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ABSTRACT

Indonesia is located on the equator, so it has the potential for solar power to be available and with good sunlight throughout the year. The Indonesian 
government finally has the consequence to develop a solar power plant and continue to protect the surrounding environment so that it is not polluted 
and global climate change occurs. Indonesia, which has direct sunlight exposure which is quite promising for predictions of solar power plants in the 
future. Solar energy generation in the last decade has continued to improve and develop in solar power predictions in a short time. Integration of solar 
power sources without accurate power predictions can hinder network operations and use of renewable generation sources. To solve this problem, 
virtual power plant modeling can solve as one of the successful solutions to minimize errors in predicting it. This research studies methods that can 
efficiently generate significant daily photovoltaic predictions at study sites using data available from the Meteorology, Climatology, and Geophysics 
Agency (MCGA). The second approach to the model based on RMSE and MAE, can be done virtual modeling of power plants to solve problems and 
as a management solution to minimize prediction errors. The performance of a verified prediction strategy on the PV module power output and a set 
based on geographical meteorological station data has been used to simulate a Virtual Power Plant (VPP). The power forecasting prediction refers to 
the LSTM (Long Short-Term Memory) network and gives an error close to other learning methods, based on the RMS characteristics of 4.19 W/m2 
under lead time with different launch times. Applying the VPP model using RMSE can reduce global errors by about 12.37%, and shows great potential.

Keywords: Solar Power Predictions, Virtual Power Plants, Photovoltaic, Solar Management 
JEL Classifications: C13, C22, C36, C39, L94, Q42

1. INTRODUCTION

Indonesia is one of the countries in the Asia Pacific region whose 
energy contribution comes from hydro and geothermal power 
plants, reaching 8% and 5% respectively. Based on (Zambak 
et  al., 2023), that one of the renewable energy potentials (Wind) 
in Medan has moderate potential to be used as a power plant 
with PJU lighting capacity. Indonesia currently plans to continue 
developing renewable energy with a policy of around 23% of its 
energy being supplied by modern renewable energy such as solar 
radiation in 2025, at least 31% will come from modern renewable 
energy sources in 2050. However, IRENA predicts Indonesia can 
target it within two decades previously. In his research (Pasaribu 
et al., 2023) has conducted an analysis of economic growth does 

not have a significant effect on energy consumption, consumption 
of sustainable renewable energy affects energy consumption in 
Indonesia, while economic growth, population, energy subsidies, 
and consumption of fossil fuel energy have a significant effect on 
sustainable energy consumption in Indonesia.

The developments followed by the rapid advancement of solar 
energy technology can be seen from the many researchers who 
focus on finding renewable energy sources. The renewable energy 
potential of solar energy is owned by Indonesia which is relatively 
large, namely 4.80 kWh/m2/day and only uses 10 MWp in 2024 
(Pambudi et al., 2023). Indonesia has relatively large solar energy 
of around 0.87 GW in 2025 (US Department of Commerce 
International Trade Administration, 2012). Indonesia also produces 
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electricity from solar energy with a potential of around 640,000 
Terrawatt-hours per year. The use of PV which is a renewable 
energy due to global warming from sunlight, results in the new 
and renewable energy industry growing rapidly in Indonesia and 
results in achieving the energy mix target to reduce greenhouse 
gas emissions through the development of renewable energy 
(Resources and Indonesia, 2012).

Energy is a basic need in daily activities and has an impact on 
economic growth and human welfare. According to the IEA, that 
the need for energy continues to increase and is expected to continue 
to increase by 30% in 2040 (McKinsey’s, 2022). Indonesia’s 
consumption of fossil energy until 2025 is shown in Figure 1, 
which is still dominated by oil, coal and natural gas until 2025, 
but new renewable energy is very low compared to current energy 
consumption and is expected to use up to 23% renewable energy in 
2020. the same as providing convenience in its investment to make 
Indonesia green. The participation of academics in encouraging 
the development of renewable energy is urgently needed, where 
PT PLN (State Power Plant Limited Company) seeks to minimize 
global temperature rise by stopping steam power plants until 2056, 
and initial participation in 2030-2035 by stopping the operation 
of several power plants. Fossil fuel electricity and concentrate on 
renewable energy (Handayani, 2019).

High energy consumption causes fossil energy to run out and 
can cause an energy crisis. To overcome the energy crisis and 
the environmental impact arising from the fossil energy industry, 
countries in the world are committed to replacing fossil energy 
with clean and sustainable energy that is environmentally friendly, 
one of which is solar energy (Sharvini et al., 2018). Figure 1 shows 
that expressions of demand that are much greater than the potential 
supply of energy can result in energy scarcity and you have to look 
for alternative energy that is available in that place. Therefore, this 
paper is very important to be supported and encouraged so that 
energy supply in the future can be fulfilled.

Solar energy is radiant energy from the future sun as renewable 
energy, using various photovoltaic cell technologies. An effective 
form of solar energy and a renewable energy solution that can 
reduce the greenhouse effect and global warming. The growth of 
the solar energy market can reduce environmental pollution and 
can drive demand in the power generation sector (Hamed and 
Alshare, 2022). The demand for solar cells is currently gaining 
traction as they can be shaped to suit rooftop installations as 
well as increasing operations in the architectural sector, thereby 
centralizing the market. The main factors contributing to the growth 
of the global solar market due to rising prices of fossil fuels and 
the adverse effects of toxic gas emissions are driving the growth 
of the global solar market during the forecast period. Market 
demand for solar energy is driven by government incentives and 
tax breaks for installing solar panels and increasing environmental 
pollution (Campillo and Foster, 2008). Forecasting the demand for 
the solar power market until 2020 is shown in Figure 2, (https://
www.precedenceresearch.com/solar-power-market).

The need for solar energy in the global market is dominated by 
Asia Pacific, North America, Europe, Latin America, the Middle 

East and Africa. Indonesia in 2030 will use energy in the form of 
bioenergy according to the needs of the industrial market as liquid 
biofuel for transportation (Andrae and Edler, 2015). REmap has 
illustrated that the implementation of solar and thermal power in 
Indonesia has contributed around 15%, hydropower (14%), and 
geothermal power (9%), as shown in Figure 3 below.

The spread of solar energy includes the decline in the price of solar 
panels, and environmental, political, social, and cultural issues. 
Based on research according to (Goodstein and Lovins, 2019), 
global installed capacity is impacted by identified bottlenecks 
hindering the pace of achieving solar dominance, under-investment 
for efficiency, and regulations governing solar distribution. 
Coordination of PV installations with VPP models for global 
production prediction provides accurate value integrated into the 
network (Nosratabadi et al., 2017).

The power prediction at PV and the selected prediction interval for 
PV facilities in the VPP model can be replicated for real PV and can 
improve high accuracy with both MAE and RMSE models with 
values   of 12.37% and 11.84% respectively (Moreno et al., 2021). 
Technology in the past has had an impact on the current electricity 
network, it is necessary to carry out a fundamental restructuring 
of fossil energy to serve the needs of renewable energy in the 

Figure 2: Solar market demand in 2020

Reference: IRENA

Figure 1: Consumption of fossil energy in Indonesia until 2025



Cahyadi, et al.: Solar Prediction Strategy for Managing Virtual Power Stations

International Journal of Energy Economics and Policy | Vol 13 • Issue 4 • 2023 505

future (Rangu et al., 2020). The integral part and participation of 
distributed and decentralized energy resources small-scale power 
generation units with traditional mass power generation have been 
passively constrained by existing distribution networks, driven 
by one-way energy flow mechanisms (Ullah and Mirjat, 2021a).

Combining renewable energy sources (RES) to overcome energy 
shortages when the RES output is low or to store energy when 
the RES generation is high. This combination gave rise to the 
idea of a VPP, which is described as a collection of various DERs 
functioning as one unit (Sarker et al., 2021). Overview of the VPP 
model has been discussed in real-life research (Ullah and Mirjat, 
2021b). Power system design with a high proportion of RES is 
an important part of the renewable energy system change (Knopf 
and Nahmmacher, 2015), (Plebmann and Blechinger, 2017). 
Application of RES on a large scale can reduce GHG emissions 
and the current energy shortage problem, but can pose a new 
challenge in the safe and economical operation of modern electric 
power systems (Pasaribu et al., 2023).

Operational systems against renewables that cannot be delivered 
directly such as photovoltaic and wind under the high breakthrough 
renewable energy scenario and the internal potential of RES for 
the provision of Additional Services (AS) need to be tapped. 
Although RES is currently banned from the world market due to 
the uncertainty of location and time dimensionless data modeling 
resulting in the trend of electricity demand liberalization which 
allows VPPs based on RES to participate in the energy market 
and ancillary services market simultaneously. There have been 
many relevant studies showing that both wind and PV energy are 
technically capable and suitable for supplying the US (El Mokadem 
et al., 2009), (Camal et al., 2018), (Banshwar et al., 2017). The 
prospecting and assessment of PV Generation possibilities to 
provide density support services has been investigated in several 
countries and the methodology is based on QRF modeling to 
obtain the optimal supply of automatic frequency recovery reserves 
provided by renewable power aggregators (Camal et al., 2018). 
Overview of the provision of various Additional Services from 

alternative energy in various electricity markets around the world 
(Banshwar et al., 2017).

Shifting to renewable energy use can help reduce greenhouse gas 
emissions by limiting the impact of weather and climate extremes 
while supplying reliable, timely and cost-effective energy. As a 
result, increased PV breakthroughs can be attributed to increased 
integration of PV systems into virtual generation modeling, 
which makes this energy sales model difficult to implement due 
to current regulatory constraints. The virtual generation model 
is one of the main solutions for reducing the carbon footprint 
of conventional power grids and the integration of PV and wind 
generation. However, the source of this new and renewable energy 
generation to the VPP is still being determined due to the resulting 
uncertainty (Liu et al., 2021). VPP to address sudden climate 
change due to output of PV generators, as well as management of 
other energy needs under the same VPP (Mahmud et al., 2020). 
The main divisions of uncertainty that need to be managed by the 
VPP (Yu et al., 2019).

A common solution for managing the uncertainty of PV generation 
is to invest in energy storage capabilities in batteries (Liu et al., 
2019), however, the ongoing investment in the source can be 
reduced by predicting the best from the PV generator. The VPP 
generator model is expected to have real-time operational capacity 
to match the design that has been designed previously based on 
forecasts of other PV generators (Fan et al., 2020). Adjustments 
are made to get market offers from before by implementing a 
second-order VPP model on real market trading (Qiu et al., 2017).

Modeling of VPP generators is based on collecting scattered 
data and managing scattered energy sources to meet certain 
optimizations (Naval and Yusta, 2021). VPP discovery and 
modeling involves complex information techniques related to 
modeling and energy flow, predicting local energy demand and 
energy generation, optimizing operations to meet defined goals 
using simple and efficient rules, and managing paperwork and 
follow-up to close rounds (Park and Son, 2020). The concept of 
smart grid in general VPP generator modeling is shown in Figure 4.

Forecasting overall energy capability as a provider of electric 
power from a variety of widely distributed energy sources such 
as solar, wind and hybrid electric vehicles using automated 
technology for supply chain monitoring, control and analysis. 
Whereas the direct model predicts PV through a dataset of past 
data from PV and climate conditions. Indirect forecasting is the 
prediction of solar radiation and solar energy that can be calculated 
using a solar generator performance model (Colman et al., 2020).

Previous researchers have done a lot of research, but there are 
methods that have been used that may have errors in forecasting 
solar power plants, so that it becomes a challenge to optimize 
the operation of PV generators, but there are small errors that 
do not affect the operation of solar power plants. Operational 
differences can hinder performance to assess variables with 
certainty in the scheduling and operation of PV plants, so one 
of the quantification of forecast uncertainty becomes very 
important. Some consideration of intervals for predictions also 

Figure 3: Global energy consumption in 2030
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takes into account expected uncertainties which can provide 
additional information in making judgments that are expected to 
provide a reasonable number of values   and assigned probabilities 
of those values (Talagala et al., 2019), (Wang et al., 2023). To 
overcome this problem, researchers present an approach to 
predict PV power by using a program tool for the locations 
studied. The results of this research show that the reduced 
error of the RMSE is influenced by several important factors 
that affect the accuracy and strategy used (Chai and Draxler, 
2014). The PV generation system is one of the easiest and most 
cost-effective Renewable Energy Sources (RES) that can be 
utilized in households and it is possible to convert PV modules 
into VPP nodes that can be adapted to such needs (Khandelwal 
et. al, 2021).

Indirect forecasting results for PV system performance models 
are needed to obtain predictions of solar power plants, however 
a strategy used to predict performance under radiation and 
temperature conditions should be adopted (Kim and Byun, 
2022). If the operational location of the PV panels is determined, 
alternative methods can be obtained (Al Shahri et al., 2021) and 
can improve accuracy, whereas other studies that use whole 
population models are calculated to simplify the process (Kalkan 
et al., 2018).

The forecasting strategy proposed in this paper uses the Rayleigh 
model with the main contributions being (a) the PV forecasting 
model obtained at VPP to minimize forecasting errors by 
modeling a two-parameter function; (b) the prediction interval 
time to model the prediction uncertainty is a function that depends 
on the hold time and launch time with the CCF; (c) forecasting 
and data input strategy for this prediction comes from data sources 
that have open access and are free in cost savings in VPP model 
generators.

2. DAILY ELECTRICITY STRENGTH 
PREDICTION MODEL

The proposed daily electricity forecasting strategy is depicted in 
Figure 5. It shows the proposed daily power prediction consisting of 
data input and pre-processing power prediction, and the VPP model 
generator. Steps for preprocessing input data as used in training 
and prediction models. The expected output from the prediction 
algorithm is the EMS input from the VPP observed and analyzed.

2.1. Enter Research Data
Input data consists of various classifications that are adjusted to 
the source and information needed. Initial input data consists of 
turbidity and temperature from prediction maps at a scale obtained 
from the Meteorology, Climatology and Geophysics Agency, as 
well as turbidity data intended to determine CCF (Cloud Cover 
Factor), to indicate cloud area on a shadow NWP-based turbidity 
map at a power plant PV. Some of these parameters determine the 
type of: brightness, overcast, and overcast. These parameters can 
be obtained from datasets that can be assigned to different groups in 
terms of creating prediction intervals. The temperature data is used 
to estimate the temperature of the solar panel cells at the time of 
prediction (Aoun, 2022), (Ciulla et al., 2013). Based on the climate 
map for the NWP it is very interesting due to some useful weather 
changes that may not be available in a solar power installation.

Forecasting modeling using the MAE model is implemented for 
temperatures related to the NWP map of around 2.13oC with a 
power gain of around 46.96 W/m2, for measurements throughout 
the year. Modeling the forecasting data set for training purposes 
consists of two parameters, namely for the position of the sun, 
used in calculating the CCF in determining daily data, while spatial 
radiation is used for prediction and radiation on an inclined plane 
from the location of the solar generator module.

Figure 4: Concept of energy and technology used for VPP
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2.2. EB. Research Data Pre-Processing
Forecasting power on PV modules consisting of cell temperature 
and radiation on an inclined plane, quadratic interpolation is 
required to predict NWP. Changes in temperature around the 
study can be assumed for NWP maps as proposed by (Cho et al., 
2022). Proper proof with a 1-year approach model is shown in 
Table 1 which gives an illustration that the ambient temperature 
is obtained from the predicted value measured from the MCGC 
station located in the PV module. These parameters allow the 
daily radiation to influence the identification of certain periods to 
change the PV in the period of the presence of clouds to change 
the PV generation in the region by preventing solar radiation 
(Peratikou and Charalambides, 2022), which provides an accurate 
description of the detected parameter calculations. Table 1 provides 
information about data reconstruction that is affected by conditions 
of air temperature and relative humidity to daily sunlight for 1 year.

2.3. EC. Modeling and Forecasting Research 
Irradiation
Forecasting from solar radiation based on Rayleigh modeling with 
the aim of (i) getting the average power of the PV model every day 
for 30 min on the PV generator module (ii) seeing the possibility 
of uncertainty in the forecast results (Zsiborács et al., 2022). The 
data information in Table 1 above shows the main input for EMS 
at the VPP node.

Figure 6 shows the prediction and prediction results of the 
modeling, by minimizing the error of the training process by 
calculating the RMSE and considering the incongruence of the 
corresponding system but also taking into account the computation 
time. Forecasting the effective solar radiation on the inclined plane 
of the PV generator module, to calculate the effective irradiation 
using data from two irradiation elements on a flat plane, either 

Figure 5: Proposed forecasting framework

Table 1: Daily solar radiation data for one year
Month Air temperature 

(0C)
Relative humidity 

( % )
Precipitation 

(mm)
Daily solar radiation- 

horizontal (kWh/m2/d)
January 26.7 85.5 309.69 3.67
February 26.7 83.5 269.92 4.00
March 27.2 83.0 209.56 3.97
April 27.8 82.5 181.20 4.22
May 27.8 81.5 142.29 3.81
June 27.8 79.5 89.10 3.61
July 27.2 76.5 72.85 4.03
August 27.2 76.0 65.10 4.33
September 27.8 74.5 73.80 4.31
October 28.3 76.0 125.55 4.17
Nopember 27.8 79.0 186.00 3.78
December 27.2 81.5 229.47 3.89
Annual 27.5 79.9 1,953.53 3.98
Source Ground Ground NASA Ground
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direct or diffuse. In this problem, the albedo is zero and is estimated 
as a function of the clarity index (kth) and calculating the mass 
transfer fraction (kdh) (Hofmann and Seckmeyer, 2017). On this 
information, the conversion to an inclined plane is estimated 
by diffuse radiation and albedo (Padovan and Del Col, 2010), 
(Bugler, 1977):

 albedo r ghm cos� �0 0 1 2( ) /�  (1)

where ro is the albedo coefficient, with a value of 0.2 ghm0 
as the GHI and β as the angle of inclination of the panel. 
The effective radiation is determined taking into account the 
angular loss (Barman et al., 2021) and spectral (Martin and 
Ruiz, 2001) with p-Si module and moderate dust level at DT 
0.97 for installation.

Osterwald model (Osterwalder and Pigneur, 2010) change the PV 
power of its effective solar radiation.

 P SF P
G
G

P T TDC DC peak
panel

STC
m cell cell STC� � �� �� �1 ( ),  (2)

where PDC is the PV approximation, SF serves to represent 
the shade loss due to the environment, for this particular case, 
ƞDC =  0.928 including cable loss, with module tolerances and 
mismatch losses; Ppeak = 2.98 kW is the peak power of the 
installation, Gpanel serves as the useful solar radiation from the 
panel is calculated, GSTC is 1 kW/m2 which is the solar radiation 
under standard test conditions with (STC), δPm is 0.4%/oC which 
is the change in temperature of the PV panel installation, Tcell as 
a function of cell temperature, and Tcell,STC is the cell temperature 
below STC.

Determination of cell temperature is expressed by equation 
(3), ignoring wind speed which is a complex effect that is not 
significant to the model and does not affect panel facilities evenly 
(Ross, 1980):

 T
T T

G
G TCell

Cell NOCT amb NOCT

NOCT
panel amb�

�
�, ,  (3)

with Tcell, NOCT= 45oC which represents the cell temperature 
as a function of the Normal Operating Cell Temperature 
(NOCT); Tamb, NOCT = 20oC is the ambient temperature in 
NOCT conditions; GNOCT of 800 W/m2 which is solar radiation 
in NOCT conditions; and T is the ambient temperature resulting 
from the NWP prediction. Once all data sets are related to PV 
predictions, it is possible to calculate prediction intervals to 
predict new ones. Prediction interval is a prediction interval 
with a random variable to assess in the future of unknown 
magnitude (Shrestha and Solomatine, 2006). In this paper, 
tabulated prediction intervals are used based on the work 
presented considering the Laplacian distribution model for 
errors as a function of waiting time, launch time, and day type 
(Butler and Rothman, 1980).

Solar radiation with changes in temperature between the module 
and the air results in heat transfer losses and faster heat transfer 
that occurs in damage to solar insulation for certain wind speeds 
with thermal resistance and heat transfer coefficients that do not 
vary too much with changes in temperature. NOCT for some 
best cases, worst cases, and average PV modules is shown in 
Figure 6, which for the best cases resembles aluminum fins 
on the back of the module for cooling which reduces thermal 
resistance and increases surface area for heat transfer in other 
media.

Figure 7 shows the time intervals for the 90% dailies which has 
provided valuable additional information from the predictions. 
The generation of PV modules is highly dependent on weather 
conditions and changes according to the seasons, due to the ability 
of forecasting algorithms to make appropriate predictions and 
can provide several levels of uncertainty that must be evaluated.

Figure 6: Illustration of solar radiation at NOCT

Figure 7: PV module interval prediction
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3. RESEARCH RESULTS

The research results obtained from the proposed daily 
forecasting strategy for the VPP generator module are divided 
into: (1) PV module power estimation from forecast output; 
(2) quantitative scoring prediction interval; (3) VPP module 
schedule. The results of this study consist of two things: 
First, the research results are validated against the PV module 
installation which acts as a VPP model node. Second, a strategy 
was developed to replicate the VPP generator module, using 
data-driven meteorological stations. The proposed model was 
evaluated for its effectiveness and compared its performance 
to find out the accuracy related to the method proposed in the 
literature related to other studies.

3.1. EA. Forecasting for VPP Nodes
Forecasting for real VPP nodes was performed using irradiation 
measurements taken at the existing PV facility at MCGA. GHI 
Forecasting can provide launch and wait functions with specified 
future times and parameters to calculate forecasting intervals.

For error assessment will depend on two model metrics namely:

(1) metric dependence on the MAE and RMSE scales; (2) the 
percentage error of the rMAE and rRMSE metrics. The two 
metrics above provide an overview of the absolute value of the 
average forecasting information, but the squared value is more 
sensitive to data that deviates from the average of the data and is 
an analysis of both that allows us to study the prediction results 
as a whole.

A comparison value against error which also gives an understanding 
of what was done about the error i.e. a fair comparison for 
dependability, but since this value is close to zero, where a scale 
dependent metric is the preferred choice. Table 2 is a performance 
matrix for the value of Yt, which is data measured from time 
t, Ŷt is the forecast value for time t, and T is the length of the 
sequential time that can be used to provide the accuracy value of 
the algorithm.

The values of Yt,t, and Yt0,t are predictions of Yt at t0 and t0 is the 
predetermined starting time for each day which is equivalent to 

sunrise. With the error assessment of the two parameters, it is 
necessary to determine the amount of waiting time and launch time. 
The exact lead time at (t’-t) gives the difference between the time 
when it was predicted and when the prediction was launched. The 
launch time is indicated by (t’-to) and is the difference between 
the current time and sunrise. The launch time and waiting time 
for the prediction of a certain day are described in Figure 9, with 
the launch time set and the waiting time used as a parameter, the 
prediction vector is obtained, but when both parameters are set 
to a certain value.

Figure 9 provides an illustration of the timeout and launch time 
errors leading to the following conclusions. First, for scaling errors, 
high error rates are observed for short launch times with medium 
timeouts. It is expected that the scale of the error will be mostly 

Table 2: Performance model matrix
Metric Scale (W/m2) Percentage
Absolute

MAE
T

Y Yt t
t

T
� �

�

�
�1

1 rMAE

Y Y

Y

x
T t t
t

T

T t
t

T�

�
�

�

�

�

�

1

1

1

1

100%

Square

RMSE
T

Y Yt
t

T
� �

�

�
��

�

�
��

�

�
�1
1

2

rRMSE

Y Y

Y

x
T t
t

T

T t
t

T�

�
�

�
��

�

�
��

�

�

�

�

�

1

2

1

1

1

100%

Figure 8: The results of measurement and forecasting of the virtual 
generator module
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under the previous setting with high solar irradiance, but as the 
launch time increases, this error decreases significantly. Second, 
the lower the solar irradiance, the smaller the error scale, and for 
the percentage error the opposite will occur; when the launch 
time is small (smaller than 1 h), a high percentage of errors will 
be regardless of the timeout (Lorenz et al., 2009). Finally, the 
forecasting interval is derived from the MAE, suggesting that 
a given distribution by dividing the predictions is a function of 
waiting time, launch time, and type of day which would be very 
useful at the high level of accuracy required for predictions. The 
predictions obtained with forecasting errors in this work are 
much smaller with short waiting times. A comparison strategy 
that has been presented in this paper regarding estimation can be 
concluded, that a small lead time will produce a better estimate 
compared to traditional methods.

3.2. Forecasting the PV Model from the GHI Forecast
In predicting the PV model from the GHI forecast, the following 
steps are carried out: (1) direct time prediction; (2) surveying the 
location from altitude, latitude, and longitude; (3) installation 
performance covered by panel orientation and inclination, PV 
model identifying parameters available in the data sheet and losses 
associated with each part of the installation; and (4) from NWP 
maps at ambient temperature. Analysis techniques are carried out 
to allow measuring errors made in solving problems. The results of 
the two different approaches consist of: First, making a comparison 
between the actual PV measurements at the location and the 
estimated PV values from the GHI measurements. Second, the PV 
module is predicted from estimated GHI values and evaluates the 
errors associated with all those processes.

Figure 9 is the result of a comparison between the measured value 
of the PV module at that location and the estimated PV obtained 
from GHI measurements at that location. Choose from three types 
of days namely; cloudy days, overcast days, and sunny days. The 
x axis is a function of solar time and the Y axis is the GHI to be 
searched for. For the experimental setup at the site under study 
which has buildings near PV panels providing partial shade until 
sunset. Modeling under these conditions is stated in equation (2), 
assuming that the change in this effect is linear with time as shown 
in Figure 8 with an SF of 0.95 at 16:36, decreasing to an SF of 
0.4 at sunset, and also varies depending on the season of the year 
(Barlow, 2005), obtained an rMAE of 2.55% for sunny days, rMAE 
= 3.05% for partly cloudy days, and an increase in rMAE value of 
4.04% for cloudy days. Observations are based on squared error, 
where the rRMSE value is 3.44% on sunny days and the rRMSE 
is 3.89% on partly cloudy days, up to 5.96% rRMSE on cloudy 
days. The switching characteristic of the MPPT inverter control 
in the presence of passing clouds causes the inverter operational 
point to become unstable. This increases the daily error but does 
not cause problems in the forecasting process with a time difference 
of about 15 min which can reduce negative effects.

Figure 9 illustrates the error of the estimation resulting from the 
difference between the measured and estimated PV modules as a 
function of waiting time and launch time, so that it has a similar 
picture to the previous one, with almost the same percentage 
of error. It can be concluded that it is almost the same as that 

achieved in Figure 8, so that it can be stated that: (1) short launch 
times and medium waiting times result in high scale, but decrease 
significantly as launch time increases; (2) a launch time of less than 
an hour results in a high error rate that appears to be independent 
of the timeout; and (3) high error ratio at lead times higher than 
about 7 h.

3.3. Predicted PV Power Forecasting Intervals
As additional information for prediction intervals on reasonable 
PV power ranges generated at the site and a certain confidence 
level selected by the user. Taking forecasting intervals can increase 
the uncertainty of the point estimate and can avoid unexpected 
energy shortages or conversely less critical energy excesses 
because the inverter can change its operating point to produce 
the required energy, even if it is a waste of time. Usable energy 
source, excessive. In this paper, the prediction interval is obtained 
based on the operations performed to produce the best forecast 
(Qin et al., 2022). The results from the facts used aim to divide 
the forecast data set and create groups, assuming that a certain 
distribution is built on the MAE. The division of this group was 
determined at the time of choosing the launch time and waiting 
time where approximately 365 samples per group were obtained 
in one full year.

Figure 8 shows the different error distributions for launch time 
values of 2, 4, and 6 h, with timeout values of 1, 2, and 3 h. In 
the assumed Laplacian distribution, similar to the work done by 
the CCF function. The prediction interval for each subset can be 
determined by MAE assuming that it is for a Laplacian distribution 
(Berger and Kiefer, 2021).

A more detailed division can be determined with the selected 
groups as a function of CCF, but must take into account the number 
of groups as previously presented with a sample of each group is 
not enough to make a proper error distribution (Berger and Kiefer, 
2021). Mitigate this drawback by reducing the number of CCF 
groups to three and using the type of day classification described 
above. Study measurements with CCF have an hourly verdict 
with a value of zero when the sun is not obscured by clouds and 
one when the sun is completely obscured. The k-nearest neighbor 
method is usually used to form groups which allows the datasets 
to be separated simply and offers independent solutions for each 
object in the VPP. Assume that for the Laplacian distribution, each 
new subset selected carries an error that needs to be measured. 
Coverage Probability Interval Prediction (Nagshima et al., 2019), 
and shows the division of the predicted values that fall within 
the selected interval and approximate the confidence level. The 
confidence level chosen in this study is 80%, although this number 
can be modified depending on the operational risk so that it can 
be handled by high-risk objects so that the benefits of the device 
are higher.

4. DISCUSSION AND CONCLUSION

The technical development of the VPP generator module must be 
supported by the current EMS technology with the PV module 
being a very important part. The energy produced by each VPP 
node which refers to renewable sources makes it possible to 
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optimize the benefits expected from energy exchange with network 
operators. It is difficult to predict PV modules when it is necessary 
to collect information from multiple nodes spread over a large area 
and especially when the input data required to predict is expensive. 
This paper proposes a way to achieve this goal using a strategy 
based on the LSTM-RNN by carrying out GHI forecasting using 
a data set of solar radiation values obtained from direct satellite 
data and solar energy used by the PV module installation.

This paper first provides results related to GHI estimates for installs 
based on lead time and launch time, which allows regions of lower 
error and high levels of confidence to be generated in the form 
of day-type-dependent prediction intervals. The GHI error is a 
function of hold time and launch time, which shows low behavior 
when the launch time is lower than 1.5 h, based on sunrise. To 
avoid this, the forecasting process can start 1.5 h after sunrise. This 
proposed research can rely on predictions of days ahead made to 
derive solar radiation forecasts (Husein and Chung, 2019). The 
assessments of the accuracy and rigor of safety predictions and 
their results were compared with the literature, with results similar 
to those obtained from deep learning algorithms and outperforming 
existing traditional techniques. The difference between lead time 
and launch time allows for comparison which is better related 
to the literature, but it is difficult to summarize if the study is 
conducted with only one value, where MAE is related to each 
other without considering the leads. Time and launch time with a 
value of 44.18 W/m2 which has similarities with previous studies.

After solar radiation has been estimated, the PV is then converted 
and calculated analytically by minimizing errors, namely 
2.55-4.04% for rMAE values and 3.45-5.95% for rRMSE. The 
error matrix model shows results similar to those presented above, 
so it can be concluded that the general MAE and commitment in 
this case is 137.22 W which is facilitated by a PV of 2.97 kWp. 
The prediction interval is selected after an estimate of the available 
PV power can be obtained within a reasonably acceptable range of 
point prediction values. This method considers the Laplacian error 
distribution and distinguishes between the waiting time, the launch 
time, and the type of day, which is selected using instructions from 
k-NN as a function of CCF.

The significance level can be maintained by verification related 
to the calculated PICP and obtained a value of 80%. These results 
provide a clear difference between PICP and the level of confidence 
on cloudy days before sunset, but for predictions at these hours 
it is not too important, so it can be concluded that the chosen 
prediction interval is very relevant.

It is at the end that a PV power estimate is made and a prediction 
interval is selected for the PV module facility. It can be concluded 
that the VPP environment and PV facilities at the weather station 
can be simulated with an accuracy of 12.36% and 11.85% against 
MAE and RMSE, respectively.
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