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ABSTRACT

Forecasting electricity consumption is crucial for the operation planning of distribution companies and suppliers and for the success of deregulated 
electricity markets as a whole. Distribution companies often need consumption forecasting for meters to better plan operations and demand fulfillment. 
Although it is easier to forecast the aggregated demand for a region, meter based demand forecasting brings challenging issues such as non-uniform 
usage and uncertain customer consumption patterns. The stochastic nature of the demand for electricity, along with parameters such as temperature, 
humidity, and work habits, eventually causes deviations from the expected demand. In this paper, real meter data from a regional distribution company 
is used to cluster the customer using their non-uniform usage and automated ranking mechanism is proposed to select the best method to forecast the 
consumption. The proposed end-to-end methodology includes data processing, missing value detection and filling, abnormal value detection, and 
mass reading for meters and is applied to regional data for the period 2017-2018 and provides a powerful tool to forecasts the demand in hourly and 
daily horizons using only the past demand data. Besides proposing effective methodologies for data preprocessing, 10 different regression methods, 7 
regressors, 5 machine learning methods that include LSTM and Ar-net models are used to forecast the meter based consumption. The hourly forecasting 
errors in the demand, in the Mean Absolute Percentage Error (MAPE) norm, are <4% for most customer groups. The meter based forecast is then 
aggregated to reach a final demand which is then used for operation and demand planning. The proposed framework can be considered reliable and 
practical in the circumstances needed to make demand and operation decisions.

Keywords: Time Series Analysis, Prediction, Forecasting, Regression, Segmentation, Meter Based Consumption 
JEL Classifications: Q47, E17, Q40

1. INTRODUCTION

Demand forecasting has always played an important role in 
capacity and transmission, generation planning, and pricing. 
Also, the liberalization and privatization of power markets have 
increased the importance of demand or load estimation, as market 
success rates are largely related to their accuracy.

The forecasting of electricity demand or consumption has been 
studied in numerous studies mostly at an aggregated level for the 
use of suppliers and system operators. The distribution companies 

receive power from the suppliers and need to deliver the power to 
their end customers and meet the demand. Hence, they also need 
to forecast the total power withdrawn from the meters within their 
region. The meters in the region are regularly checked for billing 
purposes and consumption levels. The technological levels for the 
meters differ, and for the Turkish power market many meters are 
still regularly checked by an agent to collect the data.

On the other hand, the customers can be classified as household, 
industrial, commercial, and agricultural users. Each customer’s 
consumption patterns show different characteristics requiring 

This Journal is licensed under a Creative Commons Attribution 4.0 International License



Guzel, et al.: A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing

International Journal of Energy Economics and Policy | Vol 13 • Issue 5 • 2023180

even more sophisticated forecasting methodologies. Weekday 
and weekend consumption patterns, peak times, and usage 
frequencies are different for each customer group. The collected 
data from the meters might bring some extra issues such as missing 
data, mass readings, and unexplained abnormal values. Given 
that the collected data from such a number of meters is huge, a 
preprocessing of the data is also required.

The forecasting literature for electricity demand and consumption 
is extensive and it is observed that the studies for consumption 
forecasting meters are limited. The selected works for general 
and meter-based forecasting are presented below. Linear models 
and time series methods are commonly used in the literature for 
demand forecasting. Anand and Suganti (2012) present literature 
on forecasting methods including Artificial Neural Networks 
(ANN), Genetic Algorithms (GA), Support Vector Machines 
(SVM), and Particle Swarm Optimization (PSO) and other 
numerical methods. ARMA and ARIMA models are also used 
to include the stochastic effects for demand forecasting. The 
electricity demand forecasting methodologies studied in (Andersen 
et al., 2013; Niu et al., 2010; Lo and Wu, 2003) show that the trends 
in long and short term forecasts, such as weekly demand patterns 
and economic growths, are better captured in ARIMA models.

In the literature, time series methods are also combined with 
other heuristic approaches. Researchers study England and Wales 
electricity demand data and apply the Holt-Winters method for 
different periods with an AR model (Taylor and Buizza, 2003). 
In (Wang et al., 2012), the authors show that the “PSO optimal 
Fourier method” corrects seasonal ARIMA forecast results, and 
apply it to the Northwest China electrical network, showing that 
the combined model’s forecasting accuracy is higher than that of 
single-season ARIMA. Similar works that use ARIMA include 
different periods for forecasting and demonstrate the effectiveness 
of the methodology (Ren et al., 2016; Vilar et al., 2012; Filik et al., 
2011; Chakhchoukh et al., 2011).

The impact of temperature on electricity demand varies depends 
on the infrastructure and heating resources, the temperature is 
used to increase the forecast accuracy though. The different 
aspects of the influence of the temperature on electricity demand 
have been analyzed in (Taylor, 2003; De Felice et al., 2013; De 
Felice et al., 2015; Lusis et al., 2017; Islam et al., 1995; Hor et al., 
2005; Momani, 2013; Bašta and Helman, 2013). The seasonal 
cycles determine the impact of temperature on electricity demand 
especially if the electricity is used for heating and cooling needs. 
The impact of temperature can be directly observed on meter 
based demand. Different studies, classified according to their 
forecasting methods, are given in Table 1. A similar review is given 
in (Kök, 2022). The methodologies can be classified as time series 
analysis, statistical methods, surveys, artificial neural networks 
and simulation, heuristic approaches, and temperature-based 
methods. The main assumptions in these studies are to forecast 
the aggregated demand and not meter based demand.

The main motivation of this research is to forecast the consumption 
of meters using past consumption data. Forecasting based on 
individual meter data is more challenging than forecasting 

aggregated consumption. There are also some studies for meter 
based demand forecasting that present different aspects of the 
problem.

Gajowniczek and Ząbkowski (2016, 2017) present a segmentation 
approach to forecast the electricity load at individual household 
levels for smart meters. Ghofrani et al. (2011) use real time 
measurement data from smart meters to forecast short term 
demand for a residential customer using Kalman filtering 
methodology. Arora and Taylor (2016) use conditional kernel 
density to estimate consumption for smart meters. They aim to 
estimate probability density for consumption. Similar works such 
as Wijaya et al. (2015), Hsiao (2014), and Taieb (2016) present 
methods to forecast and analyze consumption drivers based on 
smart meter data. Dewangan et al. (2023) present a recent review 
on load forecasting models. They focus on smart meter data in 
smart grids. Wang et al. (2023) focus on anomaly detection in 
real time load forecasting. However, the scope of these researches 
is not extensive, and they do not include the detailed analysis 
presented in this research.

In presented studies, mostly residential consumption forecasting 
is considered and the customer types, nonuniform consumption 
profiles, and data collection, processing, and clustering have 
not been included. The customer segmentation, missing value 
detection and filling, abnormal value detection, and then using 
numerous methodologies to determine the best methodology are 
not proposed for the authors’ best knowledge. The main research 
questions of this study are, clustering the customers correctly, 
proposing the best methods for detecting and filling the missing 
values, and detecting the abnormal and mass reading values and 
then proposing an end-to-end novel methodology to forecast the 
meter based consumption using different algorithms to determine 
the most suitable alternative. The proposed methodologies that 
include regressions, regressors, and machine learning methods 
are extensive. Furthermore, using the test period and determining 

Table 1: Overview of the forecasting methods and related 
resources
Methods Sources
Time series analysis (Conejo et al., 2005; Anand and Suganthi, 

2012; Clements et al., 2016; Niu et al., 2010; 
Andersen et al., 2013; Lo and Wu, 2003)

Statistical methods (Vilar et al., 2012; Taylor, 2010; Fan 
and Hyndman, 2012; Wang et al., 2012; 
McSharry et al., 2005; Taylor, 2003; 
Chakhchoukh et al., 2011; Apadula et al., 
2012; Ren et al., 2016; Filik et al., 2011)

Surveys (Dyner and Larsen, 2001; Anand and 
Suganthi, 2012; Hahn et al., 2009;  
Conejo et al., 2005)

Artificial neural 
network and simulation

(Abumohsen et al., 2023; Zhanga and 
Dongb, 2001; Wang and Ramsay, 1998; 
Tarmanini et al., 2023)

Heuristic approaches (Wang et al., 2012; Zhu et al., 2011; 
Azadeh et al., 2007; Pai and Hong, 2005)

Temperature based 
methods

(Taylor and Buizza, 2003; Felice et al., 
2013; Felice et al., 2015; Crowley and 
Joutz, 2003; Lusis et al., 2017; Islam  
et al., 1995; Hor et al., 2005; Momani, 
2013; Bašta and Helman, 2013)
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the best forecasting methodology for each analysis period, i.e., 
selecting different methodology for each day using automated 
ranking mechanism, is unique and novel. The specific objectives 
of this work can be further described as:
•	 To develop methodologies to preprocess consumption data 

from different meters, that will identify mass readings, detect 
and fill missing values, and identify the abnormal values

•	 To propose clustering methods to cluster consumers as 
residential, industrial, commercial, and agricultural then 
further classify them based on usage profiles

•	 To use regressions, regressors, and machine learning methods 
for hourly and daily consumption forecasting of each meter 
for each period and automated ranking mechanism based on 
accuracy level

•	 To combine this end-to-end methodology that includes data 
collection, processing, clustering, and forecasting to be used 
for daily operations for consumption forecasting in each meter

•	 To identify possible implications for system operators and 
distribution companies.

To achieve the aforementioned objectives, in this work, an 
extensive end-to-end novel methodology is proposed that include 
data processing, customer segmentation, missing value detection 
and filling, abnormal value detection, and regression methods to 
forecast the meter based consumption using different algorithms. 
The forecasting methods include numerous regressions, regressors, 
and machine learning methods, and the best methodology is 
selected for each analysis period using method shifting and forecast 
accuracies are evaluated.

In Section 2, an overview of the market mechanism, the data used 
for the validation of the model, and a discussion of the structure 
of the daily variation curves are presented. Then, the details of 
the proposed models are explained in Section 3. Hourly and daily 
forecasting details for each customer group are given in Section 4. 
Section 5 presents the conclusion and suggestions for future 
directions respectively.

2. DATA COLLECTION AND PROCESSING

The Turkish power market has experienced a significant 
development on both the demand and supply side and no 
significant shortage has occurred in the last decades. The 
liberalization process started in the early 2000s and privatization 
led to new capacity investments in the market. Once the market 
is settle by the independent system operator, the electricity is 
generated and transmitted via state owned transmission lines. As 
a part of the privatization stage in Turkey, the distribution right 
is also transferred to companies. The country is divided into 
different regions and distribution companies are responsible for the 
distribution, maintenance, and billing. Figure 1 shows the regions 
of the distribution companies in which the distribution regions are 
represented with different colors.

The distribution companies oversee the operation within their 
region and are responsible for sufficient electricity to be provided 
to meet the demand. The demand forecasting is challenging but a 
required step in this process. Once the demand is forecasted, the 

required electricity needs to be provided from the spot market or 
through bilateral contracts.

The electricity market in Turkey is deregulated while household 
electricity consumption is approximately 68%, and the electricity 
is not commonly used (about 8.6%) for heating in winter but it is 
used for cooling needs in summer. The electricity is mainly used 
for household, industrial, commercial, agricultural, and street 
lighting purposes.

Although the aggregated consumption for the country can be 
forecasted using different methods, and there are already studies in 
the literature, consumption forecasting at a distribution company 
level requires special efforts. The distribution companies collect 
data from electric meters for billing and maintenance purposes. 
Such data is also crucial for consumption forecasting as it is first 
hand data from the end consumer. The customers in a distribution 
region include households, commercial units, industrial facilities, 
irrigation and agricultural meters, and illumination units. Each 
consumption type has different characteristics and usage patterns. 
Hence, the collected data from the meters leads to different data 
structures.

The reading times for meters vary depend on the customer types. 
A technician still visits most meters, and the consumption level 
is read and compared with the previous reading to calculate the 
usage and determine the bill. Although most such meters are visited 
monthly, some other meters are checked during other periods. 
There are usually hourly meters for users with high consumption, 
while for residential users, there are generally monthly meters. It 
is also possible for some meters to collect the data automatically. 
The data is sent regularly to a server, or a technician receives the 
data whenever necessary.

As the consumption data that is collected from the meters are not 
uniform, careful and detailed data processing should be performed 
before creating a forecasting model for the meters. The data 
used in this work is provided by a distribution company. When 
the meters belonging to different customer groups are analyzed, 
different usage profiles, unread meters, meters that are not read at 
the specified time and read collectively, and damaged meters are 
observed. The data need to be processed to determine the customer 
type, reading cycle, and data collection periods.

As the raw data is collected from the meters with different 
technological levels and used by various customer groups, there 
are some minor issues with the data, such as missing cells and 
double readings that need to be refined before the forecasting 
model is built. The data is reviewed and the variables such as 
temperature and expected consumptions are found to be complete 
as the temperature is an important parameter for the consumption. 
The data is grouped based on the customers and located cities for 
267 m as given in Table 2.

The meters with missing values need to be treated separately. 
Reliable past values are essential for appropriate forecasting. 
The previous 24 h of the data is usually fed to the forecasting 
models, and the model is tested using the past values. If a 
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data series in a meter has some unfilled values, value filling 
methodologies can be applied using previous and later actual 
values. However, if too many consecutive readings data are 
missing for a meter, then this meter should be excluded. Hence, 
a prescreening process is applied and the meters with a missing 
series of 240 h are eliminated. Table 3 shows some of the meters 
that are excluded.

2.1. Abnormal Records and Extreme Values
Apart from the missing values, another problematic issue is the 
abnormal records, which can directly affect the success of the 
models. Abnormal records may occur for many reasons. Situations 
such as mass readings, power outages, meter failures, maintenance, 
and abnormal consumption are some of the reasons.

These values should be determined and filled with the most 
appropriate value for a successful operation. If the reasons for 
the formation of the records are known, they should definitely be 
specified in the models.

In order to detect abnormal values in the data, standard deviation, 
interquartile range, Isolation Forest, Minimum Covariant 
Determinant, and DBSCAN statistical methodologies are used. 
Each hourly data from each meter was scored with these 5 
different methods. If 4 or more models mark the relevant hour as 
extreme values, those points were accepted as extreme values. 
Outlier values were detected in 846 h of 175 m. Figure 2 shows 
a representation of extreme values. The process is replicated for 
each meter for each analysis period and it is integrated into the 
overall methodology.

2.2. Missing Value Identification and Filling
After the collective reading of meters is determined, the remaining 
missing values in meters data are identified. Such missing values 
need to be filled using proper methodologies. Linear Interpolation, 
Quadratic Interpolation, Cubic Interpolation, Moving average, and 
Moving median are used to fill the missing values, and the best 
method is selected. Figure 3 shows a representation of missing 
values.

In order to find the most suitable model, 10 different meters 
were selected randomly from different customer groups and 4 

sequential hourly data were randomly removed from each day 
of the week. Then the proposed models are applied for testing. 
Table 4 shows Pearson correlation values for selected meters for 
each method.

When we look at the Pearson Correlation Values and scatter plots 
of the filled values with the real values, we can see that the filling 
values of the linear interpolation method are more successful than 
the other methods. Hence missing values and extreme values in 
the meters were filled with Linear Interpolation method. Figure 4 
shows the scatter plots for filled values.

Table 3: Meter examples with extreme lost values
Meter number Missing hours Customer
S203 1673 Industrial
S211 990 Commercial
S254 827 Commercial
S197 753 Commercial
S246 748 Agricultural
S248 744 Agricultural
S59 720 Commercial
S252 240 Industrial
S200 62 Commercial
S110 57 Industrial

Figure 1: The distribution companies and regions in Turkey (Tedas, 2022)

Figure 2: A view of extreme values for September-October, 2018

Table 2: The classifications of the meters
Customer Meters City Meters
Commercial 174 City 1 21
Industrial 85 City 2 100
Household 1 City 3 32
Agricultural usage 7 City 4 114
Total 267 Total 267
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3. CUSTOMER SEGMENTATION AND 
MODEL BUILDING

3.1. Meter Based Customer Segmentation
The consumer types and hence the meters in a distribution region, 
as well as their profiles are variable. The segmentation of the 
meters based on usage characteristics is expected to be useful in 
developing a better forecasting approach. The segmentation is 
useful and required in meter based forecasting for many essential 
reasons. It allows to characterize the consumption patterns of each 
meter as well as to observe the times the consumption is highest or 
lowest at the meter. Such knowledge can be used in pricing, load 
distribution, or operation planning such as maintenance or power 
outage planning. On the other hand, if a meter is new or limited 
data is available due to less frequent readings, the segmentation 
allows to develop a common approach to consumption forecasting 
for these kinds of meters. Segmentation also helps to follow the 
consumption characteristics of the meters and determine the meters 
that have changed its consumption characteristics due to some 
reasons such as power theft and significant consumption decrease. 
Such meters are identified, and action is taken if necessary.

In order to determine the most efficient segmentation, we consider 
agglomerative hierarchical clustering, K-means, and mean shift 

clustering methodologies with different parameters. Agglomerative 
hierarchical clustering combines similar objects in the dataset starting 
from (sub)-cluster including only one object. Pairs of clusters are 
iteratively combined into a larger cluster until the algorithm reaches 
a cluster of all objects (James et al., 2014). Once a pair of clusters 
are combined. The similarity of cluster pairs is measured using 
(weighted) Euclidean distance between representative points of 
each cluster. Depending on the selection of representative point 
agglomerative hierarchical clustering is employed with single, full, 
centroid linkage options (James et al., 2014). Outputs of hierarchical 
clustering algorithms are represented with dendograms.

K-means is a well-known iterative algorithm that starts with a given 
K amount of clusters with randomly chosen centroids and cluster 
centers. At each iteration, objects in the dataset are assigned to the 
closest centroid based on a distance metric. Once the assignment of 
objects is complete, the centroid of each cluster is updated by taking 
the average of coordinates of each object assigned to a cluster. This 
marks the end of an iteration, and the algorithm proceeds to the new 
iteration with centroids from the previous iteration. It runs until the 
resulting clusters converge at the end of an iteration.

Mean-Shift is a center-based clustering algorithm that divides the 
data into groups, taking into account the distribution density. This 
algorithm is based on the concept of Kernel Density Estimation, 
which is a way of estimating the probability density function of a 
random variable. Due to this feature, clusters can be assigned to 
the data without the need to define the number of clusters.

For the segmentation of hourly meters, we experiment with different 
parameters of the three clustering algorithms. In these experiments, 
the data of each meter was selected for 28 days, that is, 4 h from each 
day of the week. It was observed that the usage of the meters differed 
according to the consumer groups on weekdays and weekends. 
While modeling the consumption characteristics, each meter was 
clustered in two different ways as weekdays and weekends.

The consumption amounts on Monday, Tuesday, Wednesday, 
Thursday, and Friday were calculated by taking the grand and the 
hourly total. Weekend segment variables were created by summing 
and proportioning the overall and hourly energy consumption on 
Saturday and Sunday. Since segment variables are calculated from 
the ratio of hourly usage to general usage through normalization, 
segment variable values are values that do not contain extreme 
values that range from 0 to 1. Weekday and weekend variables 
are represented as weekday hour and weekend hour respectively.

We utilize the silhouette coefficient for measuring segmentation 
performance to compare the outputs of different segmentations. 

Table 4: The Pearson correlation values for each method
Meters Linear Quadratic Cubic Moving 

average
Moving 
median

S1 0.97 −0.05 −0.08 0.38 0.43
S11 0.97 −0.43 −0.46 0.82 0.83
S116 0.76 −0.07 −0.07 0.67 0.62
S132 0.90 −0.04 0.00 0.76 0.72
S139 0.70 −0.09 −0.10 0.65 0.64
S21 0.93 0.03 0.05 0.94 0.94
S34 0.91 −0.01 −0.01 0.82 0.80
S345 0.98 0.01 −0.01 0.75 0.61
S40 0.93 −0.33 −0.35 0.81 0.80
S50 0.81 −0.12 −0.14 0.48 0.48

Figure 3: A representation of missing values and filling

Figure 4: The actual and filled values comparisons
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The value of the silhouette coefficient is between [−1, 1] while 
close to 1 means that the data point is within the cluster it belongs 
to and far away from other clusters. The worst value is −1 and 
values close to 0 indicate overlapping clusters. The results of our 
segmentation experiments are given in Tables 5 and 6 for weekday 
and weekend consumption, respectively.

Considering the results obtained for the weekday consumption 
characteristic, agglomerative hierarchical clustering with 4 clusters 
leads to the highest silhouette coefficient indicating the most 
compact segments are significantly distinguished from each other.

Considering the results obtained for the weekend consumption 
characteristics, when both the silhouette statistics and the low number 
of clusters and whether they distinguish significantly from each other, 
the agglomerative algorithm with 3 clusters establishes the ideal 
cluster structure. Hence, the agglomerative hierarchical clustering 
method is selected for the Energy Consumption Characteristics of 
the meters. Accordingly, the hourly energy consumption of meters 
on weekdays and weekends is given in Table 7.

The agglomerative hierarchical clustering is applied to meters and 
the meters are clustered based on consumption. The distribution 
of meters on weekdays and weekends is given in Table 8.

3.2. Methodology and Modelling
The collected data from hourly meters include missing values, mass 
readings, and abnormal values and meters might differ from each other 
in terms of the total amount of consumption or hourly consumption 
patterns. The proposed methodology detects whether there are missing 
values, mass readings, abnormal values and fill or remove the data 
points and then applies the consumption clustering for the meters. 
Then forecasting methodologies are used for hourly and daily forecasts. 
Figure 5 presents the pseudo code of the proposed methodology.

The proposed methodology uses different forecasting techniques and 
selects the best one based on an automated ranking mechanism. This 
selection process is updated for each forecasting period, hence the 
selected methodology might be different for each hour or day. The 
bias, variance and feature selection should be carefully taken into 
account in this process. Any predictive model includes bias, variance, 
and irreducible errors. Depending on the model complexity bias-
variance trade-off might be different over various machine learning 
methods. The irreducible error stems from exogenous randomness 
which cannot be removed from the system (James et al., 2014).

In machine learning and statistics, feature selection, also known as 
variable selection, feature selection, or variable subset selection, 
is the process of selecting a subset of related features (variables, 
predictors) for use in a model setup. Feature selection techniques 
are used to simplify models so that their outputs can be easily 
interpreted, shorten training times, and solving the size problem 
(Liu and Motoda, 1998). The proposed methodology employs 
different regression methods from statistics and machine learning 
literature with various regressors. An overview of the regression 
methods employed in our study is given in Table 9 below.

The regression methodologies are commonly used for forecasting. 
The electricity consumption is correlated to different parameters 
such as temperature, and hence regression methodologies provide 
quite good results (Draper and Smith, 1998). Although linear 
regression is the most common methodology, ridge regression 
(Hoerl et al., 1970), lasso regression (Tibshirani, 1996), elastic net 
regression (Zou and Hastie, 2005), least angle regression (Efron, 
2004), huber regression (Huber, 1964), orthogonal matching 
pursuit (Pati et al., 1993), Bayesian ridge regression (Grinstead 
and Snell, 2006), and regression with decision trees algorithms 
(Quinlan, 1987) are different combinations and provide forecasting 
results depend on the nature of the data and industry.

The usage of regressors can lead to successful forecasts especially 
for industries in which the demand is related to dominant 
parameters. Industrial consumption and climatic factors can be 
considered as such. Hence, AdaBoost Regressor (Wyner et al., 
2017), Random Forest Regressor (Wyner et al., 2017), Gradient 
Boosting Regressor (Hastie et al., 2009), CatBoost Regressor 
(Hastie et al., 2009), Extra Trees Regressor, K Neighbors 
Regressor (Altman, 1992), and Passive Aggressive Regressor 
(Blondel, 2014) are included as forecasting methodologies.

Table 5: Weekday segment scenarios
Methodology Segments Parameter Siluet 

coefficient
Mean shift 5 Quantile=0.1 0.42
Mean shift 4 Quantile=0.2 0.4
Mean shift 5 Quantile=0.3 0.56
Mean shift 5 Quantile=0.4 0.46
Mean shift 5 Quantile=0.5 0.42
Agglomerative 5 Euclidean-ward 0.24
Agglomerative 4 Euclidean-ward 0.46
Agglomerative 3 Euclidean-ward 0.45
Agglomerative 3 Manhattan-complete 0.29
Agglomerative 4 Manhattan-complete 0.29
Agglomerative 4 Manhattan-complete 0.27
Agglomerative 4 Euclidean-average 0.55
Agglomerative 5 Euclidean-average 0.45
K-means 3 0.41
K-means 4 0.29
K-means 5 0.28

Table 6: Weekend segment scenarios
Methodology Segments Parameter Siluet 

coefficient
Mean shift 7 Quantile=0.1 0.51
Mean shift 6 Quantile=0.2 0.52
Mean shift 3 Quantile=0.3 0.69
Mean shift 5 Quantile=0.4 0.66
Mean shift 6 Quantile=0.5 0.5
Mean shift 6 Quantile=0.6 0.47
Mean shift 2 Quantile=0.7 0.71
Agglomerative 4 Euclidean-ward 0.35
Agglomerative 5 Euclidean-ward 0.29
Agglomerative 3 Euclidean-ward 0.35
Agglomerative 3 Manhattan-complete 0.56
Agglomerative 4 Manhattan-complete 0.50
Agglomerative 5 Manhattan-complete 0.50
Agglomerative 3 Euclidean-average 0.67
Agglomerative 5 Euclidean-average 0.59
K-means 3 0.39
K-means 4 0.26
K-means 5 0.28



Guzel, et al.: A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing

International Journal of Energy Economics and Policy | Vol 13 • Issue 5 • 2023 185

Table 9: Algorithms and forecasting methodologies
Regressions Regressors Machine learning 

methods
Linear regression
Ridge regression
Lasso regression
Elastic net regression
LARS
Lasso least angle 
regression
Huber regression
OMP
Bayesian ridge 
regression
Regression with 
decision trees

AdaBoost Regressor
Random forest 
regressor
Gradient boosting 
regressor
CatBoost regressor
Extra trees regressor
K-neighbors 
regressor
Passive aggressive 
regressor

XGBOOST
Light gradient 
boosting machine
LSTM
Ar-net
Comparative and 
combines results 
with all algorithms

LARS: Least angle regression, OMP: Orthogonal matching pursuit, XGBOOST: 
Extreme gradient boosting, LSTM: Long short term memory, Ar-net: Autoregressive 
neural networks

Table 7: Consumption characteristics based on agglomerative clustering
Hours Weekday consumption Weekend consumption

Equal Double Peak Daytime Morning Equal Double Peak Night 
0  3.8  0.4  2.3  3.6  3.9  0.9  14.9
1  3.8  0.3  2.2  4.0  3.9  0.9  15.1
2  3.7  0.3  2.2  4.2  3.8  0.9  14.2
3  3.7  0.3  2.2  5.5  3.8  0.8  14.4
4  3.7  0.4  2.3  7.1  3.8  1.0  13.8
5  3.8  0.6  2.5  7.6  3.8  2.0  5.7
6  4.1  4.1  2.6  7.1  3.9  4.9  1.8
7  4.3  7.8  5.2  6.5  4.2  7.8  0.9
8  4.5  9.9  6.0  6.2  4.5  9.1  1.1
9  4.6  10.4  6.3  6.1  4.5  9.5  1.0
10  4.5  9.4  6.3  5.8  4.5  8.9  1.0
11  4.4  4.9  6.1  5.1  4.4  5.9  0.9
12  4.4  7.5  6.3  4.3  4.3  7.6  0.9
13  4.4  10.1  6.2  3.3  4.3  9.0  0.8
14  4.4  10.2  5.9  2.6  4.3  8.6  0.8
15  4.3  10.2  5.6  2.2  4.3  7.9  0.8
16  4.3  7.6  5.0  2.2  4.4  5.9  0.7
17  4.4  2.3  4.5  2.2  4.5  2.1  0.6
18  4.4  1.0  4.1  2.2  4.4  1.4  0.7
19  4.3  0.7  3.8  2.2  4.4  1.1  1.0
20  4.2  0.5  3.3  2.2  4.2  1.0  1.6
21  4.1  0.4  2.9  2.3  4.1  1.1  2.0
22  4.1  0.4  2.7  2.5  4.0  0.9  2.7

23  4.0  0.3  2.6  2.8  3.9  0.8  2.6

Table 8: The distribution of meters based on the 
consumption
Segment Weekend Weekday
Equal consumption 174 224
Double peak 14 21
Daytime consumption 53
Morning consumption 7
Night consumption 3

Additionally the machine learning methodologies might fit forecasting 
meter based electricity forecasting context. Extreme Gradient Boosting 
(XGBOOST), Light Gradient Boosting Machine (Hastie et al., 2009), 
Long Short Term Memory (Hochreiter and Schmidhuber, 1997), 
and Ar-net (Triebe et al., 2019) are also used for the consumption 
forecasting. Finally, a methodology that compare and combines the 
results of all algorithms and provide a new forecast is also included.

In the assessment of the performance of the forecasting 
methodologies, Mean Absolute Percentage Error (MAPE) is used. 
If Sh and yh are the actual demand and the forecast demand for hour 
h, then MAPE can be defined as given in Eq(1) and:

MAPE
N

y S
S
h h

hh

N

�
�

�
�100

1

 (1)

Where N is the total number of estimated values.
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4. CONSUMPTION FORECASTING OF 
ELECTRICITY METERS

The data is provided from an electricity distribution company in 
Turkey, and the meters belong to different customers in different 
cities. The collected data from each meter is not uniform with 
some missing values. The forecasting is performed considering 
different customers groups and time horizons as such:
•	 Hourly consumption forecasts of meters
•	 Daily consumption forecasts that are converted to hourly 

estimates
•	 Hourly consumption forecasts based on segment-customer-

city groups

The details of each forecasting result are explained and presented 
below.

4.1. Hourly Consumption Forecasting of Meters
While making hourly forecasts of the meters, 24 h (hold out) before 
the last hour are selected as test data and the data is used to measure 
the success of the model. In hourly meter forecasting models, the 
model is created before midnight of the day and the hours of the 
next day are scored with the relevant model. For example, if the 
day is 00:00 on November 29, 2018, the hours after November 28, 

2018 00:00 are reserved for testing purposes and the model of the 
meter is created from the data up to this date. The consumption is 
forecasted for the meter using the proposed models for all hours of 
November 28, 2018. The actual consumption data on November 
28, 2018 and the estimates are collected separately, the MAPE 
values are calculated and the most successful model is selected 
while the success level of each method is scored using the data of 
the day before the actual day. Hence, hourly LSTM, 16 different 
regression and AR-Net models were created for each of the meters.

When creating LSTM models, the model was created using only 
the series itself. Since LSTM is a deep learning algorithm, it is 
a very successful model for finding patterns since it keeps the 
effects of previous values in memory. Since the model training 
takes too long, it can negatively affect the working performance 
of the model in terms of time, and this time may be longer as the 
number of meters increases. For the sake of clarity, an analysis 
for meter S11 is presented.

It is observed that using 16 different regression models for each 
meter provides useful results. Each algorithm has a different 
content, and there are regression models that are more capable of 

Figure 7: The actual and forecasted consumption

Figure 6: The actual and forecasted results for each methodology

Figure 8: The actual and forecasted consumption

Figure 5: Flow chart for the data processing and forecasting



Guzel, et al.: A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing

International Journal of Energy Economics and Policy | Vol 13 • Issue 5 • 2023 187

finding nonlinear patterns. The disadvantage is that since there 
are independent variables, data manipulation and processing are 
difficult and long, and modelling takes a long time due to the 
complex structure of some regression models. Figure 6 shows the 
forecasted results from each methodology, and Figure 7 shows 
the results obtained from the best performing methodology.

The MAPE values for meter S11 are given in Table 10. Decision 
Tree Regressor (Turquoise) seems to be the model that best 
matches the actual consumption (black dots) based on the MAPE, 
which is closest to the total consumption of November 29. There 

is a decision tree-based algorithm in the second best model that 
shows that the energy consumption of this meter can be better 
explained with independent variables.

The details of the results provide much useful information. The 
Ar-net results for S11 meter show the trend changes, the impact 
of delayed temperature on the consumption and the consumption 
on special days such as holidays. Figure 8 provides the results for 
the meter S11 but they can be replicated for all meters.

Another important issue is that the positive effect of situations 
such as holidays and special days on the model can be observed. 
Figure 9 provides results for S11. The model is quite successful 
in capturing special day effects.

The MAPE value of the AR-Net model in the meter S11 is very low 
(0.1%) and it is slightly worse than the Decision Tree Regressor. 
We conducted control tests for November 2008 and the successful 
models and their mean MAPE values are given in Figure 10.

It is shown that the MAPE values of the hourly models of the S11 
meter in November 2018 and the models used on the relevant day. 
While the MAPE value remained below 1% throughout November, 
it had a MAPE value of 1.5% with the orthogonal matching pursuit 

Figure 9: The model reaction for the special days

Table 10: The MAPE values for each methodology
Model MAPE (%)
Decision tree regressor 0.1
Random forest regressor 0.1
Orthogonal matching pursuit 0.4
LGBM regressor 0.5
Lars 0.9
Bayesian ridge 0.9
Gradient boosting regressor 1.1
Ada boost regressor 1.4
Linear regression 1.4
K-neighbors regressor 4.2
MAPE: Mean absolute percentage error

Figure 10: The MAPE levels for each selected methodology for November, 2018
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model on November 22, 2018. 9 different models were selected 
successfully for November, which shows the effectiveness of the 
automated ranking mechanism.

The most successful methodologies based on MAPE values 
for 248 m are given in Table 11. The results show that the 
MAPE values of 241 out of 248 m are below 4%. While 
the trend and partial trends can be taken into account, it 
can be used in the model by adding possible trend change 
situations. The number of training iterations of the model 
can be affected, and the model can make more successful 
predictions. The disadvantage is that it takes much longer 
than all other models, and it takes about 35 s to create a 1-day 
model per meter.

4.2. Daily Consumption Forecasting to Convert to 
Hourly Estimates
The same methodologies were used when estimating the meters 
daily and then converting them to hourly consumption. The 
consumption value of each meter was collected daily while 
the daily models were set up, and then the hourly consumption 
values were estimated from the aggregate forecasts. 3-month data 
was used for the LSTM and 6 months of data were used for the 
regression models for training purposes. The last completed day 
is used to test the model results and compare them with the actual 
hourly consumption.

The methodologies are sorted based on the MAPE values for 
November 29, 2018, and they are given in Table 12 below. 
Although Decision Tree Regressor and LSTM take the first two 
places in the model ranking, as in the hourly models, it is seen 
that the numbers and places of the other models have changed. 
Although the temperatures are mostly taken as the average of 

Table 11: The frequencies of high-performing models for 
forecasting
Models Meters
Decision tree regressor 48
LSTM 45
Orthogonal matching pursuit 31
LGBM regressor 23
Gradient boosting regressor 18
Random forest regressor 15
Huber regressor 15
Ada boost regressor 10
Bayesian ridge 10
Lars 8
Linear regression 7
Ridge 7
K-Neighbors regressor 5
Passive aggressive regressor 2
ElasticNet 1
Lasso 1
Lasso lars 1
Dummy regressor 1
LSTM: Long short term memory

Table 12: The frequencies of high-performing models for 
forecasting
Models Meters
Decision Tree Regressor 47
LSTM 28
Random Forest Regressor 27
Huber Regressor 20
Ada Boost Regressor 19
Orthogonal Matching Pursuit 16
LGBM Regressor 16
Gradient Boosting Regressor 14
K-Neighbors Regressor 13
Passive Aggressive Regressor 12
ElasticNet 7
Linear Regression 7
Bayesian Ridge 7
Ridge 7
Lasso 3
Dummy Regressor 2
Lasso Lars 2
Lars 1
LSTM: Long short term memory

Figure 11: The actual and forecasted consumption for random Forest 
regressor

Table 13: The MAPE values and winning scenario for 
each day of November, 2018
November 
2018

Hourly model 
MAPE (%)

Daily model 
MAPE (%)

Winner 
scenario

1 8.00 38.20 Hourly
2 2.00 3.70 Hourly
3 2.10 8.90 Hourly
4 1.50 5.80 Hourly
5 2.00 8.20 Hourly
6 0.80 3.60 Hourly
7 0.60 3.50 Hourly
8 0.60 2.80 Hourly
9 1.10 5.60 Hourly
10 3.00 11.70 Hourly
11 3.10 21.30 Hourly
12 0.50 2.40 Hourly
13 0.80 4.20 Hourly
14 3.10 12.70 Hourly
15 1.00 5.00 Hourly
16 0.80 3.30 Hourly
17 1.00 5.50 Hourly
18 0.80 2.90 Hourly
19 0.80 2.40 Hourly
20 0.80 3.80 Hourly
21 0.70 5.00 Hourly
22 1.40 5.90 Hourly
23 0.50 2.10 Hourly
24 0.70 2.40 Hourly
25 0.70 4.60 Hourly
26 0.60 3.60 Hourly
27 1.60 7.30 Hourly
28 1.30 8.80 Hourly
29 1.20 4.30 Hourly
Mean 1.50 6.90 Hourly
MAPE: Mean absolute percentage error



Guzel, et al.: A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing

International Journal of Energy Economics and Policy | Vol 13 • Issue 5 • 2023 189

Figure 12: The distribution of mean absolute percentage error values for best performing models, November, 29th

Table 14: The segments, models, and hourly MAPE values for November 29, 2018
City Subscriber group Weekday consumption Weekend consumption Model Value Forecast MAPE
City1 Commercial Equal Equal Huber regressor 38552 38431 0.31%
City1 Commercial Morning Equal Orthogonal Matching Pursuit 8814 8813 0.01%
City1 Commercial Morning Double Peak Random Forest Regressor 2866 2965 3.45%
City2 Household Equal Equal Huber Regressor 2823 2841 0.64%
City2 Industrial Equal Equal Huber Regressor 116269 113081 2.74%
City2 Industrial Equal Night Huber Regressor 74588 74559 0.04%
City2 Industrial Morning Equal Random Forest Regressor 2746 2699 1.71%
City2 Industrial Morning Double Peak Random Forest Regressor 2024 2012 0.59%
City2 Industrial Equal Peak Double Peak Random Forest Regressor 16508 8855 46.36%
City2 Industrial Morning Equal Orthogonal Matching Pursuit 1483 1432 3.44%
City2 Tarimsal Equal Equal Random Forest Regressor 0.15 0.142 5.33%
City2 Tarimsal Equal Peak Double Peak Random Forest Regressor 1422 1381 2.88%
City2 Commercial Equal Equal HuberRegressor 499539 500861 0.26%
City2 Commercial Morning Equal Ridge 92062 103925 12.89%
City2 Commercial Morning Double Peak Orthogonal Matching Pursuit 1657 1532 7.54%
City2 Commercial Equal Peak Double Peak Random Forest Regressor 4745 2879 39.33%
City2 Commercial Morning Equal LGBM Regressor 3904 3541 9.30%
City3 Industrial Equal Equal Random Forest Regressor 182728 191949 5.05%
City3 Industrial Morning Equal Orthogonal Matching Pursuit 1278 1292 1.10%
City3 Industrial Morning Double Peak Random Forest Regressor 2616 2634 0.69%
City3 Commercial Equal Equal Orthogonal Matching Pursuit 78311 77531 1.00%
City3 Commercial Morning Equal Gradient Boosting Regressor 7981 7734 3.09%
City4 Industrial Equal Equal Huber Regressor 247511 241842 2.29%
City4 Industrial Equal Night Huber Regressor 72.24 72097 0.20%
City4 Industrial Morning Equal Gradient Boosting Regressor 40426 39423 2.48%
City4 Industrial Equal Peak Double Peak Random Forest Regressor 19073 10127 46.90%
City4 Industrial Morning Equal Random Forest Regressor 1835 1708 6.92%
City4 Industrial Morning Double Peak Orthogonal Matching Pursuit 1396 1416 1.43%
City4 Tarimsal Morning Equal Orthogonal Matching Pursuit 0.194 0.205 5.67%
City4 Commercial Equal Equal Gradient Boosting Regressor 245319 241577 1.53%
City4 Commercial Morning Equal Random Forest Regressor 22239 22428 0.85%
City4 Commercial Equal Peak Double Peak Gradient Boosting Regressor 5331 5941 11.44%
City4 Commercial Morning Equal Huber Regressor 1514 1322 12.68%
MAPE: Mean absolute percentage error



Guzel, et al.: A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing

International Journal of Energy Economics and Policy | Vol 13 • Issue 5 • 2023190

the day in daily forecasts, variables such as the day of the week 
become more meaningful.

After the most successful models were selected, daily forecasts 
were distributed to hours by taking into account the hourly ratios 
of the meters that had previously been calculated according to 
the days of the week for the last 28 days. The percentages are 
calculated by normalizing the consumption of each hour based on 
the total daily consumption. The Random Forest Regressor results 
of S11 returned to be the best performing for the meter, and the 
results are given the Figure 11 below.

The conversion process of daily forecasts to hourly consumption 
was successfully applied for 176 of 248 m, while the number of 
meters with a MAPE below 4% is 121. It is shown that the hourly 
forecasts are much more successful results. The MAPE details for 
each day are given in Table 13 below. It is shown that forecasting 
the daily consumption and then converting to hourly forecasts 
using the calculated ratios return quite successful results.

4.3. Hourly Consumption Forecasts Based on 
Segment-customer-City Groups
Another scenario applied to estimate the consumption of meters 
is to make an hourly forecast on the basis of the consumption 
characteristic of the customer group and the city in which the 
meter is located. Energy companies may need estimations on the 
basis of regional or customer groups in line with their workflow. 
A representation of the distribution of meters on the basis of 

segment, city, and subscriber group is given in Table 14 below. 
The table also shows the results of some forecasting methodologies 
and the best methodology of each meter will be selected based 
on MAPE.

The models to be created are LSTM, 16 different regression and 
AR- Net models and they will be applied to 34 different groups. 
The air temperature variable in the data is city-based and it was 
not significant for some groups. 3 months long data has been used 
to create and train the models. The best-performing methodologies 
results are obtained after running the forecasting models. Figure 12 
shows the distribution of MAPE values for best-performing 
methods classified based on different groups.

Table 15: The segments, models, and daily MAPE values for November 29, 2018
City Subscriber group Weekday consumption Weekend consumption Value Forecast MAPE (%)
City 1 Industrial Equal Equal 2.465 2.453 0.50
City 1 Commercial Equal Equal 52.627 51.636 1.90
City 1 Commercial Daytime Equal 6.882 6.744 2.00
City 1 Commercial Daytime Double peak 3.114 3.057 1.80
City 2 Household Equal Equal 68.801 68.56 0.30
City 2 Industrial Equal Equal 112.444 113.793 1.20
City 2 Industrial Equal Night 146.828 147.662 0.60
City 2 Industrial Daytime Equal 1.231 1.317 7.00
City 2 Industrial Daytime Double peak 1.131 1.187 4.90
City 2 Industrial Double peak Double peak 21.795 20.061 8.00
City 2 Industrial Morning Equal 1.835 1.901 3.60
City 2 Agriculture Equal Equal 0.15 0.161 7.50
City 2 Agriculture Double peak Double peak 1.422 1.436 1.00
City 2 Commercial Equal Equal 272.784 272.023 0.30
City 2 Commercial Daytime Equal 53.958 53.212 1.40
City 2 Commercial Morning Equal 5.593 5.369 4.00
City 3 Industrial Equal Equal 157.34 158.656 0.80
City 3 Industrial Double peak Double peak 1.581 1.542 2.50
City 3 Commercial Equal Equal 61.385 61.922 0.90
City 3 Commercial Daytime Equal 5.784 5.804 0.40
City 4 Industrial Equal Equal 495.034 478.545 3.30
City 4 Industrial Daytime Equal 54.758 52.719 3.70
City 4 Industrial Daytime Double peak 4.589 4.618 0.60
City 4 Industrial Double peak Double peak 18.622 18.325 1.60
City 4 Industrial Morning Double peak 0.946 0.972 2.80
City 4 Agriculture Morning Equal 0.194 0.248 28.00
City 4 Commercial Equal Equal 167.535 169.612 1.20
City 4 Commercial Daytime Equal 50.202 48.962 2.50
City 4 Commercial Double peak Double peak 2.299 2.543 10.60
City 4 Commercial Morning Equal 1.514 1.448 4.40

Figure 13: The frequencies of best performing methodologies
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The groups with higher MAPE values are represented in yellow 
color. It is shown that the MAPE values are <0.04 for the 
majority of the segments and cities. The higher MAPE values 
usually come from agricultural meters, which possess uncertain 
behaviors and are challenging to forecast. It is shown that the 
proposed forecasting methodologies are successful in estimating 
consumption. The details of the groups and segments for each city 
are given in Table 15.

For the regression models, hourly data from the last 3 months 
were used. 16 regression models were created for each group, and 
the best one was selected according to the MAPE criterion. While 
the MAPE values of 15 of 34 groups is >4%, the MAPE value 
of 7 groups is <1%. Orthogonal Matching Pursuit and Huber 
Regressor are the most frequently used models with 8 different 
groups. Gradient Boosting and Cat Boost Regressor models were 
the models with an average MAPE below 4%. Although the 
Random Forest Regressor model is the best model in 7 different 
groups, the MAPE average seems to be an unsuccessful model 
with 14.4%, as can be seen in the previous table. The MAPE 
values for the City2-Industry-Daytime consumption-double 
peaks and City4 Commercial-Morning consumption-Equal 
consumption groups have very high MAPE values that lead to 
higher average MAPE. City 2-Industry-Daytime consumption 
consists of 2 m (121 and 232) and has a least success for 
estimation. The S121 meter was estimated with Hourly Huber 
Regression model with a MAPE of 1% and with the Hourly 
Orthogonal Matching Pursuit on S232 with MAPE of 1%. 
Although segment-based MAPE was 14%, it was estimated at 1% 
per h. Figure 13 below shows the model selection frequencies for 
best performing methodologies and their average MAPE values. 
It is shown that the success of the models increases in groups 
with a higher number of meters which shows the importance of 
data availability in model success.

5. CONCLUSION

Electricity demand forecasting plays a key role for power 
companies as they need to develop long- and short-term 
strategies. On the other hand, the distribution companies need to 
forecast the consumption for meters. The meters are distributed 
to different regions and belong to different customer groups 
such as commercial, household, industrial, and agricultural. The 
characteristics of the consumers are different, and the data gathered 
from the meters need extra processing. Household electricity 
consumption is dominated by illumination, heating, and cooling 
needs; hence it has strong periodic components whose amplitudes 
depend on climatic conditions. Holidays and special events are 
irregular but predictable events that affect electricity consumption 
to a great extent. In particular, in the Islamic world, religious 
holidays are determined according to the lunar calendar and they 
start 10 days earlier each year. These types of problems require 
special methods for dealing with special days and events.

In this work, meter based consumption data which is provided 
from a regional distribution company in Turkey was analyzed. 
Then an end-to-end methodology that includes data processing, 
missing value detection and filling, abnormal value detection, 

customer clustering and segmentation, and eventually forecasting 
is proposed and successfully applied. The meter consumption 
data of the distribution company need to be processed as not 
all the meters have the same data structure. The abnormal value 
detection, missing value detection and filling, and mass reading 
identification operations are performed for data cleaning. The 
test data include 267 m from 4 different cities and belong to the 
commercial, industrial, household, and agricultural customers. 
Standard deviation, interquartile range, Isolation Forest, Minimum 
Covariant Determinant, and DBSCAN methods were used to detect 
the abnormal values. On the other hand, Linear Interpolation, 
Quadratic Interpolation, Cubic Interpolation, Moving average, 
and Moving median are used to fill the missing values and Linear 
interpolation is selected as the best methodology.

The customers are clustered using hierarchical, K-means, and 
mean shift clustering methodologies and the hierarchical clustering 
methodology is selected as the most suitable alternative. Then the 
customers are segmented based on their city, consumption patterns, 
weekday and weekend consumptions. Such an approach increased 
the forecast accuracy.

The forecasting is planned as hourly, daily, and segment based and 
10 different regression methods, 7 regressors, 5 machine learning 
methods that include LSTM and Ar-net models are used and the 
best performing methodologies are selected for each customer 
group in each segment. The meter based forecasting for hourly, 
daily, and segment-customer groups are presented along with the 
MAPE values. It is shown that the results are quite satisfactory 
with MAPE values <4% for the majority of the groups and the 
best methodologies return around 1% of MAPE. Although the 
main idea is to develop an automated and data-centered end-to-
end approach for distribution companies and the same forecasting 
methodology might not be the best one for each case, the decision 
tree regressor and LSTM are determined as the methods with 
lowest MAPE values. The proposed method is able to forecast the 
hourly and daily consumption quite satisfactorily, and the results 
presented for test data for hourly, daily and segment based cases.

The proposed model is applicable to the electricity demand data for 
any meter, provided that sufficient data is provided and customer 
segmentation is performed. The methodologies are more extensive 
than that of previous researches. As a matter of fact, the real data 
gathered from the meters make the research more realistic as it is 
difficult to obtain data from the meters if it is not smart grid. The 
anomaly detection and missing value filling methodologies are 
novel and not being used in previous researches. Special days such 
as holidays are also identified and treated separately. Nevertheless, 
better performance is expected to occur in cases where the 
customer consumption is more uniform such as household as the 
agricultural consumption is more challenging to forecast due to 
nonunform consumption patterns.
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