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ABSTRACT

Understanding consumers’ short- and long-run response to electricity prices is essential for efficient market regulations, supplier planning decisions, and evaluation 
of policies for the economic development of the country. This work estimates the determinants of residential electricity demand for Brazil and for each of its five 
geographic regions, North, Northeast, Midwest, Southeast and South in a cointegration setup. The demand model accounts for the electricity prices, personal 
income, production and price of appliances, and climatic conditions, all of which show pronounced regional disparities. The data confirm that price and income 
elasticities are inelastic, both in the short- and long-run. Regional disaggregation yields the insight that price elasticities are insignificant in the North, Southeast 
and South, both in the short- and long-run. For the country as a whole, the short-term price effect is insignificant as well. This novel result casts doubt on recently 
implemented and future price-based policy measures that are necessary to reduce electricity consumption in a system that is frequently close to its maximum 
capacity. Brazil’s dependency on increasingly scarce rainfall and the rising electricity demand due to income increases require effective responses, however.
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1. INTRODUCTION

Blackouts and electricity shortage are recurrent problems all 
over Brazil. On the one hand, the country’s electricity supply 
relies to a great extent on hydro-power generation and naturally 
suffers when rainfall is lacking. On the other hand, ineffective 
management system and insufficient investment are problems 
that could be mitigated by policy makers (De Lima and Bacchi, 
2019). According to these authors, the economic cost of electricity 
rationing is estimated at 3% of GDP per year, even without taking 
the individual welfare losses and lower economic growth potential 
into account (Payne, 2010). Because the Brazilian electricity 
market is heavily regulated and (public and private) investors 
regularly compete via public tenders, the essence of the problem 
seems to be that forecast of electricity supply and demand do not 
match.

The objective of the present research is to provide more accurate 
estimates for the long- and short-run effects of determinants for the 
residential electricity demand in Brazil. To this end, we use monthly 
data from January 2003 to June 2015 and apply the Vector Error 
Correction Model (VECM). The VECM is then extended to a variance 
decomposition and a Granger causality analysis that shed more light 
on the relation between electricity demand and its determinants. The 
selected period is characterized by a relatively uniform expansion 
of the Brazilian economy. Since 2015 until the present day, Brazil 
suffered several unfavorable shocks that prevent the economy from 
getting back on its previous growth path. Over this period demand 
decreased markedly, even for relatively important services such as 
internet and telecommunication (Silva et al., 2020). We exclude the 
recent period deliberately in order to avoid structural break issues 
and to derive estimates that are representative for a uniform and more 
favorable scenario to which the economy hopefully will return soon.
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The main distinction of our paper is to present novel estimates for 
each of the five geographic regions, North, Northeast, Midwest, 
Southeast and South. As hypothesized, our estimates present 
substantial heterogeneity across the regions which are related to the 
disperse distribution of income, market size, productive capacity, 
rainfall, among others. To the best of our knowledge, there is 
only one study from Brazil that presents demand estimations by 
geographic region. Martins et al. (2021), however, use different 
data, a different estimation technique and come to conclusions that 
are distinct but complementary to ours. Other recent studies from 
Brazil, are either also based on GMM estimations that apply lagged 
values as internal instruments (de Assis Cabral et al., 2020, de 
Abreu Pereira Uhr et al., 2017) or focus on forecasting electricity 
demand via an ARIMA model (De Lima and Bacchi, 2019). Our 
approach addresses endogeneity through the Granger causality 
analysis, where we observe in several cases that the link between 
income, electricity prices and demand is indeed bidirectional. 
Another distinction of the present paper is that the VECM allows 
us to provide both short- and long-run effects and that we can 
quantify their relative order in the variance decomposition.

The present paper confirms that price and income elasticities 
are inelastic, both in the short-and long-run. However, regional 
disaggregation yields the insight that price elasticities are 
insignificant in the North, Southeast and South, both in the short-
and long-run. For the country as a whole, the short-term price 
effect is insignificant as well. This novel result casts doubt on 
recently implemented and future price-based policy measures 
that are necessary to direct electricity consumption according to 
the disposable supply. Our variance decomposition confirms that 
in all but one of the regions, income has a much larger predictive 
power than electricity prices. Only in the Midwest and Southeast 
where large parts of Brazil’s manufacturing production is located, 
do we observe that the production of apparatuses and machines is 
the most important determinant for electricity demand.

Comparison of the present approach with studies from other 
countries shows that there are also surprisingly few attempts that 
pay attention to within-country differences. Silva et al. (2018) is a 
notable exception who also highlight that calculating elasticities at 
the national level may be misleading given the substantial variation 
in climate, culture, social and economic conditions. In their case, 
the divergence between rural and urban regions in Portugal is 
analyzed. Similar to our results, Mikayilov et al. (2020) find 
substantial regional heterogeneity in the price elasticity estimates 
in Saudi Arabia, with one of the regions also being completely 
price-insensitive. Arguably, researchers should be aware that 
aggregate estimates at the national may omit important insights 
due to regional heterogeneity.

Not only is Brazil known for its large and persistent regional 
inequality (Ehrl and Monasterio, 2019), but the electricity 
sector also presents some unique features that differ across 
space. Although the system is highly regulated by the Brazilian 
Electricity Regulatory Agency (ANEEL), tariffs must reflect the 
cost of electricity generation, transmission and distribution (de 
Abreu Pereira Uhr et al., 2019). Distribution costs obviously 
differ due to the continental dimension of the country, poor 

infrastructure quality and the need to transmit electricity through 
the interconnected system SIN (Sistema Interligado Nacional). 
The composition of electricity sources also contributes to tariff 
differences. While the cheapest and most important component 
(61.9%) of the electricity generation is hydropower, other sources 
that are less dependent on local natural characteristics like natural 
gas (13.7%), biomass (8.2%), petroleum derivatives (4.4%), or 
coal and derivatives (3.3%) are more expensive1.

Having accurate estimates for price and income elasticities of 
demand is relevant for the electric power sector where actors make 
long-run decisions. For the market regulator ANEEL, forecasts 
of future demand and adequate tariffs are essential for the design 
of auctions, which help to increase allocative efficiency. For 
utilities, demand projections are equally important because the 
companies are obliged to submit their forecasts to the ANEEL 
and inaccuracies above 3% lead to fines (de Assis Cabral et al., 
2020). Finally, policymakers should carefully consider how 
regional differences in income, tariffs, consumption patterns and 
climatic conditions affect the demand for electricity in order to 
direct investments that foster the economic development of the 
country, guarantee fair tariffs and avoid costly electricity shortages. 
Therefore, estimating income and price elasticities in the short-and 
long-term can help generators, distributors and regulators make 
wise decisions about public policies for the electricity sector.

The residential segment deserves attention, since it is the second 
largest in terms of demand and it is subject to price fluctuations. 
According to Villareal and Moreira (2016), electricity consumption 
in Brazil is still small compared to developed countries, leaving 
much room for future growth. The economic theory associated 
with the behavior of this type of consumer suggests that demand 
is generally more elastic to prices in the long term in relation to 
the short-run (Topel and Rosen, 1998, Athukorala and Wilson, 
2010). Residential consumers face resistances from some factors, 
such as replacement of durable goods and consumption habits that 
can take years to respond completely to price changes. Besides 
the four endogenous variables, namely, income, tariff, price and 
production of domestic appliances, the present demand model also 
accounts for differences in temperature and rainfall.

The remainder of the paper is structured as follows. Section 2 
discusses previous related studies from Brazil and other countries. 
Section 3 presents the details of the econometric estimation, the 
demand model and the underlying database. Section 4 contains 
the estimation results, and the last section derives the associated 
conclusions and policy recommendations.

2. RELATED STUDIES

Various studies have examined residential energy demand functions 
using cointegration techniques to estimate short-and long-run 
elasticities. The results and implications of these studies depend 
on the econometric methods applied, the frequency of the data, the 
development stage of a country or region and the type of variables 

1 This composition is for the year 2015. Source: National Energy Balance 
(BEN) for 2016, base year 2015.
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considered. Generally, they are based on aggregated variables 
of price and income along with some additional factors, such as 
climate or urbanization. In an interesting contribution, Miller and 
Alberini (2016) compare how different approaches regarding data 
aggregation, variable definitions, use of instrumental variables 
and fixed effects influence the price elasticity of residential 
electricity demand. Relying on annual data from US states, the 
authors find that, although estimates are somewhat affected by 
the modeling choice, the price elasticities are inelastic, within a 
range of −0.2–−0.8. We agree with their conclusion that analysis 
and policy makers should calculate different scenarios based on 
different elasticity values, while carefully weighting the source of 
data and the underlying econometric technique.

Similar studies from other countries include Athukorala and 
Wilson (2010) who investigate the short-term dynamics and the 
long-run equilibrium relations between residential electricity 
demand and its determinants in Sri Lanka. Using annual data for 
the 1960-2007 period, they demonstrate that a long-run relation 
exists and find a long-run price elasticity of −0.62. De Vita et al. 
(2006) use data for the Namibian economy from 1980 to 2002 
and the autoregressive distributed lag (ARDL) bounds testing 
approach to cointegration to estimate the long-run energy demand 
elasticities. With inclusion of some exogenous variables such as 
temperature, they find a long-run price elasticity of −0.34. Galindo 
(2005) estimate the demand for electricity in Mexico for different 
types of consumption in the 1965-2001 period. He obtains a small 
long-term price elasticity, of around −0.2. Narayan and Smyth 
(2005) estimate the long- and short-run elasticities of residential 
demand in Australia. The results show a long-term price elasticity 
of −0.54 and short-term elasticity of −0.26. Beenstock, et al. (1999) 
focus on Israel using two dynamic models with cointegration 
restrictions and also obtain long-run price elasticities of about 
−0.2. Kamerschen and Porter (2004) investigate the electricity 
demand for the residential and industrial classes in the United 
States in the period from 1973 to 1998. Using a simultaneous 
equations model, they find a long-run elasticity between −0.85 and 
−0.94 for the residential sector. In sum, the range of those price 
elasticity fits well with our findings and with the meta-study by 
Labandeira et al. (2017) which report a short-term price elasticity 
of –0.20 and –0.51 in the long-term for the electricity market. 
Other energy goods such as natural gas, gasoline or heating oil 
yield quite similar results.

Martins et al. (2021) seems to be the only study besides ours that 
estimates electricity demand functions for the five geographic 
regions in Brazil. Their approach and findings differ from and 
complement the present one. In contrast to our estimation strategy, 
the authors use annual data by federal state and apply a system 
GMM estimator where one or two period lagged variables are 
used as instruments for prices and income. The main difference 
regarding our results is that Martins et al. (2021) report significant 
and considerably larger absolute values for price elasticities. 
For the Midwest region, the price elasticity is even below −1, 
suggesting that consumers’ demand is elastic. The range of income 
elasticities (0.29–1.63) is also larger than in the present case. The 
results from de Abreu Pereira Uhr et al. (2017) seem to confirm 
that those large long-term elasticities are specific for the system 

GMM estimation technique which relies on the assumption that 
demand shocks are not serially correlated such that lagged values 
for prices and other variables serve as valid instruments.

Other noteworthy studies from Brazil include Achão and 
Schaeffer (2009) who acknowledge the potential importance of 
regional characteristics. Yet when controlling for region fixed 
effects in their aggregate demand model, the authors find that 
these factors seem to have a small impact of residential electricity 
use. Villareal and Moreira (2016) rely on linear regression models 
and a more extensive horizon (1985–2013). The derived price 
and income elasticities have a magnitude of about 0.2, which 
leads Villareal and Moreira (2016: 258) to conclude that “[a]
lthough the elasticity of residential electricity consumption 
with respect to tariff is not high […] it is sufficient to control 
the electricity demand in residences.” Our results suggest that 
their conclusion is valid only in the short-run, and not within 
all of Brazil’s regions. Both Schmidt and Lima (2004) and Irffi 
et al. (2009) also report inelastic price and income elasticities 
from aggregate Brazilian data that covers three to four decades. 
Different to these studies and to our approach, de Abreu Pereira 
Uhr et al. (2019) have access to a confidential household-level 
survey (POF). Nevertheless, the derived price and income 
elasticities range from −0.46 to −0.56, and from 0.20 to 0.32, 
respectively, and are thus comparable to the ones we obtain for 
Brazil as a whole.

3. METHODOLOGY

3.1. Demand Model
Residential demand for electricity is driven by the individual needs 
of household members, whose level of consumption depends on 
variables such as electricity price, income and other exogenous 
factors (Al-Bajjali and Shamayleh, 2018, Du et al., 2015). In the 
present context, we propose the following model to describe the 
residential electricity demand in the Marshallian tradition:

 d kp y e l u kt t t t t t= > < > < >α θ γ δ α θ δ γ exp( ), , , , ,0 0 0 0 0  (1)

where the expected sign of the variables is indicated in the above 
equation and their definitions are as follows:
dt: is the electricity consumption at time t;
pt: is the price of electricity at time t;
yt : is the average household income at time t;

et: is the index of production of machines and apparatuses at time t;
lt: is the price of electrical appliances at time t; and
ut: is the disturbance term at time t.

In order to avoid heterocedasticity problems it is common to 
transform the demand model in neperian logarithmic form 
(Gujarati, 1995). Taking the logarithm of equation (1), yields a 
linear demand equation:

 D K P Y E L ut
i i i
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i i

t
i i

t
i i

t
i

t= + + + + +α θ γ δ�  (2)

Note that the capital letter variables are defined as logarithmic 
values, for example D = log (g) Moreover, the index is added to 
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indicate that the variables, in the aggregate model, are specific 
for month and for each of the five regions of the country: North, 
Northeast, Midwest, Southeast and South. Finally, the demand 
equation (2) will also be estimated separately for each region i.

3.2. Econometric Model
Some caution needs to be taken to estimate the long-run 
relationship with non-stationary time-series data. The 
appropriate procedure for non-stationary variables is to 
transform the series in first differences before any estimation 
is done. The major problem in this case, however, is that low 
frequencies are eliminated from the data, leaving the model only 
capable of explaining short-term relationships. Since energy 
prices and real income are indeed found to be non-stationary 
processes, the econometric modeling of electricity demand 
can be successful through cointegration analysis with error 
correction, as frequently done in the literature (Al-Bajjali and 
Shamayleh, 2018, Labandeira et al., 2017).

Consider a Gaussian vector autoregression of finite order P, 
VAR(p):

 y y y yt t t p t p t= + +…+ +− − −φ φ φ ε
1 1 2 2

 (3)

where yt is a vector of n first-order integrated I(1) and endogenous 
variables, ϕi = 1,…, p are matrices of dimension n × n and εt ~ 
Normal (0,Ω), E (εt) = 0, E (εtε) = {Ω, if t =  and 0n×n, if t ≠ τ}; 
where Ω is not singular. The model in equation (3) can be written 
equivalently as:

 Π � �L yt t( ) =ε  (4)

where Π L I Ln i
i

i

p( ) = −
=∑ φ

1
 is a polynomial matrix in L, and L 

represents the lag operator. Furthermore, Π 1
1( ) = −
=∑In ii

p
φ when 

L = 1.

The demand can be represented by a VAR(p) model with n = 5 
stacked variables in the vector yt = [Dt Pt Yt Et Lt]’. Considering 
the polynomial transformation Π(L) = Π (1)L + Π* (L)∆ in the 
VAR(p) model given by equation (4), where ∆ ≡ (1–L), we can 
rewrite it as:

 ∆ Π Γ ∆y y yt t j t j tj

p
= − ( ) + +− −=

−∑1 1 1

1
ε  (5)

Equation (5) is known as the vector error correction model 
(VECM) or error correction model (ECM). The parameters of 
the first-difference variables represent the short-term components, 
whereas the parameters of the variable in level (yt-1) denote the 
long-run coefficients.

3.2.1. Long-run restrictions (cointegration)
The following hypotheses are assumed:

Assumption 1: The (n × n) matrix Π (∙) satisfies:
1. rank (Π (1)) =r, 0 < r < n such that Π (1) can be expressed 

as Π (1) = −αβ’, where α and β are (n × r) matrices with full 
column rank r.

2. The characteristic equation |Π (1)| = 0 has n–r roots equal to 
1 and all others are outside the unit circle.

Assumption 1 implies that yt is cointegrated with order (1, 1). The 
elements of are the adjustment coefficients and the columns of β 
span the cointegration space. Decomposing the polynomial matrix 
Π(L) =Π (1)L +Π(L)∆, where ∆=(1–L) is the difference operator, 
a vector error correction model (VECM) is obtained:

 ∆ Γ ∆y y y Xt t j t j t tj

p
= + + +− −=

−∑αβ ϕ ε'
'

1 1

1  (6)

where β’ = –Π (1), Γ j ss j

p j p= = … −( )= +∑ φ
1

1 1, ,  and Γ0 = In. If 

we add the exogenous variables Xt to equation (5) our final VECM 
can be expressed as equations (6), where is a vector of m × 1 
dimension.

In this study we use three exogenous variables: precipitation 
(precip), temperature (temp) and a dummy variable to capture the 
effect of the subprime crises in 2008. The vector Xt is thus defined 
as X precip temp dummyt t t

'
[ , , ] '= . We can then obtain the long-run 

elasticity from the long-run relationships β' yt-1 by estimation of 
the ECM. Normalizing the cointegration vector in Dt

i  and 

considering a constant in the cointegration vector, we can denote 
the deviations from long-run equilibrium for each region i as:
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Where u t
i
( )−1

 represent the deviations from the long-run 

equilibrium.

3.3. Database
The series of average residential consumption (Dt), in MWh, and 
the electricity tariff (Pt), in R$2, were obtained from the National 
Electric Energy Agency (ANEEL). The index of appliance 
production (Et) was obtained from the Brazilian Institute of 
Geography and Statistics (IBGE). For the price of appliances at 
time (Lt), we use the segment for non-durable consumer goods from 
the Wholesale Price Index (IPA-DI), also computed by the (IBGE), 
as a proxy. The average household income (Yt) was also obtained 
from the IBGE, based on the Monthly Employment Survey (PME). 
The average rainfall series stems from the company Della Coletta 
Bioenergia. Finally, the mean temperature series was obtained 
from the National Institute of Meteorology (INMET). All of these 
series have monthly and regional variation. Variables in monetary 
terms are transformed to real values by means of the IGP Inflation 
index calculated on a monthly basis by the Brazilian Institute of 
Economics (IBRE) of the Getulio Vargas Foundation  (FGV).

2 Brazil’s currency is the Real (R$). Over the study period of this paper, 
the exchange rate with the dollar fluctuated in an interval between 
approximately R$1.56/US$ and R$ 3.97/US$, with a rough average of R$ 
2.28/US$.
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Figure 1 shows the evolution of aggregate residential electricity 
demand in the five regions. It can be seen that electricity 
consumption was steadily increasing in all regions from 2003 
until 2014. Apparently due to the economic downturn, consumers 
in the South and Southeast reduced their electricity demand 
from 2014 onwards, similar to what was observed for internet 
accesses (Silva et al., 2020). Figure 1 also illustrates how income 
inequality across regions affect electricity consumption. Although 
the Southeast is the most populated region, covering the states 
of Espírito Santo, Minas Gerais, Rio de Janeiro and São Paulo, 
its consumption level is overproportionally larger than those in 
the other states due to the high wealth of its residents. Aggregate 
electricity consumption in the wealthy South was only gradually 
overtaken by the poorest region Northeast, despite having about 
twice the South’s population (Almeida et al., 2021). Similarly, 
the North accommodates more inhabitants than the Midwest, 
but due to the much higher per capita income, the latter region 
presents a higher aggregate electricity consumption throughout 
the observation period.

Figure 2 presents how average electricity prices evolved over 
time in the five regions. Despite a co-movement of the curves, 
there is clearly variation across regions over time. While in 2003, 
prices were highest in the Southeast and lowest in the Northeast, 
the relative ranking among the regions has been revered several 
times since. As regulated in Decree-Law 8,631, electricity 
tariffs must reflect the regions’ size, average income, tax level, 
among others (de Abreu Pereira Uhr et al., 2019, Martins et al., 
2021). Moreover, the calculation of the tariff by the ANEEL 

considers regional differences in the cost of electricity generation, 
transmission and distribution. Finally, residential electricity prices 
are also affected by the type of phase connection and whether the 
household is eligible for receiving a subsidy. Note also that the 
price of electricity increased over the entire period under analysis. 
As a consequence of the rainfall shortage in 2014 and the low 
water reservoir levels, consumers had to carry the extra costs of 
the additional electricity supply from other sources (de Abreu 
Pereira Uhr et al., 2019).

4. EMPIRICAL ANALYSIS

4.1 Unit Root Tests
According to equation (3), the vector yt that comprises the 
endogenous variables is defined as of n first-order integrated I(1). 
In the first step of our empirical analysis, we perform the augmented 
Dickey-Fuller test (ADF), the Phillips-Perron test (PP) and the 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit root tests, whose 
results are reported in Table 1. Recall that the null hypothesis of 
the KPSS test is the exact opposite of the ADF and PP tests (non-
stationarity of the series), so that contrary results are expected 
regarding their significance values. In general, those tests suggest the 
presence of unit roots in the series Dt, Pt, Yt, Et and Lt in our Brazilian 
data and for all the geographical regions. Therefore, the variables 
that compose the vector yt = [Dt Pt Yt Et Lt]′, have the property yt ~ 
I(1). Hence, the first condition for the application of the VEC model 
is satisfied. For the exogenous variables, the unit root test shows 
that the pluviosity is stationary, but the temperature series has a 
unit root. We incorporate this information in the VECM estimation.

The next step is to test the existence of a long-run relation of these 
variables. For this purpose, we identified the order of lags of the 
VAR(p) model according to the Akaike (AIC), Schwarz (SC) and 
Hannan-Quinn (HQ) information criteria. In most cases the criteria 
indicate the lag order p = 2. More specifically the AIC and SC 
set p = 2 for Midwest, Northeast, North and Southeast. The HQ 
suggests p = 2 for South and finally the SC and HQ criteria also 
indicate p = 2 for Brazil.

4.2. Cointegration test
Because the final aim of this research is to identify short-as well 
as long-term elasticities of electricity demand, we need to verify 
the existence of a cointegration relationship between the variables 
proposed in our model. Cointegration implies that the time series 
follow a balanced relationship in the long-term because they share 
similar underlying stochastic trends (De Lima and Bacchi, 2019). 
Following Johansen (1998) and Johansen and Juselius (1990), 
the λ-trace and λ-max eigenvalue cointegration test statistics are 
presented in Table 2. As usual, the parameter r determines the 
number of cointegration vectors.

The results of the λ-trace test reveal the existence of one 
cointegration vector, both for the entire country and for each 
region. Except in one case, the max-eigenvalue test confirms 
the λ-trace results at the 0.01 level. This observation is line with 
previous studies on electricity demand from Brazil (Viana and 
Silva, 2014, Villareal and Moreira, 2016). The findings of one 
cointegration vector is then incorporated into the VECM in order 

Figure 2: Average price by region

Figure 1: Residential consumption by region
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Table 1: Unit root tests
Country/Regions Variable ADF-Test(1) PP-Test(2) KPSS(3) Results

t‑Statistic t‑Statistic t‑Statistic
Brazil Dt −0.283366 −0.16768 1.4489*** I (1)

ΔDt −13.8070*** −23.130*** 0.206578 I (0)
Pt −1.011893 −0.712269 1.1438*** I (1)
ΔPt −7.79288*** −7.8022*** 0.131914 I (0)
Yt 0.780551 1.0196 1.46287*** I (1)
ΔYt −15.7161*** −16.0852*** 0.27783 I (0)
Et −2.09288 −2.3852 0.95219*** I (1)
ΔEt −17.11935***  −17.6734*** 0.3609* I (0)
Lt −0.465221 −0.6151 1.4512*** I (1)
ΔLt −4.60181*** −6.3585** 0.03501 I (0)
temp −0.19180 −5.12662***  0.26285** I (0)
pluv −9.38116*** −5.53986***  0.037924 I (0)

Midwest Dt −0.221984 −0.376029 1.4467*** I (1)
ΔDt −20.6643*** −41.5189*** 0.173531 I (0)
Pt −1.156677 −0.571908 1.0219*** I (1)
ΔPt −1.743119 −9.1296*** 0.156279 I (0)
Yt −1.289182 −1.046779 1.4533*** I (1)
ΔYt −10.716*** −11.1492*** 0.283606 I (0)
Et −2.092881 −2.385222 0.9521*** I (1)
ΔEt −17.119*** −17.6734*** 0.3609* I (0)
Lt −2.220953 −2.598134 0.216496 I (1)
ΔLt −4.1289*** −9.7043*** 0.270579 I (0)
temp −0.485849 −4.2594***  0.5239** I (1)
pluv −1.306967 −6.6704***  0.266243 I (0)

Northeast Dt 0.106283 0.375199 1.4564*** I (1)
ΔDt −14.7278*** −34.569*** 0.203046 I (0)
Pt −1.156677 −1.758533 1.2044*** I (1)
ΔPt −9.13492*** −9.7096*** 0.102687 I (0)
Yt −1.28918 −1.035838 1.4509*** I (1)
ΔYt −10.7160*** −11.348*** 0.221431 I (0)
Et −2.092881 −2.385222 0.9521*** I (1)
ΔEt −17.119*** −17.673*** 0.3609* I (0)
Lt −2.22095 −0.615127 1.4512*** I (1)
ΔLt −4.12895*** −6.3585*** 0.03501 I (0)
temp −4.0715*** −4.2599***  0.71939** I (0)
pluv −8.9690*** −5.7508*** 0.071833 I (0)

North Dt 0.668523 0.240273 1.4229*** I (1)
ΔDt −14.378*** −28.017*** 0.175849 I (0)
Pt −1.217447 −1.359972 1.2783*** I (1)
ΔPt −11.816*** −11.864*** 0.043654 I (0)
Yt −0.209433 −0.280502 1.4435*** I (1)
ΔYt −11.089*** −11.725*** 0.245237 I (0)
Et −2.092881 −2.385222 0.9521*** I (1)
ΔEt −17.119*** −17.673*** 0.3609* I (0)
Lt −0.465221 −0.615127 1.4512*** I (1)
ΔLt −4.6018*** −6.3585*** 0.03501 I (0)
temp −3.4390** −3.1703** 0.6964** I (0)
pluv −10.187*** −5.3085*** 0.02591 I (0)

Southeast Dt −1.171672 −1.079485 1.4448*** I (1)
ΔDt −7.5473*** −23.953*** 0.50** I (0)
Pt −0.855372 −0.471412 0.5658** I (1)
ΔPt −7.9481*** −7.8822*** 0.197068 I (0)
Yt −0.298963 −0.332812 1.4427*** I (1)
ΔYt −10.734*** −10.922*** 0.192341 I (0)
Et −2.092881 −2.385222 0.9521*** I (1)
ΔEt −17.119*** −17.673*** 0.3609* I (0)
Lt −0.465221 −0.615127 1.4512*** I (1)
ΔLt −4.6018*** −6.3585*** 0.03501 I (0)
temp 0.312465 −5.3056*** 0.4024* I (0)
pluv −1.709639 −7.3468***  0.139226 I (0)

(Contd...)
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to correctly account for the long-term dynamics of electricity 
demand.

4.3. Results of the short-and long-run elasticities
Table 3 presents the estimated short-and long-run determinants 
of electricity demand in Brazil considering monthly data from 

2003 to 2015. Recall that these coefficients stem from six different 
estimations, one for the entire sample and one estimation for each 
of the five geographical regions. The impact of the exogenous 
variables temperature and rainfall can only be interpreted as 
short-term effects whereas the coefficient β of the autoregressive 
term in the VECM allows us to derive the long-term effects from 

Table 2: Cointegration test
Country/
Regions

Hypothesized Number of r Eigenvalue λ λ
Trace Max

Brazil r = 0 0.323605 105.73*** 57.86471***
r ≤ 1 0.165413 47.86* 26.76113*
r ≤ 2 0.11265 21.10382 17.68827
r ≤ 3 0.022798 3.415548 3.413101
r ≤ 4 1.65E-05 0.002447 0.002447

Regions
Midwest r = 0  0.442392 121.3015*** 86.4467***

r ≤ 1  0.146237 34.8548 23.39912
r ≤ 2  0.042447 11.45568 6.419415
r ≤ 3  0.024529 5.036266 3.675614
r ≤ 4  0.009151 1.360652 1.360652

Northeast r = 0 0.1745 70.69379** 28.38885
r ≤ 1 0.1422 42.30494 22.69544
r ≤ 2 0.0964 19.6095 14.99735
r ≤ 3 0.0282 4.61215 4.235661
r ≤ 4 0.0025 0.376488 0.376488

North r = 0 0.2340 73.18525** 39.46083***
r ≤ 1 0.1158 33.72443 18.2207
r ≤ 2 0.0760 15.50372 11.69802
r ≤ 3 0.0245 3.805709 3.666174
r ≤ 4 0.0009 0.139535 0.139535

Southeast r = 0 0.2607 75.57758** 44.71065***
r ≤ 1 0.1243 30.86693 19.63781
r ≤ 2 0.0663 11.22912 10.15887
r ≤ 3 0.0072 1.070248 1.067718
r ≤ 4 0.0000 0.00253 0.00253

South r = 0 0.3652 101.581*** 67.25136***
r ≤ 1 0.1272 34.32966 20.1311
r ≤ 2 0.0757 14.19856 11.65133
r ≤ 3 0.0171 2.54723 2.545408
r ≤ 4 0.0000 0.001822 0.001822

*, ** and *** denote rejection of the null hypothesis at the 0.1, 0.05 and 0.01 level, respectively. The null hypothesis states that there is/are no more than r cointegrating equations

Table 1: (Continued)
Country/Regions Variable ADF-Test(1) PP-Test(2) KPSS(3) Results

t‑Statistic t‑Statistic t‑Statistic
South Dt −0.227947 −0.454918 1.4233*** I (1)

ΔDt −9.2326*** −23.338*** 0.240044 I (0)
Pt −0.388389 −0.059028 0.8265*** I (1)
ΔPt −8.1160*** −8.0613*** 0.204795 I (0)
Yt −0.576321 −0.538058 1.449*** I (1)
ΔYt −10.761*** −11.174*** 0.203469 I (0)
Et −2.092881 −2.385222 0.9521*** I (1)
ΔEt −17.119*** −17.673*** 0.3609* I (0)
Lt −0.465221 −0.615127 1.4512*** I (1)
ΔLt −4.6018*** −6.3585*** 0.03501 I (0)
temp 0.44147 −5.1266*** 0.26284 I (0)
pluv −10.179*** −10.174*** 0.26241 I (0)

The definition of the existence or not of unit root in the series is based on at least two of the unit root tests in column (3) to (5). The null hypothesis of the ADF and PP tests is the 
non-stationarity of the series while the KPSS tests the stationarity of the series. The last column indicates the results, where I (0) means that a series is stationary and I (1) means that a 
series has a unit root. We chose the constant as the deterministic component. Significance levels of 0.01, 0.05 and 0.10 are represented by ***, ** and *, respectively. Δ indicates the first 
difference of these variables. (1) ADF test is based on the Schwartz criteria. The critical points are−3.47487 (1%), −2.88099 (5%) and−2.57722 (10%). (2) PP test is based on Bartlett 
kernel and Newey-West Bandwidth. The critical points are−3.47487 (1%), −2.88099 (5%) and−2.57721 (10%). (3) KPSS tests rely on Bartlett kernel and Newey-West Bandwidth. The 
critical points are 0.7390 (1%), 0.4630 (5%) and 0.3470 (10%)
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the short-term estimates according to equations (6) and (7). For 
Brazil as a whole, we find that the long-run price elasticity is 
statistically significant at the 1% level and equal to −0.12, whereas 
the short-term effect is insignificantly different from zero. The 
short-and long-term income elasticities are significant and equal 
to 0.31 and 0.70, respectively. Thus, the electricity demand is 
inelastic in relation to price and income. This general result holds 
for the disaggregated estimations as well and it is in accordance 
with the meta-analysis by Labandeira et al. (2017) and findings 
from the US (Woo et al. 2018).

The production of machines and apparatuses (Et) seems 
to positively affect electricity demand in the long term, as 
expected. Its short-term effect, however, is slightly negative and 
thus counterintuitive. At least the price of electrical appliances 
(Lt) shows the expected negative sign but is insignificant no 
matter the horizon of the analysis. The precipitation level 
also does not seem to affect electricity consumption at the 
national level while lower temperatures apparently increase 
electricity use in Brazil. Separate estimations of our demand 
model reveal some interesting heterogeneities across regions. 
The results in the lower part of Table 3 provide the following 
insights. Only in the Southeast, where the average monthly 
rainfall (120 mm) is below the national average (139 mm), a 
significant positive effect is observed. Regarding temperature, 
the regional disparities are even more pronounced. Higher 
temperatures increase electricity use in the hot, humid North 
where the Amazon rainforest is located. Conversely, the 
relatively dry and moderate climate in the Southeast seems to 
foster electricity use when temperatures are lower. The same 
applies to the Northeast.

The most striking result concerns the price elasticities. In three 
regions, the North, Southeast and South, our estimations yield 
insignificant, i.e., highly inelastic short-and long-term price 
elasticities. On the one hand, the lack of price sensitivity in the 
North may be related to the social program “Luz para Todos” 
(Light for Everyone) that provides free energy installation and 
use until 50kV for eligible rural households since 2003.3 In this 
region, 683 thousand out of a total of 5.4 million households 
made use of the program in 2020 according to the responsible 
public energy supplier company Eletrobras.4 On the other hand, 
the South and Southeast are the most developed regions, where 
GDP per capita is more than 250% higher than in the Northeast 
(Almeida et al., 2021). The amount on the electricity bill is thus less 
relevant in the household budget which may explain consumers’ 
price insensitivity. In line with that interpretation, consumers in 
the poorest region, the Northeast, present a short-term (−0.23) 
and long-term (−0.32) price elasticity whose magnitude is above 
the national average.

The most relevant determinant of electricity demand in 
Brazil seems to be income. All five regions present positive 
and statistically significant long-term elasticities at the 1% 
level. Short-term income elasticities also have a positive sign 
throughout but are only significant in two of the five regions. The 
sensitivity of demand to variations in income can be explained 
by the need to operate devices incorporated in people’s lifestyle 
that goes beyond what is captured by the domestic appliances. 
Richer households enjoy larger homes, more air condition, 

3 https://www.gov.br/mme/pt-br/canais_atendimento/ouvidoria/perguntas-
frequentes/programa-luz-para-todos

4 https://eletrobras.com/pt/Paginas/Luz-para-Todos.aspx

Table 3: Estimations of short-and long-run elasticities
Country Pt Yt Et Lt Tempt Pluvt
Brazil Long-run −0.122*** 0.701*** 0.0319* -0.0776

(0.025) (0.039) (0.019) (0.055)
Short-run 0.045 0.312* -0.079*** -0.028 -0.002** 0.043

(0.071) (0.161) (0.027) (0.173) (0.001) (0.033)
Regions
Midwest Long-run −0.086*** 0.705*** −0.214*** 0.641***

 (0.026)  (0.010)  (0.023)  (0.061)
Short-run −0.138* 0.952*** −0.173*** −0.838* 0.001 −0.016

(0.074) (0.267) (0.039) (0.433) (0.001) (0.029)
Northeast Long-run −0.323*** 0.447*** 0.065 0.767***

(0.104) (0.126) (0.087) (0.179)
 Short-run −0.231** 0.205 −0.099** 0.211 −0.004*** −0.000

(0.092) (0.205) (0.040) (0.263) (0.001) (0.000)
North Long-run 0.039 0.628*** 0.072 0.268*

(0.107) (0.105) (0.074) (0.151)
Short-run −0.083 0.258 −0.007 0.346 0.004* 0.031

(0.097) (0.298) (0.048) (0.294) (0.002) (0.029)
Southeast Long-run −0.041 0.380*** 0.185*** 0.178**

(0.049) (0.059) (0.036) (0.079)
Short-run 0.002 0.002 −0.078** 0.279 −0.002* 0.049*

(0.081) (0.199) (0.037) (0.223) (0.001) (0.027)
South Long-run −0.057 0.486*** 0.047 0.098

(0.038) (0.053) (0.034) (0.074)
Short-run −0.121 0.474* −0.051 0.327 −0.000 −0.020

(0.089) (0.266) (0.041) (0.250) (0.001) (0.038)
The table shows the estimate of the short- and long-run elasticities derived from the VECM in equations (6) and (7) where ( )1' , 1, , , , 1, , , , ,  β α−  = − θ γ δ  

i i i i i i i i i i i i
t t t t t ty K D P Y E L , for each 

region i and year t
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swimming pools, and other electricity intensive amenities. 
The range of 0.70–0.38% for the long-term income elasticities 
confirm previous findings. For example, De Lima and Bacchi 
(2019) estimate the relation between GDP and electricity demand 
with monthly data from 2004 to 2018. In line with the present 
estimates of personal income, the authors report an elasticity of 
0.47%. Therefore, the relation between income and residential 
energy demand seems robust due to the economic stability, 
continuous growth, an increased minimum wage, as well as cash 
transfer programs to the poorest households (Bolsa Família) 
during the period of observation. Specifically, even over a four-
decade period (1973-2011), energy consumption growth (5.8% 
per year average) exceeds GDP growth (3.4%) by far (De Lima 
and Bacchi, 2019). Despite the recent economic crises, the 
forecast for the next 10 years is a growth rate at 3.1% per year 

and that the total electricity use exceeds economic growth by 
44% (EPE, 2021).

The production of electronic appliances at the regional level 
may not be a very accurate proxy for its use and consumption 
because the largest part of the domestic appliances as well as other 
manufactured goods is concentrated in the state of São Paulo in 
the Southeast. In fact, only in this region, the expected negative 
long-term relation between appliances production and electricity 
consumption is observed. In contrast, the price of electrical 
appliances is a much better predictor for electricity demand. In 
line with our previous interpretations, we observe that changes in 
appliance prices provoke less or no reaction in electricity demand 
in the richer regions South and Southeast. Yet, the Northeast and 
Midwest show elasticities of considerably high magnitude. The 

Table 4: VECM granger causality/block exogeneity wald tests
Country Dependent variables Independent variables

∆D ∆P ∆Y ∆E ∆L ECT
∆D - 0.401 3.735* 8.434*** 0.027 12.508**

Brazil ∆P 1.712 - 2.950* 0.219 0.046 7.981*
∆Y 0.256 1.073 - 0.342 0.032 1.970
∆E 3.339* 5.644** 0.000 - 1.104 9.655**
∆L 1.690 0.001 2.589 0.739 - 7.961*

Regions ∆Dt ∆Pt ∆Yt ∆Et ∆Lt ECT
∆D - 3.407* 12.736*** 19.729*** 3.756* 42.986***
∆P 8.337*** - 0.322 0.449 0.649 8.689*

Midwest ∆Y 4.479** 0.072 - 2.733* 4.967** 12.73**
∆E 0.019 5.435** 1.264 - 0.477 8.080*
∆L 0.543 0.068 0.015 0.472 - 0.935
∆D - 6.237** 1.003 5.919** 0.643 16.380***
∆P 4.207** - 0.042 0.057 0.005 4.384

Northeast ∆Y 0.430 0.398 - 1.380 0.856 3.531
∆E 7.847*** 5.487** 1.294 - 0.381 14.129***
∆L 0.176 2.161 0.126 0.928 - 3.314
∆D - 0.742 0.745 0.023 1.383 2.767
∆P 14.603*** - 6.809*** 1.220 1.733 20.804***

North ∆Y 0.307 0.405 - 0.017 5.749** 6.897
∆E 5.084** 0.169 0.155 - 0.511 5.762
∆L 4.134** 2.186 0.348 0.011 - 7.231
∆D - 0.030 0.000 4.405** 1.555 6.950
∆P 11.796*** - 0.908 1.732 1.281 13.847***

Southeast ∆Y 0.256 0.045 - 1.896 1.572 4.519
∆E 8.358*** 8.023*** 2.885* - 0.070 16.758***
∆L 5.736** 0.161 0.073 0.304 - 7.343
∆D - 1.843 3.195* 1.595 1.701 9.151*
∆P 2.346 - 0.033 1.555 0.687 4.503

South ∆Y 1.270 0.310 - 0.305 2.881* 5.469
∆E 1.011 1.819 0.071 - 0.035 3.523

∆L 3.520* 0.155 0.134 1.120 - 5.160

***, **, * denote significance at 1%, 5%, and 10% level, respectively. Values represent Wald Chi-square-statistics. All the variables in are in first differences denoted by ∆. The error 
correction term ECT is derived by normalizing the cointegration vector on Dt
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fact that we observe positive elasticities in this case may either 
suggest that our proxy variable price of non-durable consumer 
goods absorbs rather the general effect of rising prices and the 
business cycle than the specific effect of electricity consuming 
domestic appliances. Another possibility is that lower prices induce 
consumers to substitute their old energy inefficient appliances 
like freezers with new energy-saving ones, thus leading to less 
electricity use.

4.4. Complementary Robustness Analyses
In order to check robustness of our analysis, we provide a 
VECM Granger causality test that informs about the direction 
of the causality, complementing the results presented in Table 3. 
Finally, we decompose the variance of residential energy demand 
stemming from either random shocks or from the contribution of 
each explanatory variable in our model.

Table 4 reports the Granger causality results based on the VECM 
that was identified by the information criteria. For Brazil as a 
whole, there is an evidence of a unidirectional Granger causality 
effect running from the average household income (Y) and from 
the production of machines and apparatuses (E) to residential 
demand for electricity (D) in the short-run. The significant ECT 
indicates that these causal relations are valid in the long-run as 
well, confirming our previous interpretations.

The Granger causality results for the regions also corroborate those 
from the short-run elasticities regarding residential electricity 
demand. For the Midwest region, we identify a bidirectional 
Granger causality between the electricity tariff, per capita 
income and the residential energy demand. The stock and price 
of appliances have a unidirectional Granger causal impact on 
electricity demand. For the Midwest regions these effects hold 
in the short- as well as in the long-run. Similar results are found 
for the Northeast region, where the Granger causalities between 
electricity price, apparatuses production and electricity demand 
are bidirectional. Again, the error correction terms indicate that 
the effects are valid in both the short-and long-run.

In line with the previous results from Table 3, there is no 
significant Granger causality from tariffs, income or appliances 
on electricity demand in the North and Southeast region in the 
short-run. A novel insight is that the electricity demand itself has 
a Granger causal effect on the price and production of appliances 
and electricity prices, independent of the time horizon. In case 
of appliances prices, the VECM Granger causality analysis is 
particularly interesting because we observed a significant relation 
between that variable and energy demand from Table 3. Based on 
Table 4, however, we see that this relation is rather inverse, that is, 
appliances have a significant Granger causal effect on electricity 
demand in three states, whereas the only in one state shows an 
effect of L on D. Finally, there is evidence for unidirectional 
Granger causality of income on residential electricity demand for 
the South region in the short- and long-run.

Table 5 shows the result for the variance decomposition error in 
forecasting, over 12 months, which can be attributed to its own 
random innovations and those of the other explanatory variables 

in our VECM. Note that in the first period, by definition, the 
variation is entirely attributed to the proper shocks on electricity 
demand. Over the following periods, the contribution of the 
explanatory variables tends to increase. Still, even after a period 
of 12 month, the own demand shocks represent the single largest 
component according to the variance decomposition. In the case 
of residential consumption for Brazil, the part of own shocks 
over the 12 periods is equal to 39.42%. Electricity prices and 
income, however, also explain considerable shares equal to 
20.7% and 34.3%, respectively. The combined variance that 
is attributable to price and production of appliances is only 
as large as 5.5%. Thus, we observed that although electricity 
tariffs and residential income are not only significant factors 
for the electricity demand in the long-run, their contribution 
is economically important when the country as a whole is 
considered.

Regional disaggregation once again offers further insights. 
Electricity tariffs only have a comparably large effect on 
demand in the Midwest and particularly in the Northeast 
region. For the other three regions the share of prices in the 
variance decomposition remains below 5%. Income is the first 
or second largest component in the demand composition for the 
North, South and Southeast regions. However, in line with our 
previous interpretations, income adds little in absolute terms to 
the explanation of electricity demand in the poorest regions, the 
Northeast and North. Interestingly, in the Midwest and Southeast, 
where most of the apparatuses production is located, this variable 
has an extraordinarily large effect on electricity demand, being 

Table 5: Variance decomposition of electricity demand
Country S.E. D P Y E L
Brazil

4 0.0208 69.89 8.66 14.73 6.18 0.53
8 0.0255 49.62 16.71 27.78 4.50 1.39
12 0.0294 39.42 20.74 34.31 3.64 1.89

Regions
Midwest

4 0.0279 72.36 1.8616 4.2140 11.6599 9.9065
8 0.0332 51.92 4.3103 7.7461 24.4533 11.5736
12 0.0380 40.05 5.8671 10.3172 31.8127 11.9557

Northeast
4 0.0316 93.17 1.7749 0.4291 4.1548 0.4668
8 0.0376 79.97 8.2917 1.8232 4.5891 5.3296
12 0.0441 64.26 16.7078 3.0853 4.5206 11.4264

North
4 0.0349 98.09 0.5247 0.4052 0.4080 0.5637
8 0.0379 94.27 0.9168 2.8273 1.4049 0.5800
12 0.0395 87.21 1.5392 7.6562 2.9216 0.6767

Southeast
4 0.0270 80.56 0.7887 2.4274 15.7907 0.4332
8 0.0315 61.43 3.0189 7.2574 27.9345 0.3566
12 0.0358 47.86 4.9982 10.8438 35.9707 0.3222

South
4 0.0279 93.71 0.8499 1.8961 2.8276 0.7135
8 0.0299 83.72 1.5930 10.1080 3.8914 0.6873
12 0.0328 74.56 2.4172 17.7421 4.4200 0.8627

The values in the third column represent the standard error (S.E.) of electricity demand 
after 4, 8 or 12 month (column 2) for Brazil or its regions (column 1). Columns 4 to 8 
indicate the percentage share that is explained by each of the variables in our VECM, 
being demand shocks (D), electricity price (P), per capita income (Y), production of 
apparatuses (E) and price of appliances (L). The sum of the values in columns 4 to 8 is 
equal to 100%
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above 32% over the 12-month period. It is also striking that while 
for the Midwest region, 60% of the variance is explained by our 
VECM, this share is as low as 13% in the North of Brazil where 
the huge Amazonas rainforest is located.

5. CONCLUSION AND POLICY 
IMPLICATIONS

The present paper is the first to provide short-and long-run 
elasticities of residential energy demand for Brazil as a whole and 
for each of the five geographic regions, North, Northeast, Midwest, 
Southeast and South, using a database with monthly frequency 
and a Vector Error Correction Model. We extend this model and 
also provide a Granger causality analysis and quantify the relative 
size of the demand components.

Among the explanatory variables in our model, we observe that 
personal income as well as the price level of non-durable goods 
(including domestic appliances) have the most significant effect 
on electricity demand in Brazil. As expected, the data clearly 
indicates that future increases in household income will raise 
the demand for electricity. Notwithstanding, for all variables, 
the estimates vary considerably across the geographic regions, 
providing additional insights for the regionally operating 
companies and policy makers.

Our main contribution is to challenge conventional wisdom 
about price elasticities in Brazil. Particularly, we find that the 
North and the two richest regions (South and Southeast) are 
not sensitive to price changes, neither in the short-or long-
term. This novel result casts doubt on the effectiveness of 
recent price-based policy measures that aim to reduce energy 
consumption, such as “tariff flags” that increase the energy 
tariff when water shortage leads to the addition of more costly 
geothermic plants. More effective policy measures may be 
related to stimulate the purchase of energy efficient electrical 
appliances, education and awareness of energy saving measures 
as suggested by Lin and Zhu (2020). The fact that the Brazilian 
states are continually converging towards each other in terms 
of social and economic conditions (Almeida et al., 2021), at 
least until the middle of the second decade of the 21st century 
when the Brazilian economy was still on a promising growth 
path, indicates that residential energy consumption may even 
become less sensitive to tariff changes in the future. Our results 
also demonstrate the need for further research using alternative 
models but, most importantly, without aggregating across 
regions or federal states.

REFERENCES

Achão, C., Schaeffer, R. (2009), Decomposition analysis of the variations 
in residential electricity consumption in Brazil for the 1980-2007 
period: Measuring the activity, intensity and structure effects. Energy 
Policy, 37(12), 5208-5220.

Al-Bajjali, S.K., Shamayleh, A.Y. (2018), Estimating the determinants of 
electricity consumption in Jordan. Energy, 147, 1311-1320.

Almeida, R.D.C., Ehrl, P., Moreira, T.B.S. (2021), Social and economic 
convergence across Brazilian states between 1990 and 2010. Social 

Indicators Research, 157(1), 225-246.
Athukorala, P.W., Wilson, C. (2010), Estimating short and long-term 

residential demand for electricity: New evidence from Sri Lanka. 
Energy Economics, 32, S34-S40.

Beenstock, M., Goldin, E., Nabot, D. (1999), The demand for electricity 
in Israel. Energy Economics, 21(2), 168-183.

de Assis Cabral, J., de Freitas Cabral, M.V., Júnior, A.O.P. (2020), 
Elasticity estimation and forecasting: An analysis of residential 
electricity demand in Brazil. Utilities Policy, 66, 101108.

De Vita, G., Endresen, K., Hunt, L.C. (2006), An empirical analysis of 
energy demand in Namibia. Energy Policy, 34(18), 3447-3463.

Du, G., Lin, W., Sun, C., Zhang, D. (2015), Residential electricity 
consumption after the reform of tiered pricing for household 
electricity in China. Applied Energy, 157, 276-283.

Ehrl, P., Monasterio, L. (2019), Skill concentration and persistence in 
Brazil. Regional Studies, 53(11), 1544-1554.

Galindo, L.M. (2005), Short-and long-run demand for energy in Mexico: 
A cointegration approach. Energy Policy, 33(9), 1179-1185.

Kamerschen, D.R., Porter, D.V. (2004), The demand for residential, 
industrial and total electricity, 1973-1998. Energy Economics, 
26(1), 87-100.

Irffi, G., Castelar, I., Siqueira, M.L., Linhares, F.C. (2009), Previsão da 
demanda por energia elétrica para classes de consumo na região 
Nordeste, usando OLS dinâmico e mudança de regime. Economia 
Aplicada, 13(1), 69-98.

Johansen, S. (1988), Statistical analysis of cointegration vectors. Journal 
of Economic Dynamics and Control, 12(2-3), 231-254.

Johansen, S., Juselius, K. (1990), Maximum likelihood estimation and 
inference on cointegration-with appucations to the demand for 
money. Oxford Bulletin of Economics and Statistics, 52(2), 169-210.

Labandeira, X., Labeaga, J.M., López-Otero, X. (2017), A meta-analysis 
on the price elasticity of energy demand. Energy Policy, 102, 549-568.

De Lima, L.M., Bacchi, M.R.P. (2019), Assessing the impact of Brazilian 
economic growth on demand for electricity. Energy, 172, 861-873.

Lin, B., Zhu, J. (2020), Chinese electricity demand and electricity 
consumption efficiency: Do the structural changes matter? Applied 
Energy, 262(5), 114505.

Martins, L.O.S., Amorim, I.R., de Araújo Mendes, V., Silva, M.S., 
Freires,  F.G.M., Teles, E.O., Torres, E.A. (2021), Price and income 
elasticities of residential electricity demand in Brazil and policy 
implications. Utilities Policy, 71, 101250.

Mikayilov, J.I., Darandary, A., Alyamani, R., Hasanov, F.J., Alatawi,  H. 
(2020), Regional heterogeneous drivers of electricity demand in 
Saudi Arabia: Modeling regional residential electricity demand. 
Energy Policy, 146, 111796.

Miller, M., Alberini, A. (2016), Sensitivity of price elasticity of demand 
to aggregation, unobserved heterogeneity, price trends, and price 
endogeneity: Evidence from US Data. Energy Policy, 97, 235-249.

Narayan, P.K., Smyth, R. (2005), The residential demand for electricity 
in Australia: An application of the bounds testing approach to 
cointegration. Energy Policy, 33(4), 467-474.

Payne, J.E. (2010), A survey of the electricity consumption-growth 
literature. Applied Energy, 87(3), 723-731.

Schmidt, C.A.J., Lima, M.A. (2004), A demanda por energia elétrica no 
Brasil. Revista Brasileira de Economia, 58, 68-98.

Silva, S., Soares, I., Pinho, C. (2018), Electricity residential demand 
elasticities: Urban versus rural areas in Portugal. Energy, 144, 
627-632.

Silva, T.C., Coelho, F.C., Ehrl, P., Tabak, B.M. (2020), Internet access 
in recessionary periods: The case of Brazil. Physica A Statistical 
Mechanics and its Applications, 537, 122777.

Topel, R., Rosen, S. (1988), Housing investment in the United States. 
Journal of Political Economy, 96(4), 718-740.



Gutierrez and Ehrl: Regional Estimates of Residential Electricity Demand in Brazil

International Journal of Energy Economics and Policy | Vol 13 • Issue 1 • 2023476

de Abreu Pereira Uhr, D., Chagas, A.L.S., Uhr, J.G.Z. (2017), Demand for 
residential energy in Brazil revisited: A dynamic panel data approach. 
The Empirical Economics Letters, 16(8), 747-753.

de Abreu Pereira Uhr, D., Chagas, A.L.S., Uhr, J.G.Z. (2019), Estimation 
of elasticities for electricity demand in Brazilian households and 
policy implications. Energy Policy, 129, 69-79.

Viana, G.I.M.N., Silva, A.L.M. (2014), Um modelo para projeções para 
demanda por energia elétrica, 2009-2017 para o setor residencial no 

Brasil. Revista Brasileira de Energia, 20, 107-126.
Villareal, M.J.C., Moreira, J.M.L. (2016), Household consumption of 

electricity in Brazil between 1985 and 2013. Energy Policy, 96, 
251-259.

Woo, C.K., Liu, Y., Zarnikau, J., Shiu, A., Luo, X., Kahrl, F. (2018), 
Price elasticities of retail energy demands in the United States: 
New evidence from a panel of monthly data for 2001-2016. Applied 
Energy, 222, 460-474.


