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ABSTRACT

This research paper investigates the hedging efficiency between spot and future prices of crude oil and natural gas commodities in the energy category 
of the commodity market. The study focuses on two major commodity exchanges, the Multi Commodity Exchange of India (MCX) and the New York 
Mercantile Exchange (NYMEX), which serve as the global benchmarking commodity market. Various econometric models have been incorporated 
to measure constant and time-varying hedging efficiency, we analyze the potential of futures contracts in mitigating price risks in these markets. 
The results indicate significant and consistent hedge ratios for both crude oil and natural gas in both the MCX and NYMEX markets. Moreover, 
the MGARCH model, which assesses hedging that varies over time, demonstrates the ability to adjust hedging positions based on market changes. 
Johansen’s co-integration test endorses the presence of enduring connections between spot and future prices in both exchanges. Traders and investors 
can effectively use futures contracts to mitigate price risks in energy commodity markets, ensuring more dependable financial outcomes amid price 
fluctuations. Additionally, policymakers can utilize these research findings to promote the adoption of futures contracts, make well-informed choices, 
manage risks effectively, and enhance the overall efficiency and stability of energy commodity markets.

Keywords: Hedging Efficiency, Energy Commodity Markets, Constant Hedging, Time-Varying Hedging 
JEL Classifications: Q02, Q40, C3

1. INTRODUCTION

The global energy industry faces a constantly changing landscape 
due to variable commodity prices (Kumar et al., 2008). In futures 
markets, risk management and price determination are central 
aspects. Within this framework, it’s vital to employ effective risk 
management strategies to maintain stability for those involved 
in the market and the broader economy. Using futures contracts 
based on spot prices is recognized as a potent method to counter 
price fluctuations in the commodity market (Castelino, 1992). 
Nonetheless, the success of these strategies can differ notably 
among various markets, particularly between matured and 

emerging economies. Bekaert and Harvey (1997) and Antoniou 
and Ergul (1997) suggest that developing economies often face 
challenges like limited liquidity, sparse trading, increased price 
swings, and subpar hedging efficiency. A 2013 report by MCX 
indicates that the commodity markets in India (an emerging 
economy) and the US (a developed economy) show comparable 
hedging capabilities. Given the limited research comparing 
emerging and developed commodity markets, this study holds 
significant importance.

The intricacies of energy commodity markets, with a particular 
emphasis on comparing the hedging efficiency of Indian and 
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leading global commodity exchanges were analyzed (Ranjan 
Sahoo, 2014). It examined the MCX as a representation of the 
commodity market of India and the NYMEX as the standard for 
global commodity exchanges (Acharya et al., 2013; Horsnell 
et al., 1995). The research seeks to explore alternative hedging 
approaches and their results within these exchanges.

Natural gas and crude oil are vital components of the energy 
sector within the commodity market, playing a pivotal role in 
various economic sectors and everyday life. Given their essential 
contribution to industrial processes and transportation, their 
price fluctuations considerably influence both manufacturers 
and consumers (Yu, 2013). To safeguard their financial stakes 
amidst the uncertainties of price changes, market players seek 
reliable strategies. Futures contracts stand out as a valuable tool 
in this context, allowing investors to lock in prices for upcoming 
transactions. The differences in regulatory frameworks, market 
configurations, and behaviors of participants in diverse exchanges 
necessitate a thorough examination of futures contracts’ 
effectiveness as hedging tools. This research endeavors to provide 
a detailed econometric review of energy commodities’ hedging 
efficiency, encompassing both static and evolving strategies, 
while juxtaposing the Indian and global benchmark exchanges. 
By studying the enduring connections between spot and future 
prices and pinpointing the effectiveness and adaptability of 
hedging to market fluctuations, the study sheds light on the pros 
and cons of hedging efficiency in these markets. The findings of 
research studies have tangible implications for a broad spectrum 
of stakeholders, from market players to policymakers and 
industry representatives. Effective hedging approaches can result 
in superior risk control, improved portfolio results, and a more 
stable market. Policymakers can harness these insights to devise 
initiatives that promote the uptake of instruments that diminish 
risks, fostering a robust energy sector. By grasping the nuanced 
differences in hedging efficiencies between the Indian and global 
standards, investors and traders are better equipped to make 
informed choices and fine-tune their risk-mitigation methods.

Following this, the paper will unfold an exhaustive econometric 
scrutiny of energy commodities’ hedging efficiency, deliberating 
its impact on different stakeholders, and guiding informed 
discussions on risk strategies amid the tightly-knit framework of 
global and Indian commodity exchanges.

2. LITERATURE REVIEW

Research on hedging efficiency, specifically concerning 
commodity products, has garnered significant interest among 
scholars. Numerous studies in developed economies have 
explored the “hedge ratio” and “hedging effectiveness” 
in commodity markets employing spot and futures data 
(Choudhry, 2004; Figlewski, 1984; Floros and Vougas, 2006a; 
2006b; Myers, 1991; Myers and Thompson, 1989). However, 
there’s a noticeable gap in the literature concerning the Indian 
scenario, particularly when it comes to comparisons with global 
benchmark exchanges (MCX, 2013; Rout et al., 2021a; Rajesh 
and Satya Nandini, 2020).

Methods to decide the ideal hedging ratio are a central topic 
in academic literature. Researchers have explored numerous 
approaches, each tailored to specific aims. The primary objective of 
hedging strategy is to reduce the variability of the hedged portfolio 
(Bollerslev, 1990; Ederington, 1979; Lien and Yang, 2008; Myers 
and Thompson, 1989).

Many studies have been undertaken to understand the dynamics 
of Indian and global commodity markets, focusing on evaluating 
different methods for determining hedging effectiveness. (Rout 
et al., 2021b) explored how successful the Indian commodity 
futures market has been in its roles of price discovery and effective 
hedging. To gauge hedging efficacy, several initial tests need to 
be carried out (Benada, 2017; Bhatia, et al., 2018; Lien et al., 
2002). One key element is the Johansen co-integration test, which 
is crucial for identifying a long-term relationship in data and 
subsequently an effective hedging strategy. (Horsnell et al., 1995) 
point out that this long-term relationship isn’t necessarily always 
positive; even negative results can provide valuable insights. 
A positive relationship suggests investors should adopt opposing 
positions in spot and futures markets. Conversely, a negative 
correlation implies investors should maintain consistent positions 
in both markets, either buying or selling. Furthermore, (Tejeda and 
and Feuz, 2014) examined the efficiency of ideal dynamic hedging 
for commodities, finding it to have superior efficiency relative to 
constant hedging analysis.

Selecting the optimal hedging strategy from a range of available 
methods has been a central focus for many scholars (Floros and 
Vougas, 2006a). The effectiveness of hedging in Greek stock 
index funds was examined using an array of econometric tests 
to pinpoint the strategy ensuring maximum variance reductions, 
with tests including OLS, VAR, VECM, and M-GARCH. 
Research by (Gupta et al., 2017; Halkos and Tsirivis, 2019; Lien 
and Yang, 2008; Yang and Allen, 2004) concluded that among 
the four techniques - OLS, ECM, VECM, M-GARCH - the 
constant hedging methods of OLS, VAR, and VECM yielded the 
most substantial hedging ratios. Meanwhile, the dynamic hedge 
analyzed using M-GARCH, as studied by (Bandhu Majumder, 
2022; Ranjan Sahoo, 2014), showed the highest variance reduction. 
Further research (Deloitte and MCX, 2018; MCX, 2013, 2019) has 
shown that India’s hedging effectiveness stands on equal footing 
with international commodity exchanges.

3. RESEARCH MATERIALS AND METHODS

This study aims to evaluate the long-run relationship and the 
hedging efficiency of the Indian commodity market in comparison 
to advanced commodity markets, specifically for energy 
commodities like Crude Oil and Natural Gas. In the context of the 
Indian market, the Multi Commodity Exchange (MCX) serves as 
the representative since it accounts for over 96% of India’s trading 
activity. On the other hand, “The New York Mercantile Exchange” 
(NYMEX) in the USA is used as the benchmark commodity 
market for this analysis. Hedging efficiency can be categorized 
into two types: Constant hedging efficiency and time-varying 
hedging efficiency. The former is determined through methods like 
“Ordinary Least Square Regression”, “Vector Auto Regression”, 
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and “Vector Error Correction Model”, while the latter is gauged 
using the “Multivariate Generalized Autoregressive Conditional 
Heteroskedasticity” (MGARCH) model.

3.1. Research Design
The “research design” section outlines the methodology employed 
in this study. The research relies on secondary data sources. Data 
on spot and future prices of energy commodities were sourced from 
the MCX portal for India, while data related to the NYMEX in 
the USA was gathered from Bloomberg. The study encompassed 
daily opening and closing prices of both the spot and futures prices 
of the selected commodities. To assess the hedging efficiency of 
energy commodities in India and advanced markets returns were 
analyzed. Descriptive statistics were utilized to establish the 
central tendency, dispersion, and normality of the spot and future 
price series. The series’ central tendency was deduced from its 
mean, while its dispersion was gauged using standard deviation. 
Normality was assessed through skewness, kurtosis, and the 
Jarque-Bera test. To check the normality of the acquired data, 
“the Augmented Dickey-Fuller” (ADF) test was applied. Before 
this, the series’ nature was visually inspected to ascertain if it 
represented an intercept, a trend, or both. Depending on the results 
regarding the stationarity of the series, appropriate statistical tools 
were chosen. Johansen’s co-integration test was then employed 
to identify long-term relationships of the energy commodities in 
both India and advanced markets.

3.2. Data Employed
The research utilizes secondary data sources. Information like 
the opening and closing prices of the spot and futures markets for 
energy commodities was sourced from the MCX website for the 
Indian context and from Bloomberg for the NYMEX market. The 
data collection spans from April 1st, 2016 to September 30th, 2022.

4. RESULTS

Descriptive statistics convey information about the nature of the 
data and provide a better understanding of the data. “Mean, standard 
deviation, skewness, kurtosis, and normality” are computed for 
returns of spot and future prices of energy commodity products.

Descriptive statistics for the returns from future and spot price data 
series of energy commodities, specifically crude oil and natural 
gas, traded on MCX are provided (Table 1). The results highlight 
a positive skewness for returns from these commodities’ future 
and spot price series. This means that the returns for both crude 
oil and natural gas have a pronounced right tail, or in other words, 
they exhibit more frequent large positive returns than negative 
ones. The kurtosis values point out that the returns from the 
future and spot price series of crude oil are leptokurtic, signifying 
a distribution with fatter tails and a sharper peak compared to a 
normal distribution since the kurtosis values surpass 3. Given that 
the Jarque-Bera values for the returns of the future and the spot 
price series of both crude oil and natural gas traded on MCX are 
below 0.05, it can be inferred that these returns are not normally 
distributed. Thus, the analyzed data sets demonstrate non-linear 
dynamics and don’t align with the characteristics of a normal 
distribution.

Table 2 provides the descriptive statistics for the returns from 
future and spot price data series of energy commodities, 
specifically crude oil and natural gas, traded on NYMEX. The 
analysis shows that returns from both future and spot price series 
for these commodities are positively skewed, meaning that there’s 
a tendency for more significant positive deviations from the mean. 
Consequently, the returns for both crude oil and natural gas in 
NYMEX exhibit a pronounced right tail. The kurtosis values for 
these series surpass 3, indicating that the distributions of returns 
from the future and spot price series of both crude oil and natural 
gas are leptokurtic. This suggests that these distributions have 
thicker tails and a more pointed peak compared to a standard 
normal distribution. Using the Jarque-Bera test, a standard measure 

Table 3: Results of ADF test for energy commodities 
traded in MCX
Commodity Type t Critical value P-value*

Crude oil Spot −30.87 −3.43 0.000
Future −30.92 −3.43 0.000

Natural gas Spot −21.78 −3.43 0.000
Future −40.65 −3.43 0.000

Source: Computed, *Significant at a 1% significance

Table 4: ADF test for energy commodities traded in 
NYMEX
Commodity Type t Critical value P-value*

Crude oil Spot −36.50 −3.43 0.000
Future −32.96 −3.43 0.000

Natural gas Spot −36.02 −3.43 0.000
Future −53.42 −3.43 0.000

Source: Computed

Table 1: Descriptive statistics of energy commodity 
products traded in MCX
Particulars Crude oil Natural gas

Spot Future Spot Future
Mean 4273.596 4284.885 238.7136 237.8426
Median 3911.007 3909.517 194.2385 194.9107
Maximum 9509.034 9523.037 3343.752 770.2370
Minimum 885.2345 935.5870 110.0966 116.6558
Std. Dev. 1503.825 1493.031 145.8961 124.9616
Skewness 1.286693 1.305367 7.210625 2.322008
Kurtosis 4.573422 4.562483 127.5187 8.021401
Jarque-Bera 631.5509 642.6102 1090736. 3247.406
Probability 0.000000 0.000000 0.000000 0.000000
Data source: MCX

Table 2: Descriptive statistics of energy commodities 
traded in NYMEX
Particulars Crude oil Natural gas

Spot Future Spot Future
Mean 58.83973 58.85662 2.313004 2.314069
Median 55.54601 55.52513 1.877961 1.881804
Maximum 122.7348 123.8057 8.715537 8.809180
Minimum −37.14448 −11.71679 0.404402 0.328194
SD 18.44113 18.37549 1.528287 1.528274
Skewness 0.866117 0.929804 2.157018 2.154802
Kurtosis 4.636891 4.406316 7.545587 7.534199
Jarque-Bera 401.1532 383.9080 2773.674 2763.673
Probability 0.000000 0.000000 0.000000 0.000000
Data source: Bloomberg
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for assessing data normality, it’s evident that the returns for the 
future and the spot price series for both commodities are below 
0.05. This signifies that the distributions of these returns are not 
consistent with a normal distribution. In summary, the returns data 
for crude oil and natural gas traded on NYMEX display non-linear 
dynamics and do not adhere to a normal distribution pattern.

The stationary of the series considered for the study has been 
checked using the ADF Test and the results of ADF are presented 
below.

The results of the ADF as shown in Tables 3 and 4 indicate that 
returns of future and spot price series of energy commodities such 
as crude oil and natural gas are integrated at D (1) at a 1% level 
of significance.

4.1. Analysis of Long-run Relationship
Johansen’s co-integration test is a widely used method to identify 
long-term relationships between the chosen commodities, 
especially when the targeted group of time series is non-stationary 
at their levels. In this study, the future and spot prices of base 
metals, including aluminium, copper, nickel, and zinc, weren’t 
stationary at their levels. Similarly, the future and spot prices of 
precious metals like gold and silver also displayed non-stationary 
characteristics at their levels. Given these conditions, Johansen’s 
co-integration test was applied to determine the long-term 
relationship between the future and spot prices of the selected 
commodities. Introduced by Soren Johansen in 1988, this test 
aimed to rectify the shortcomings of the Engel and Granger 
co-integration methodology. The hypotheses for Johansen’s co-
integration test are:

H0: No long-term co-integration exists (R=0).

H1: A long-term co-integration is present (R=1).

Before performing the test, the appropriate lag length for the 
Johansen co-integration is selected using Vector Auto Regression 
(VAR) lag length criteria. In this particular study, the required 
lag length was determined using the VAR Schwarz Information 
Criteria (SIC) (Bouri et al., 2017).

P-values of Johansen’s trace statistics and P-values of maximum 
Eigenvalue statistics indicate that null hypotheses have been 
rejected at a 5% level of significance (Tables 5 and 6). Hence, it can 
be deduced that enduring connections exist between forthcoming 
and current prices of crude oil and natural gas traded on MCX 
and NYMEX.

4.2. Constant Hedging Analysis
In the OLS regression, the focus is on regressing the returns of 
the spot price (dependent variable) against the returns of future 
prices (independent variable). This is done because understanding 
how spot and future prices interact is crucial for effective hedging. 
In essence, the objective is to conduct a linear regression that 
elucidates the connection between alterations in future prices 
and alterations in spot prices. “The Minimum-Variance Hedge 
Ratio” is equivalent to the incline coefficient derived from this 
OLS regression (Rajesh, 2023). It is calculated by dividing “the 
covariance of spot prices and future prices by the variance of future 
prices”. The efficiency of the hedge is measured by the R-square 
value of the OLS regression. This value reflects how well the 
regression equation accounts for the variability in the dependent 
variable based on changes in the independent variable. The OLS 
regression equation is provided below.

∆RS,t= α + H∆RFt + εt

Where ∆RSt and ∆RFt are spot and futures price changes, the slope 
coefficient H is the ideal hedge ratio and εt is the error term in the 
OLS equation.

The hedge ratio of MCX is a larger one (1.005) than the hedge ratio 
of NYMEX (1.002). The hedging efficiency of the crude oil is higher 
in NYMEX, USA (99.8%) than MCX, India (99.5%) (Table 7).

The hedge ratio of NYMEX is a larger one (0.999) than the hedge 
ratio of MCX (0.984). The hedging efficiency of natural gas is 
higher in NYMEX, USA (99.9%) than MCX, India (71.0%) 
(Table 8).

VAR is commonly utilized for predicting a set of interconnected 
time series and for examining how unforeseen disruptions 

Table 5: Johansen’s co-integration test
Crude oil Vector (r) Trace statistics Max-Eigen statistics Result

λ trace P-value λ max P-value
MCX H0: r=0 223.17 0.000 221.37 0.000 Co-integration exists

H1: r≥1 1.7917 0.180 1.7917 0.180
NYMEX H0: r=0 309.54 0.000 306.52 0.000 Co-integration exists

H1: r≥1 3.0182 0.082 3.8414 0.082
Source: Computed

Table 6: Johansen’s co-integration test
Natural gas Vector (r) Trace statistics Max-Eigen statistics Result

λ trace P-value λ max P-value
MCX H0: r=0 300.80 0.000 300.16 0.000 Co-integration exists

H1: r≥1 0.6368 0.424 0.6368 0.424
NYMEX H0: r=0 273.26 0.000 271.31 0.000 Co-integration exists

H1: r≥1 1.9516 0.162 1.9516 0.162
Source: Computed
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dynamically influence the array of variables. The VAR 
methodology circumvents the necessity for structural modeling 
by considering each endogenous variable within the system as 
reliant on past values of all endogenous variables. Opting for a 
bivariate VAR Model proves advantageous over simple Ordinary 
Least Squares (OLS) estimation, as it resolves issues related 
to autocorrelation among errors and treats futures prices as an 
inherent variable. This VAR model is depicted in the following 
manner:

Rst s St St i
t

k

Fj Ft j
j

l

stR R= + + +−
=

−
=

∑ ∑α β γ ε
1 1

R R RFt F Ft Ft i
t

k

Sj st j
j

l

st= + + +−
=

−
=

∑ ∑α β γ ε
1 1

The error terms in the equations, εst, and εft are independently 
identically distributed (IID) random vectors.

The hedge ratio (HR) is computed using the following equation.

HR = 
σ

σ
sf

f2

Hedging effectiveness (HE) is expressed as given below. Hedging 
effectiveness is defined as the difference in variances of unhedged 
portfolios and hedged portfolios over the variance of the unhedged 
portfolio.

HE = 
Var U Var H

Var U
( ) − ( )

( )

Vector Auto Regression (VAR) is applied to overcome the 
limitations of OLS regression in determining the HR and HE 
of spot and future price returns of the commodities considered 
for the study. VAR estimates the HR and HE of Energy 
Commodities in MCX India and NYMEX, USA are presented 
below:

VAR estimates the HR and HE of crude oil traded in MCX 
are presented in Tables 9 and 10. The hedge ratio of crude oil 
traded in MCX is 0.878. Hedging efficiency is estimated as 
U – H divided by U. Similarly, the hedging efficiency of MCX 
is 98.7%.

Table 9: Estimates of the VAR model for MCX crude oil
Particulars MCX crude 

oil (Spot)
Particulars MCX crude 

oil (Future)
α −21.6529 α 21.5133
β1 (Coefficient of 
future return)

0.0345 β1 (Coefficient 
of spot return)

0.9041

β2
0.1384 β2

−0.2169
γ1 (Coefficient of 
spot return)

0.9041 γ1 (Coefficient 
of future 
return)

0.0345

γ2
−0.2169 γ2

0.1384
Source: Computed

Table 11: Estimates of the VAR model for NYMEX crude oil
Particulars NYMEX 

crude oil 
(Spot)

Particulars NYMEX 
crude oil 
(Future)

α 0.0449 α 0.1851
β1 (Coefficient 
of future return)

−0.6779 β1 (Coefficient 
of spot return)

1.7311

β2
−0.0964 β2

0.1371
γ1 (Coefficient 
of spot return)

1.7311 γ1 (Coefficient 
of future return)

−0.6779

γ2
0.1371 γ2

−0.0964
Source: Computed

Table 10: Estimation of hedge ratio (HR) and hedging 
efficiency (HE) for crude oil in MCX
Particulars MCX crude oil
Akaike information criterion 23.6624
Schwarz criterion 23.6950
Covariance 0.000583
Variance (εf) 0.000664
Variance (εs) 0.000628
Hedge ratio 0.878
The variance of Unhedged Portfolio (U) 0.000628
The variance of Hedged Portfolio (H) 0.00000764
Hedging efficiency (HE) 0.987
Source: Computed

Alpha score is the value of the intercept and β is the value of the 
coefficient of the independent variable.

VAR estimates, hedge ratio, and hedging efficiency of crude oil 
traded in NYMEX are presented in Tables 11 and 12. The hedge 
ratio of crude oil traded in NYMEX is 0.730. Hedging efficiency is 
estimated as U – H divided by U. Similarly, the hedging efficiency 
of NYMEX is 90.7%.

VAR estimates, hedge ratio, and hedging efficiency of natural 
gas traded in MCX are presented in Tables 13 and 14. The hedge 
ratio of natural gas traded in MCX is 0.642. Hedging efficiency is 
estimated as U – H divided by U. Similarly, the hedging efficiency 
of MCX is 95.6%.

VAR estimates, hedge ratio, and hedging efficiency of natural 
gas traded in NYMEX are presented in Tables 15 and 16. The 
hedge ratio of natural gas traded in NYMEX is 0.694. Hedging 
efficiency is estimated as U – H divided by U. Similarly, the 
hedging efficiency of NYMEX is 81.1%.

Table 8: OLS regression model estimates
Particulars MCX natural gas NYMEX natural gas
α 4.653 −0.0002
β (Hedge Ratio) 0.984 0.999
R2 0.710 0.999
Source: Computed

Table 7: OLS regression model estimates
Particulars MCX crude oil NYMEX crude oil
α −33.10 −0.1837
β (Hedge Ratio) 1.005 1.002
R2 0.995 0.998
Source: Computed
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Table 13: Estimates of the VAR model for MCX natural gas
Particulars MCX natural 

gas (Spot)
Particulars MCX natural 

gas (Future)
α 4.4087 α 06701
β1 (Coefficient 
of future return)

−0.0005 β1 (Coefficient 
of spot return)

1.1339

β2
0.0006 β2

−0.1420
γ1 (Coefficient 
of spot return)

1.1339 γ1 (Coefficient 
of future return)

−0.0005

γ2
−0.1420 γ2

0.0006
Source: Computed

Table 12: HR and HE for crude oil in NYMEX
Particulars NYMEX crude oil
Akaike information criterion 6.0635
Schwarz criterion 6.0956
Covariance 0.0000687
Variance (εf) 0.000094
Variance (εs) 0.000069
Hedge ratio 0.730
U 0.000069
H 0.00000638
HE 0.907
Source: Computed

Table 15: Estimates of the VAR model for NYMEX 
natural gas
Particulars NYMEX 

natural 
gas (Spot)

Particulars NYMEX 
natural gas 

(Future)
α 0.0134 α 0.0134
β1 (Coefficient 
of future return)

−0.4081 β1 (Coefficient 
of spot return)

1.3849

β2
−0.0265 β2

0.2838
γ1 (Coefficient 
of spot return)

1.3849 γ1 (Coefficient of 
future return)

−0.4081

γ2
0.2838 γ2

−0.0265
Source: Computed

Table 14: HR and HE for natural gas in MCX
Particulars MCX natural gas
Akaike information criterion 19.1257
Schwarz criterion 19.1583
Covariance 0.000631
Variance (εf) 0.000982
Variance (εs) 0.000836
Hedge ratio 0.642
U 0.000836
H 0.00003627
HE 0.956
Source: Computed

Table 18: HR and HE for crude oil in MCX
Particulars MCX crude oil
Akaike information criterion 23.6404
Schwarz criterion 23.6861
Covariance 0.000662
Variance (εf) 0.000546
Variance (εs) 0.000525
Hedge ratio 0.878
U 0.000525
H 0.00000659
HE 0.987
Source: Computed

Table 16: HR and HE for natural gas in NYMEX
Particulars NYMEX natural gas
Akaike information criterion −4.2142
Schwarz criterion −4.1821
Covariance 0.000523
Variance (εf) 0.000753
Variance (εs) 0.000679
Hedge ratio 0.694
U 0.000679
H 0.0001283
HE 0.811
Source: Computed

Table 17: Estimates of the VECM model for MCX crude oil
Particulars MCX crude 

oil (Spot)
Particulars MCX crude 

oil (Future)
α 1.8500 α 2.2114
β1 (Coefficient 
of future return)

−0.0162 β1 (Coefficient 
of spot return)

0.3499

β2
−0.0241 β2

0.1794
γ1 (Coefficient 
of spot return)

0.3499 γ1 (Coefficient 
of future return)

−0.0162

γ2
0.1794 γ2

−0.0241
Source: Computed

When two prices are co-integrated over the long term, the 
suitable analytical technique to employ is the VECM. This 
model is designed to deal with the existence of serial correlation 
among residuals and is proficient in capturing both immediate 
and persistent connections between current and future returns. 
In cases where the series of futures and spot prices demonstrate 
co-integration, the formulation of the VECM for the series can 
be expressed as follows:

R R R Est s si s t i
t

k

s j f t i
i

k

s t st= + + + +−
=

−
=

−∑ ∑α β γ η α ε, , ,
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Where βsi, βfi γfi, ηfi are VECM parameters and αs and αf indicate 
constant terms in the equation. E tα −1 represents the lag-one error 
correction term.

The application of the VECM enhances the rationale for 
establishing the HR and assessing the HE concerning the returns 
of spot and future prices for the examined commodities. The 
study presents VECM-derived estimations, hedge ratios, and 
hedging efficiencies for crude oil trading on MCX, showcased in 
Tables 17 and 18. Specifically, the hedge ratio determined for crude 
oil trading on MCX stands at 0.878, accompanied by a notable 
hedging efficiency of 98.7%.
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VECM estimates, hedge ratio, and hedging efficiency of crude oil 
traded in NYMEX are presented in Tables 19 and 20. The hedge 
ratio of crude oil traded in NYMEX is 0.808, and the hedging 
efficiency of crude oil traded in NYMEX is 95.4%.

VECM estimates, hedge ratio, and hedging efficiency of natural 
gas traded in MCX are presented in Tables 21 and 22. The hedge 
ratio of natural gas traded in MCX is 0.632, and the hedging 
efficiency of natural gas traded in MCX is 96.4%.

VECM estimates, hedge ratio, and hedging efficiency of natural 
gas traded in NYMEX are presented in Tables 23 and 24. The 
hedge ratio of natural gas traded in NYMEX is 1.186, and the 
hedging efficiency of natural gas traded in NYMEX is 86.1%.

As evidenced by the data presented in Tables 17-24, the analysis 
conducted using the VECM on spot and future returns of 
commodity products, specifically crude oil, and natural gas, traded 

Table 22: HR and HE for natural gas in MCX
Particulars MCX natural gas
Akaike information criterion 19.1320
Schwarz criterion 19.1778
Covariance 0.000539
Variance (εf) 0.000852
Variance (εs) 0.000826
Hedge ratio 0.632
U 0.000826
H 0.00002894
HE 0.964
Source: Computed

Table 20: HR and HE for crude oil in NYMEX
Particulars NYMEX crude oil
Akaike information criterion 6.0594
Schwarz criterion 6.1044
Covariance 0.0000986
Variance (εf) 0.000122
Variance (εs) 0.000188
Hedge ratio 0.808
U 0.000188
H 0.00000851
HE 0.954
Source: Computed

Table 19: Estimates of the VECM model for NYMEX 
crude oil
Particulars NYMEX 

crude oil 
(Spot)

Particulars NYMEX 
crude oil 
(Future)

α 0.0284 α 0.0284
β1 (Coefficient 
of future return)

0.2033 β1 (Coefficient of 
spot return)

−0.2387

β2
0.1584 β2

−0.2500
γ1 (Coefficient 
of spot return)

−0.2387 γ1 (Coefficient of 
future return)

0.2033

γ2
−0.2500 γ2

0.1584
Source: Computed

Table 23: Estimates of the VECM model for NYMEX 
natural gas
Particulars NYMEX 

natural gas 
(Spot)

Particulars NYMEX 
natural gas 

(Future)
α 0.0036 α 0.0038
β1 (Coefficient 
of future return)

−0.4332 β1 (Coefficient 
of spot return)

0.1113

β2
−0.3801 β2

0.3025
γ1 (Coefficient of 
spot return)

0.1113 γ1 (Coefficient 
of future return)

−0.4332

γ2
0.3025 γ2

−0.3801
Source: Computed

Table 21: Estimates of the VECM model for MCX natural 
gas
Particulars MCX 

natural 
gas (Spot)

Particulars MCX 
natural gas 

(Future)
α 0.2311 α 0.3274
β1 (Coefficient 
of future return)

0.0001 β1 (Coefficient of 
spot return)

0.1438

β2
0.0001 β2

0.1228
γ1 (Coefficient 
of spot return)

0.1438 γ1 (Coefficient of 
future return)

0.0001

γ2
0.1228 γ2

0.0001
Source: Computed

on the MCX and NYMEX markets, reveals notable hedge ratios 
and hedging efficiency for both commodities.

4.3. Dynamic Hedging Analysis
The time series data depicting the returns of spot and future 
prices exhibit a volatility structure characterized by varying 
levels of heteroscedasticity, known as the Auto-Regressive 
Conditional Heteroscedasticity (ARCH) effect. Considering the 
existence of the “ARCH” effect within the returns of spot and 
futures prices, as well as their dynamic combined distribution, 
the precise calculation of HRs and HEs could be jeopardized. To 
tackle this issue, the “Multivariate Generalized Autoregressive 
Conditional Heteroskedasticity” (MGARCH) model becomes 
relevant. MGARCH considers the “ARCH” effect in the time 
series data and calculates a hedge ratio that adjusts dynamically 
over time, taking into consideration the evolving conditions of 
the data. This approach enables a more suitable and nuanced 
assessment of the hedging strategy in the context of evolving 
volatility patterns.

Table 24: HR and HE for natural gas in NYMEX
Particulars NYMEX natural gas
Akaike information criterion −4.2217
Schwarz criterion −4.1768
Covariance 0.000853
Variance (εf) 0.000719
Variance (εs) 0.000644
Hedge ratio 1.186
U 0.000644
H 0.0000893
HE 0.861
Source: Computed
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Table 26: HR and HE for crude oil in MCX
Particulars MCX crude oil
Akaike information criterion 10.394
Schwarz criterion 10.411
Covariance 0.000583
Variance (εf) 0.000547
Variance (εs) 0.000508
Hedge ratio 1.065
U 0.000508
H 0.00000438
HE 0.991
Source: Computed

Table 30: HR and HE for natural gas in MCX
Particulars MCX natural gas
Akaike information criterion 11.556
Schwarz criterion 11.572
Covariance 0.000651
Variance (εf) 0.000784
Variance (εs) 0.000761
Hedge ratio 0.830
U 0.000826
H 0.0002231
HE 0.729
Source: Computed

Table 28: HR and HE for crude oil in NYMEX
Particulars NYMEX crude oil
Akaike information criterion 1.2419
Schwarz criterion 1.2580
Covariance 0.0000885
Variance (εf) 0.000168
Variance (εs) 0.000153
Hedge ratio 0.526
U 0.000153
H 0.00000851
HE 0.944
Source: Computed

Table 31: Estimates of the MGARCH model for NYMEX 
natural gas
Particulars NYMEX 

natural 
gas (Spot)

Particulars NYMEX 
natural gas 

(Future)
α 0.0002 α 0.0019
β1 (Coefficient of 
future return)

1.002 β1 (Coefficient 
of future return)

0.998

Standard error 0.000 Standard error 0.000
Z-Statistic 1478.69 Z-Statistic 1504.61
Significance 0.000 Significance 0.000
Source: Computed

Table 25: Estimates of the MGARCH model for MCX 
crude oil
Particulars MCX crude 

oil (Spot)
Particulars MCX crude 

oil (Future)
α 27.220 α −18.429
β1 (Coefficient 
of future return)

0.994 β1 (Coefficient 
of future return)

1.003

Standard Error 0.000 Standard Error 0.000
Z-Statistic 1649.16 Z-Statistic 1657.14
Significance 0.000 Significance 0.000
Source: Computed

Table 27: Estimates of the MGARCH model for NYMEX 
crude oil
Particulars NYMEX 

crude oil 
(Spot)

Particulars NYMEX 
crude oil 
(Future)

α 0.8411 α −0.8256
β1 (Coefficient of 
future return)

0.985 β1 (Coefficient 
of future return)

1.014

Standard Error 0.000 Standard Error 0.000
Z-Statistic 2058.38 Z-Statistic 2195.63
Significance 0.000 Significance 0.000
Source: Computed

Table 29: Estimates of the MGARCH model for MCX 
natural gas
Particulars MCX 

natural 
gas (Spot)

Particulars MCX 
natural gas 

(Future)
α 159.808 α 3.926
β1 (Coefficient of 
future return)

0.170@ β1 (Coefficient 
of future return)

0.985

Standard Error 0.008 Standard Error 0.078
Z-Statistic 20.847 Z-Statistic 12.593
Significance 0.000 Significance 0.000
Source: Computed

MGARCH estimates, hedge ratio, and hedging efficiency of 
crude oil traded in MCX are presented in Tables 25 and 26. The 
hedge ratio of crude oil traded in MCX is 1.065, and the hedging 
efficiency of crude oil traded in MCX is 99.1%.

MGARCH estimates, hedge ratio, and hedging efficiency of crude 
oil traded in NYMEX are presented in Tables 27 and 28. The hedge 
ratio of crude oil traded in NYMEX is 0.526, and the hedging 
efficiency of crude oil traded in NYMEX is 94.4%.

MGARCH estimates, hedge ratio, and hedging efficiency of natural 
gas traded in MCX are presented in Tables 29 and 30. The hedge 
ratio of natural gas traded in MCX is 0.830, and the hedging 
efficiency of natural gas traded in MCX is 72.9%.

MGARCH estimates, hedge ratio, and hedging efficiency of 
natural gas traded in NYMEX are presented in Tables 31 and 32. 
The hedge ratio of natural gas traded in NYMEX is 1.140, and 
the hedging efficiency of natural gas traded in NYMEX is 88.4%.

The outcomes of the MGARCH Model analysis, as presented in 
Tables 25 and 32, unveil noteworthy variations in hedge ratios 

and hedging effectiveness over time within the realm of energy 
commodity products. Specifically, the spot and future returns 
of crude oil and natural gas, traded on the MCX and NYMEX 
exchanges, exhibit these significant time-varying attributes.

5. DISCUSSION

The study investigates the effectiveness of hedging strategies within 
both the Indian commodity market and the globally recognized 
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Table 32: HR and HE for natural gas in NYMEX
Particulars NYMEX natural gas
Akaike information criterion −4.3534
Schwarz criterion −4.3374
Covariance 0.000788
Variance (εf) 0.000691
Variance (εs) 0.000683
Hedge ratio 1.140
U 0.000683
H 0.0000792
HE 0.884
Source: Computed

adoption of futures contracts for risk mitigation could extend to the 
realm of policy. Decision-makers might consider promoting their 
utilization to cultivate greater stability within the energy market. 
The study also underscores the importance of further exploration 
in this domain, offering valuable insights that can shape future 
strategies aimed at mitigating risks.

The findings of MGARCH offer investors the capacity to 
dynamically adapt their hedging positions, thereby enhancing 
the efficacy of risk management strategies as market conditions 
evolve. Additionally, these insights contribute to the refinement 
of portfolio performance and the formulation of well-informed 
trading decisions. The results also shed light on the potential 
advantages of curbing market volatility and suggest pathways 
for devising effective risk management policies within the energy 
market. Moreover, the research identifies areas that merit further 
exploration. Delving deeper into the dynamics of hedging and its 
implications for energy commodity markets could yield a more 
comprehensive understanding of these intricate processes and 
their broader ramifications.

6. CONCLUSION

The research explores how effective hedging strategies are in 
the Indian commodity market and the internationally recognized 
benchmark commodity market. The study concentrates on energy 
commodities such as crude oil and natural gas, and it uncovers 
enduring connections between the current prices and future prices 
of these commodities. By utilizing various models like OLS, 
VAR, VECM, and MGARCH, the study produces reliable and 
noteworthy fixed hedge ratios for crude oil and natural gas in both 
the MCX and NYMEX markets. The MGARCH model stands out 
for estimating time-varying hedge ratios, reflecting the adaptability 
of hedging positions based on evolving market dynamics.

The outcomes of these models underline the viability of futures 
contracts for effectively mitigating price risks within energy 
commodity markets. This approach proves particularly valuable 
for managing exposure to price volatility, contributing to more 
stable financial outcomes. Johansen’s co-integration test affirms 
the existence of long-term connections between spot and future 
prices of crude oil and natural gas in both the MCX and NYMEX 
markets. This finding implies that futures contracts hold potential 
for portfolio diversification and risk management. By integrating 
futures contracts into investor portfolios, the potential for improved 
risk-adjusted returns and overall portfolio performance becomes 
evident. The observed hedging efficiencies on MCX and NYMEX 
demonstrate varying degrees of effectiveness in reducing price risk 
using futures contracts. This information can influence market 
participants’ preferences for exchanges, potentially enhancing 
liquidity and efficiency within energy commodities markets. These 
findings hold implications for policymakers as well.

Policymakers can formulate and implement measures to encourage 
the adoption of futures contracts for risk management in the 
energy market. By promoting hedging strategies, they contribute 
to market stability and mitigate the impact of price volatility on 
various market participants. This, in turn, enables more informed 

benchmark commodity market. The results of the ADF test for 
returns of future and spot price series of chosen commodities 
traded in MCX and NYMEX convey that they are integrated at 
D (1). The results of “Johansen’s co-integration test” for energy 
commodities indicate that spot and future returns of crude oil and 
natural gas commodities traded in MCX and NYMEX have long-
run relationships. The constant hedging efficiency was gauged using 
tools like OLS Regression, VAR, and VECM. The outcomes of the 
OLS Regression analysis conducted on energy commodities indicate 
that both the spot and future returns of the chosen commodities that 
are traded on the MCX and NYMEX exchanges, exhibit noteworthy 
hedge ratios and hedging efficiency. These significant findings hold 
valuable implications for market participants and investors, enabling 
them to handle price-related risks, enhance portfolio diversification, 
and make informed choices. Moreover, these findings have broader 
implications for energy sector policies, instilling greater confidence 
in the utilization of futures contracts for risk management purposes. 
Traders and investors can leverage these findings to develop 
effective hedging strategies that can be tailored to accommodate 
shifts in market circumstances.

The outcomes of the Vector Auto Regression (VAR) model applied 
to energy commodity products highlight the presence of significant 
hedge ratios and hedging effectiveness in both crude oil and natural 
gas spot and future returns traded on the MCX and NYMEX 
exchanges. This underscores the viability of employing futures 
contracts as an efficacious approach for traders and investors 
to mitigate price risks associated with these energy commodity 
products. These findings offer increased confidence to market 
participants, encompassing producers, and consumers, in utilizing 
the futures market to manage risks. By engaging in hedging 
through futures contracts, they can safeguard themselves against 
price fluctuations, leading to reduced overall portfolio volatility. 
The implications of these findings extend to policymakers as well. 
They can utilize this information to advocate for the adoption of 
futures markets as a strategic tool for curbing commodity price 
risks within the energy sector. By promoting such risk management 
strategies, policymakers have the potential to enhance stability 
and resilience within the energy market.

The VECM results indicate that investors can effectively navigate 
price risks associated with crude oil and natural gas through 
the utilization of futures contracts. Market participants stand to 
benefit from reduced overall price volatility achieved through 
the implementation of these contracts, thus fostering increased 
confidence in the market. The advantages associated with the 
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decision-making, better risk management, and an overall 
enhancement of efficiency and stability within energy commodity 
markets. The study also highlights avenues for future research, 
including expanding the analysis to encompass other global energy 
commodity markets and employing diverse econometric models 
to reinforce and validate the present findings.
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