source: Authors’ analysis

Table 2: Data description
Variables Description Units Source
Electricity spot prices (EP) The monthly electricity spot price of the Colombian 

wholesale electricity market
COP$/kWh XM information

Crude oil prices (OP) West Texas Intermediate (WTI)-Cushing, Oklahoma. Not 
seasonally adjusted

USD/Barrel Refinitiv

Natural gas prices (GP) Henry Hub natural gas spot price. Not seasonally 
adjusted

USD/MMBTU Refinitiv

Coal prices (CP) Global price of Coal, Australia. Not seasonally adjusted USD/ton Refinitiv
Source: Authors’ construction

Figure 1: Evolution of electricity spot prices and fossil fuel prices for September 2009-December 2019. 

Source: Authors’ construction.

others” to each energy price (see the last column). Therefore, 
the own effects range between 80.2% and 89.7%, and the total 

directional spillovers “From others” range between 10.30% and 
19.82%.

In contrast, the row labeled “To others” describes the total 
directional connectedness distribution transmitted by each energy 
price to the rest of the system. Thus, total spillovers “To others” 
range between 9.11% and 19.62%. Based on the EP, it is identified 
the following pairwise connectedness measures: From CP to EP 
is 1.2%, from GP to EP is 10.56%, and from OP to EP is 8.04%. 
Hence, 19.82% of the electricity spot price volatility is related 
to fossil fuel price fluctuations. In addition, the connectedness 
measures show that the system’s average connectedness is 13.6%.

Likewise, the row labeled Net allows us to classify whether each 
energy price is a transmitter or a receiver of volatility shocks. The 
negative value of the EP (−10.71%) suggests that the electricity price 
is a net shock receiver of volatility from the other energy prices.
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Figure 2: Electricity spot price generalized response to a positive shock of fossil fuel prices. 

Source: Authors’ analysis

Figure 3: Total connectedness dynamic index. The index is 
defined as the sum of all variance decomposition contributions “To 

others.” 

Source: Authors’ analysis.

Similarly, Figure 2 shows the EP response to a fossil fuel shock 
through the IRF. First, is observed a significant and positive 
response to the natural gas price shock. Therefore, natural gas is 
a relevant driver for understanding electricity price changes. In 
Colombia, a significant proportion (12%) of the electric power 
generation comes from this source and their volatility dynamics 
impact generation costs. According to Nakajima and Toyoshima 
(2020) and Uribe et al. (2022), natural gas prices increase costs to 
a large extent, and the effect is higher when the electricity price is 
higher. Second, the electricity price response to the oil price shock 
is negative and significant because electricity suppliers absorb the 
crude oil price changes, mainly the lower prices than higher prices 
(Jantuah and Adom, 2020). Given the dependence on crude oil 
exportation in Colombia, this market has important implications 
for the economy aggregates that can mitigate the electricity spot 
price response. Third, the coal shock is non-significant because 
the electricity price does not capture the coal price dynamic in 
economies with high coal reserves (Elliott et al., 2019).

Meanwhile, a total index was constructed that describes the 
average system wide connectedness of the energy prices. It 

was considered three monthly window lengths: 58, 60, and 62 
(Figure 3). It is observed different cycles of high volatility are 
related to exogenous shocks. During 2014 and 2016, the water 
reservoirs decreased, natural gas prices increased, and the thermal 
generation sector did not come into operation on time. Therefore, 
the electricity price reached a peak. On the other hand, during 
2018 and 2019, the highest total connectedness measure (32%) 
was observed because of the ENSO effect and energy commodity 
demand and supply fluctuations (Oviedo-Gómez et al., 2021b).

5. CONCLUSIONS

The volatility spillovers between the electricity spot prices of 
the Colombian electricity market and fossil fuel prices were 
analyzed. The method allowed classifying the electricity price 
as net shock receivers, and the fossil fuel prices explain their 
volatility by 20%. The remainder of the electricity price dynamics 
can be explained through the reservoir levels. On the other hand, 
the research shows the risk network of the hydrothermal power 
generation market depends on external events such as ENSO 
shocks or thermal source price fluctuations. For this reason, the 
study contributes to regulatory policy design to reduce exposure 
to the electricity market.

Besides, the IRF showed a significant response of the electricity 
price to oil and natural gas price shocks. First, natural gas prices 
are a relevant source that increases the costs of the generation 
sector and consequently increases the electricity price. Second, 
the oil prices decrease the electricity prices because the suppliers 
absorbed the shock. It is relevant to clarify that the Colombian 
economy is based on oil exportation, and several economic 
aggregates can mitigate price volatility. Therefore, future research 
proposals should identify the mechanism by which fossil fuel 
prices transmit their fluctuation in the electricity market. Besides, 
it would be relevant to evaluate the fossil fuel price spillovers in 
other hydrothermal markets with different economic structures as 
Brazil, India, Australia, Turkey, and Canada.
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