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ABSTRACT

The study is a pioneer in investigating the volatility of CO2 emissions in Uzbekistan. To this end, Autoregressive Conditional Heteroskedasticity 
(ARCH) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are used spanning the period 1925-2021 for the annual 
data of CO2 emissions. The results indicate that ARCH model is more adequate than GARCH model in the volatility assessment. Furthermore, it is 
found that the volatility of CO2 emissions in Uzbekistan is very high. The policymakers have to consider the high volatility of CO2 emissions in the 
environmental policy measures dedicated to reduce carbon dioxide emissions.
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1. INTRODUCTION

The economy of Uzbekistan highly depends on fossil fuel energy, 
like other Central Asian countries. More specifically, fossil 
fuel-related energy consumption share is counted as 97.35% of 
total energy consumption in 2021 (Our World in Data, 2023). 
Consequently, carbon dioxide emissions are high in the country.

Uzbekistan is obliged to comply with the Paris Climate 
Agreement’s goals and take actions towards achieving a carbon-
neutral nation. In accordance with the Paris Climate Agreement, 
Uzbekistan must reduce greenhouse gas emissions per unit of GDP 
by 35% of 2010 levels by 2030, compared to the 10% decrease 
agreed in the first Nationally Determined Contribution (NDCs) 
agreement. Furthermore, achieving this objective is related to 
Uzbekistan’s pledge to the attainment of a ‘green economy’ over 
the period 2019-2030 and the 16 Sustainable Development Goals 
(SDGs) (United Nations, 2022). To carry out the enactment of 
these international environmental agreements, Uzbekistan should 
implement effective policies to reduce carbon emissions.

In recent years, the strand of research has included much work that 
examines the relation between CO2 emissions and the influence 
of its determinants. Among these studies, Uzbekistan is either 
included in panel studies (Salahodjaev et al., 2021; Saidmamatov 
et al., 2023) or solely (Apergis et al. (2023) analyzed. The 
limitation of these studies is that they do not allow assessing 
environmental risk emerged from CO2 emissions. Risk assessment 
is important to reduce CO2 emissions since environmental issues 
represent a dynamic character, and it is not clear what path they 
follow. Given this fact, this study uses Autoregressive Conditional 
Heteroskedasticity (ARCH) and Generalized Autoregressive 
Conditional Heteroskedasticity (GARCH) models to investigate 
the volatility of CO2 emissions in Uzbekistan.

2. LITERATURE REVIEW

2.1. The Studies of CO2 Emissions in Uzbekistan
In the literature, CO2 emissions are mostly examined depending 
on other variables using panel methods. Among panel 
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methods, the works by Zhang (2019), Hongxing et al. (2021), 
Salahodjaev et al. (2021), Apergis and Payne (2010), Rasoulinezhad 
and Saboori (2018), Masron and Subramaniam (2018) 
and Saidmamatov et al. (2023) can be provided. More specifically, 
Apergis and Payne (2010) employ a vector error correction 
methodology for a group of countries of the Commonwealth of 
Independent States (CIS) over the period 1992-2004. They note that 
energy consumption has a statistically significant, positive impact 
on CO2 emissions in the long run and that real output exhibits an 
inverted U-shaped pattern, supporting the Environmental Kuznets 
Curve (EKC) hypothesis. Rasoulinezhad and Saboori (2018), in an 
empirical study of the long run and causal linkages between CO2 
emissions, economic growth, and renewable and fossil fuels energy 
for a group of the CIS countries, including Uzbekistan, observe a 
bi-directional long-run relationship across all variables and in all 
countries, except for the association between economic growth 
and renewable energy. Masron and Subramaniam (2018) examine 
the direct and indirect impact of corruption on environmental 
deterioration in a panel of 64 developing countries, including 
Uzbekistan. Saidmamatov et al. (2023) examine economic growth, 
energy consumption, agriculture and irrigation water consumption 
and agriculture productivity on environmental pollution in five 
countries of Central Asian countries where Uzbekistan is included, 
by applying panel data models, namely the Panel FMOLS, Panel 
DOLS and Panel ARDL-PMG approaches over the period 1992-
2020. Their results indicate that there is a positive long-term impact 
of economic growth, water productivity, energy consumption 
and electricity production on CO2 emissions, while agriculture 
value added and trade openness have a negative and statistically 
significant influence on CO2 emissions in Central Asia.

There is only a single paper by Apergis et al. (2023), which 
employs the time series ARDL model to investigate the impact of 
renewable and fossil fuel energy consumption on CO2 emissions in 
Uzbekistan during the period 1985-2020. They find that the main 
contributors to CO2 emissions are fossil fuel energy consumptions 
whereas renewable energy consumption negatively impacts on 
CO2 emissions.

It should be noted that there is no single study which examines the 
volatility of CO2 emissions in the case of Uzbekistan employing 
ARCH/GARCH models.

2.2. ARCH/GARCH Models for Examining CO2 
Emissions
The use of CO2 emissions in autoregressive moving average 
and autoregressive conditional heteroscedasticity models for 
estimation and forecasting purposes is gaining popularity in the 
literature. More specifically, Lotfalipour et al. (2013) predicted 
CO2 emissions in Iran over the period 1965-2010 based on 
Grey System and Autoregressive Integrated Moving Average. 
Comparing these two methods, they find that Grey system 
forecasting is more accurate than the other. Dutta et al. (2018), 
employing the bivariate VAR-GARCH approach, investigated the 
link between the carbon emission market and the market of clean 
energy stocks (daily return and volatility linkages between the 
European Union Allowance (EUA) prices and clean energy stock 
returns). Their findings indicate a significant volatility linkage 

between emissions and European clean energy price indexes. Benz 
and Truck (2009) analyze the short-term spot price behavior of 
carbon dioxide (CO2) emission allowances of the new EU-wide 
CO2 emissions trading system (EU ETS) using AR–GARCH 
model. Their findings strongly support the adequacy of the model 
capturing characteristics like skewness, excess kurtosis and, in 
particular, different phases of volatility behavior in the returns. 
Byun and Cho (2013) examine the volatility forecasting abilities 
applying GARCH-type model using carbon futures prices. Due 
to their results, Brent oil, coal, and electricity may be used to 
forecast the volatility of carbon futures. Dritsaki and Dritsaki 
(2020) investigate CO2 emissions in the EU-28. They employ the 
ARIMA(1,1,1)-ARCH(1) model and a dynamic process as well 
for forecasting. Comparing the results, they find that the static 
procedure (ACH) provides a better forecast compared to the 
dynamic one (GARCH).

Given the literature review provided above, the motivation 
emerges to empirically assess the volatility of CO2 emissions in 
Uzbekistan using ARCH/GARCH models.

3. DATA AND METHODOLOGY

To study the volatility of carbon dioxide emissions in Uzbekistan, 
annual data of CO2 emissions, measured in millions of tons, is used 
spanning 1925-2021. The data is downloaded from Our World in 
Data (https://ourworldindata.org/co2/country/uzbekistan).

To estimate volatility of CO2 emissions in the case of Uzbekistan, 
we employ ARCH (Autoregressive Conditional Heteroskedasticity 
(Engle, 1982) and Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) (Bollerslev, 1986) models. An 
ARCH model is an econometric model for the variance of a time 
series. Engle (1982) used this model to estimate the means and 
variances of inflation in the U.K. Recently, ARCH model is applied 
to examine the volatility of environmental factors (Sudha, 2015). 
This gives us the motivation to further employ ARCH model 
for environmental variables. Moreover, we use annual data in 
the analysis similarly to Narayan et al. (2018) for ARCH model. 
Furthermore, Engle (1982) did not point out any restrictions 
regarding the data and fields for ARCH models. Later Bollerslev 
(1986) extended ARCH model (Equation 2) to GARCH model 
(Equation 3).

In order to build ARCH/GARCH models, there should be a 
presence of ARMA (Autoregressive Moving Average) (Box and 
Jenkins, 1970) process whose specification can be described as:

y y yt t p t p t t q t q� � ��� � � ���� � � �� � � � � � � �
0 1 1 1 1  (1)

where, y is dependent variable, p is autoregressive terms, φ0 is 
constant, φ1,… φp – the coefficients of autoregressive component, 
εt – error term, q is moving average terms, θ1,… θq - the coefficients 
of moving average component.

After verifying both AR and MA process, the ARMA specification 
should be tested for heteroskedasticity (Breusch and Pagan, 1979). 
If heteroskedasticity exists in ARMA model, ARCH (Equation 2) 
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and GARCH (Equation 3) models can be developed, which have 
the following specifications:
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The data is transformed into the natural logarithm. Moreover, 
the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, 
1979) and the Phillips-Perron (PP) test (Phillips and Perron, 
1988) unit root tests are performed to check the stationarity, 
which is a crucial aspect of building ARMA and ARCH/
GARCH models.

As a diagnostics for the developed ARCH model, ARCH/GARCH 
LM test for heteroskedasticity (Breusch and Pagan, 1979) is 
conducted, which must not exist.

4. RESULTS

Before estimating volatility, the data, used in natural logarithm 
form, is checked for unit root test. To this end, the Augmented 
Dickey-Fuller (ADF) and the Phillips-Perron (PP) tests are 
employed. The results are reported in Table 1.

According to Table 1, CO2 emissions are stationary in the first 
difference. Given this evidence, the next step is to identify ARIMA 
(p, d, q) model for emission. To this end, the correlogram for 
emissions is provided in the first differences (Table 2).

Table 2 shows the existence of ARIMA process for CO2 emissions 
(logCO2). From ACF, it can be seen that lag order for MA process 
is 1. Due to PACF, the probable lag order for AR process might 
be in the length [1;3]. The final ARIMA (p,d,q) model is defined 
based on AIC, BIC and HQ criterion.

Table 3 expresses the estimated ARIMA models with possible lag 
length based on Table 2. It can be noted that Model 2 is adequate 
in comparison with Model 1 and Model 3. More specifically, 
all the coefficients, both AR and MA processes, are statistically 
significant. Furthermore, the AIC, BIC and HQ values of Model 2 
are lower than the other models (Model 1 and 3). Given this fact, 
we consider ARIMA (2,1,1) model to estimate ARCH/GARCH 
models.

In order to estimate ARCH/GARCH models, ARIMA 
(2,1,1) model should have heteroskedasticity. According to 
heteroskedasticity test, the null hypothesis is no existing ARCH/
GARCH effects up to the specified lag, whereas the alternative 
hypothesis means there are ARCH/GARCH effects up to the 
specified lag. The null hypothesis is rejected if P-value of Chi-
square is lower than 0.05 (P<0.05). Due to Appendix 1, there is 
a presence of heteroskedasticity in ARIMA (2,1,1) model. Given 
this evidence, ARCH/GARCH models can be built, however the 
lag order of ARCH model should be selected based on PACF 
from the correlogram of squared residuals whereas the lag order 

Table 2: Autocorrelation and partial autocorrelation of CO2 emissions (logCO2) in the first difference
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
 .|** |  .|** | 1 0.292 0.292 8.5287 0.003
 *|. |  **|. | 2 −0.126 −0.231 10.137 0.006
 .|* |  .|** | 3 0.158 0.313 12.691 0.005
 .|** |  .|* | 4 0.270 0.086 20.237 0.000
 .|* |  .|. | 5 0.090 0.051 21.078 0.001
 .|* |  .|* | 6 0.074 0.096 21.663 0.001
 .|. |  *|. | 7 −0.002 −0.150 21.663 0.003
 .|. |  .|* | 8 0.024 0.077 21.728 0.005
 .|. |  .|. | 9 0.056 −0.061 22.070 0.009
 .|* |  .|* | 10 0.108 0.133 23.360 0.009
 .|. |  *|. | 11 −0.043 −0.139 23.564 0.015
 *|. |  .|. | 12 −0.098 −0.015 24.644 0.017
 .|. |  .|* | 13 0.070 0.084 25.200 0.022
 .|* |  .|. | 14 0.137 0.018 27.359 0.017
 *|. |  *|. | 15 −0.101 −0.090 28.546 0.018
 *|. |  .|. | 16 −0.115 −0.028 30.122 0.017
 .|* |  .|* | 17 0.151 0.182 32.875 0.012
 .|* |  .|. | 18 0.178 0.030 36.722 0.006
 .|* |  .|* | 19 0.101 0.195 37.988 0.006
 .|* |  .|. | 20 0.119 0.042 39.746 0.005

Table 1: Unit root tests
ADF PP

Level 1st dif. Level 1st fid.
LOGCO2 0.58 0.00 0.20 0.00
Source: Authors’ estimations. For the ADF, the P values are reported, obtained with a 
specification adopting an automatic selection of BIC information criterion and including 
trend and intercept. Maximum lags are set to 2 because of annual data. For the PP test, the P 
values are reported, which are obtained with a specification adopting an automatic selection 
of Newey-West Bandwidth, including trend and intercept. The null hypothesis for ADF and 
PP tests is the presence of the unit root. The null hypothesis is rejected when P<0.05
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Table 3: The estimated ARIMA (p, d, q) models for CO2 emissions (logCO2) and AIC, SIC and HQ test results
Coefficients Model 1: ARIMA (1,1,1) Model 2: ARIMA (2,1,1) Model 3: ARIMA (3,1,1)
AR 0.04 (0.28) −0.21 (0.01)** 0.13 (0.22)
MA 0.61 (0.00)*** 0.45 (0.00)*** 0.48 (0.00)***
Constant 0.04 (0.00)*** 0.04 (0.00)*** 0.04 (0.01)**
AIC −1.80 −1.83 −1.80
BIC −1.69 −1.72 −1.70
HQ −1.76 −1.78 −1.76
P-values are in parentheses. Asterisks represent statistical significance *** and ** for 1% and 5% levels, respectively. AIC, BIC and HQ denotes Akaike, Schwartz and Hannan-Quinn 
information criterion, respectively

for GARCH model is considered from ACF of ARIMA (2,1,1) 
model.

From Table 4, it can be clearly seen that the lag order for ARCH 
model is 1. Due to this fact, we proceed in the estimation of 
ARCH (1) model. Moreover, according to ACF, the GARCH effect 
(GARCH (1,1)) can be estimated with lag order 1.

Table 5 shows the mean and variance equations for employed 
ARCH (1) and GARCH (1,1) models. All coefficients of both 

mean and variance equations for ARCH (1) model is statistically 
significant. Furthermore, the coefficients of constant and lagged 
squared residual ( �� 2 (−1)) in the variance equation are positive, 
and the coefficient of squared residual �� 2 (−1) is <1, and 
there is no heteroscedasticity according to the LM-test result 
(P=0.65).

The coefficients of mean and variance equations in GARCH 
(1,1) model are statistically significant and variance equation 
coefficients are positive. However, the sum of the coefficient of 
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lagged squared residual and lagged squared variance exceeds 1, 
which is unacceptable.

On this reason, the developed GARCH (1,1) model is not adequate, 
and we rely on ARCH (1) model in order to estimate the volatility 
of CO2 emissions in Uzbekistan. More specifically, the coefficient 
of volatility of CO2 emissions in Uzbekistan is equal to 0.91 due 
to ARCH (1) model. This could give us an assumption that the 
volatility of CO2 emissions of Uzbekistan is very high (Figure 1).

5. CONCLUSION

Even though several studies in literature analyse the relationbetween 
CO2 emissions and other factors with panel or time series methods, 
including Uzbekistan, it is crucial to assess the volatility of CO2 
emissions. Because it allows estimating environmental risk 
associated with carbon dioxide emissions. To fill this research 
gap, this study employs ARCH/GARCH models to examine 
CO2 volatility. The former model shows more robustness 
than the latter, which is a consistent result with Dritsaki and 

Dritsaki (2020). According to the results, the volatility of CO2 
emissions is very high in Uzbekistan (B, C, D, E). Given this 
evidence, environmental policy makers should implement policy 
implications considering increasing high volatility.

Any limitation of the research might be the lack of studying 
volatility linkages between CO2 emissions and other factors using 
MGARCH (multivariate Generalized Autoregressive Conditional 
Heteroskedasticity) model. This gap would serve as an agenda for 
future works in the field.
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APPENDIXES

Appendix 1
Heteroskedasticity Test: ARCH
F-statistic 7.195063 Prob. F (1,94) 0.0086
Obs*R-squared 6.825689 Prob. Chi-Square (1) 0.0090
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Sample (adjusted): 1926 2021

Included observations: 96 after adjustments
Variable Coefficient Std. Error t-Statistic Prob. 
C 0.006351 0.002858 2.222033 0.0287
RESID^2(-1) 0.266715 0.099433 2.682361 0.0086
R-squared 0.071101 Mean dependent var 0.008671
Adjusted R-squared 0.061219 S.D. dependent var 0.027550
S.E. of regression 0.026694 Akaike info criterion −4.388175
Sum squared resid 0.066979 Schwarz criterion −4.334751
Log likelihood 212.6324 Hannan-Quinn criter. −4.366581
F-statistic 7.195063 Durbin-Watson stat 1.876815
Prob (F-statistic) 0.008637


