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ABSTRACT

The purpose of this paper is to evaluate the effectiveness of four commonly used hedging techniques on wholesale electricity prices within the 
midcontinent independent system operator (MISO) energy market. This analysis provides and in-depth assessment of hedging performance on one 
of the largest power markets in North America. In a break from extant literature, hourly time series are used to create hedge portfolios for each of the 
regional hubs within the MISO footprint. Each risk management strategy is employed on 24 hourly time series for each of the eight regional hubs 
within the MISO footprint. This results in a total of 768 hedged portfolios across 192 hourly time series. While the naïve approach tends to outperform 
the others in terms of variance reduction, none of the strategies examined meet the generally accepted standard for a highly effective hedge. In several 
instances, the hedged portfolio contains a higher amount of risk than the unhedged position. This may be explained by the unique characteristics of 
wholesale electricity and hedging pressure, particularly during peak demand hours.

Keywords: Risk Management, Midwest Independent System Operator, Electricity Derivatives  
JEL Classifications: G10, G20, G32

1. INTRODUCTION

Established as a regional transmission operator (RTO) in 2013, 
MISO is responsible for managing the flow of electricity across 
15 states and one Canadian province (Manitoba). In addition 
to coordinating electricity flows and planning for the long-
term reliability of the grid system within its footprint, MISO 
administers a market for trading wholesale electricity. Since 
the value of electricity varies by location, the market is divided 
into 8 regional hubs: Arkansas (AR), Illinois (IL), Indiana (IN), 
Louisiana (LA), Michigan (MI), Minnesota (MN), Mississippi 
(MS), and Texas (TX). Each hub has a distinct market for 
trading spot (real-time) and forward (day-ahead) electricity. 
Market clearing prices for day-ahead (DA) and real-time (RT) 
power, referred to as locational marginal prices (LMPs), are 
quoted in terms of dollars per megawatt hour ($/MWh). Every 
day, MISO aggregates nodal LMPs to hourly, hub-level LMPs 
and posts 24 day-ahead and 24 real-time LMPs for each of 
its 8 hubs. MISO is geographically the largest RTO in North 

America with 72,000 miles of transmission lines within its 
footprint and its wholesale power market is one of the largest 
in the world with over $40 billion cleared in 2022 (MISO fact 
sheet, 2023).

While the Financial Accounting Standards Board (FASB) 
stipulates that a hedge must be deemed highly effective to qualify 
for hedge accounting, practitioners are afforded some flexibility 
in operationalizing the concept. A variance reduction approach 
is often used to measure hedging efficacy both in research and 
in practice. Specifically, a hedge is generally regarded as highly 
effective if it reduces variance by at least 80% as compared to the 
unhedged position.

Deregulated electricity markets are a relatively recent phenomenon 
and research that evaluates hedging performance within these 
exchanges is limited. This study represents the first attempt to 
measure hedging performance on a hub-level basis for one of the 
largest wholesale electricity markets in North America. The rest of 
this paper is organized as follows. Section 2 provides a literature 
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review. Section 3 presents the methodology. Section 4 provides 
the results and Section 5 concludes.

2. LITERATURE REVIEW

Most of the existing literature on hedging wholesale electricity 
focuses on the older, European deregulated power markets. Bystrom 
(2003) employs several techniques to measure the effectiveness of 
short-term hedging on the Nordic Power Exchange, Nord Pool. 
His sample includes daily spot and futures prices from 1996 to 
1999, which are used to create weekly hedged portfolios. While 
Bystrom (2003) finds that static hedges (naïve and minimum 
variance) tend to outperform the dynamic GARCH models, none 
of the strategies meet the standard for a highly effective hedge. 
He reports that hedging typically results in a variance reduction of 
less than 20%. In one instance, hedging via orthogonal GARCH 
results in a higher variance than the unhedged position.

Hanly et al. (2017) evaluate the effectiveness of minimum variance 
and constant correlation GARCH (CCGARCH) models on three 
European electricity markets. The authors use daily spot and 
futures prices from each market during 2004 to 2014 to create 
weekly and monthly hedges. Although the monthly portfolios 
tend to perform better than weekly portfolios in terms of out-of-
sample variance reduction, neither hedging horizon results in a 
variance reduction of at least 80%. Weekly minimum variance 
and CCGARCH hedged portfolios result in a higher variance 
than the unhedged position for one of the three markets in their 
study (Nord Pool).

Boroumand et al. (2019) simulate intra-day hedging strategies 
on the German-Austrian power market. The authors approach 
hedging through the lens of market participants that have a short 
position in wholesale electricity (i.e., retailers) and measure 
uncertainty with conditional value at risk and portfolio variance. 
They pair actual spot price and retail volumes on the German-
Austrian market from 2013 to 2015 with simulated values for 
derivative contracts (forwards and options) and power plants. 
The authors evaluate nine hedging strategies across four intra-
day clusters (9 am, 12 pm, 6 pm, 9 pm) and find that the most 
effective hedging approach varies between the clusters. Their 
simulations reveal that hedging generally results in modest 
risk reduction. As noted in previous studies, Boroumand et al. 
(2019) find hedging can lead to an increase in variance over the 
unhedged portfolio.

Pena (2023) applies several hedging techniques to Spanish 
exchange traded electricity futures contracts over monthly and 
annual investment horizons. In addition to the minimum variance 
strategy, Pena (2023) employs two other methods that are directly 
related to it: the Ederington and Salas (2008) hedge (which creates 
an optimal hedge ratio based on the assumption of partially 
predictable spot price movements), and another approach allows 
the variances and covariances between spot and futures prices 
to fluctuate through time. The naïve strategy and a BEKK (1,1) 
model are also utilized. The out of sample effectiveness of each 
strategy was limited, which the author contributes to the variation 
in correlation between spot and futures price changes.

Bonaldo et al. (2022) examine the relationship between spot 
and futures prices of four European nations: France, Germany, 
Italy, and Switzerland from 2010 to 2019. The comparison was 
performed over three time periods (monthly, quarterly, and yearly) 
and for base and peak load delivery (except for Switzerland, 
where only base load contracts were available). The authors report 
that futures prices do not converge to spot prices for any of the 
four countries. Surprisingly forward premiums for base delivery 
generally increased as the operating date approached the futures 
expiration date.

The lack of hedging efficacy and persistent forward premia 
found in wholesale electricity markets globally may in part be 
explained by Hesamzadeh et al. (2020). The authors outline 
how dominant power generators may create a disconnect 
between current forward prices and expected future spot prices 
in wholesale electricity markets. The effect that generators 
with market power have on spot and forward prices is 
magnified by asymmetric information, as market participants 
are usually unaware of the hedging positions employed by 
large generators. Motivated by a series of actions by one of 
Australia’s largest generators and the resulting effects on spot 
prices, the Hesamzadeh et al. (2020) develop a model to explain 
hedging decisions for generators with market power. Their 
model shows electricity markets which are dominated by a few 
large generators whose hedged positions are unknown to other 
market participants will experience volatile spot and forward 
prices and, at the extreme, can create an environment where no 
equilibrium hedging position exists.

In one of the few studies of hedging performance in US power 
markets, Tanlapco et al. (2002) use direct and cross hedging 
strategies in four US power markets from 1998 to 2000. None 
of the direct or cross hedging approaches are highly effective 
and some result in a greater amount of risk compared to being 
unhedged.

This study provides two major contributions to extant 
literature. First, this research adds to the extremely scarce 
coverage of hedging efficacy in US wholesale electricity 
markets. Secondly, hedging efficacy is measured on an 
hourly and hub-level basis, which provides a unique layer of 
granularity.

3. DATA AND METHODOLOGY

The aim of this research is to investigate the out-of-sample 
performance of four hedging strategies on the MISO exchange: 
naïve, minimum variance (MV), autoregressive distributed 
lag (ARDL), and generalized autoregressive conditional 
heteroskedasticity (GARCH). The naïve hedging strategy is 
perhaps the most straightforward to implement as it assumes 
market participants offset the price risk associated with their 
long (short) position in the real-time market by shorting (buying) 
an equal number of megawatt hours in the day-ahead market. 
Naturally, the naïve hedge ratio (size of the hedge/size of the 
exposure) must equal 1.
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The MV hedging technique proposed by Ederington (1979) is 
employed as follows:

� �RT DA ei j MVi j i j t, , , ,� � �� �  (1)

where ΔRTi,j and ΔDAi,j represent the respective 1-week change (in 
terms of $/MWh) in real-time and day-ahead LMPs for power on 
hub i in hour j. The MV hedge ratio for hub i in hour j is denoted 
as βMVi,j.

While the autoregressive distributed lag (ARDL) model described 
by Pesaran (1997) is not as prevalent in the risk management 
literature as the other three techniques evaluated in this paper, 
it does have some unique characteristics that may be beneficial 
to wholesale electricity market participants. Unlike the naïve, 
minimum variance, and GARCH models, ARDL(p,r) models yield 
both a long-run and a short-run relationship between real-time and 
day-ahead prices. Although the error correction model (ECM) 
described by Engle and Granger (1987) can also provide long-term 
and short-term relationships between RT and DA prices, it rests on 
the assumption that both price series are non-stationary. However, 
Knittel and Roberts (2005), Ciarreta et al. (2017), Junttila et al. 
(2018), among several others, report spot and forward prices on 
various electricity exchanges are stationary in levels. The ARDL 
model can still be applied to time series that oscillate about a long-
term mean. The p term represents the order of the autoregressive 
component of the model, while the r term is the distributed lag 
component. The ARDL (1,1) model is expressed as follows:

� �RT RT DA DA vi j i jt i jt ARDLi j i j t, , , , ,
� � � � �� �� � � �

1 2 1 3 1
 (2)

RTi j t, −1
 and DAi j t, −1

 represent the one-period lagged real-time 
and day-ahead LMP on hub in hour j, respectively. The long-run 

hedge ratio is calculated as �� �
3

2

. This study applies the ARDL 

(1,1) short-run hedge ratio estimate, βARDLi,j, to assess the model’s 
ability to reduce price risk on the MISO exchange.

Given that time series in general, and electricity prices specifically, 
are oftentimes heteroskedastic, the GARCH (1,1) model introduced 
by Bollerslev (1986) is also employed in this analysis. The mean 
equation is described as:

� �RT DA ei j GARCHi j i j t, , ,� � �� �  (3)

The error term (et) in Equation 3 is expected to fluctuate based on 
information received in the previous period as follows:

e Nt t t| ~� �� � �1

2  (4)

� � � � �t t te
2

0 1 1

2

1 1

2� � �� �  (5)

α0 reflects the long-run average variance. � t�1
2  (GARCH term) 

represents the previous period’s forecast variance and et−1
2  

r(ARCH term) reflects information regarding volatility obtained 
in the previous period. The optimal hedge ratio, βGARCHi,j, minimizes 
the conditional variance of the hedge portfolio.

The sample used in this study consists of hub-level day-ahead and 
real-time LMPs from January 01, 2018 to December 31, 2022. 
Weekly portfolios are constructed to evaluate hedging performance 
for each hour of the day, across all eight MISO hubs. All pricing 
information used in this analysis is available on MISO’s website 
(www.misoenergy.org).

MV, ARDL, and GARCH hedge ratios are calculated using an 
8-week rolling windows estimation period. Each week, the oldest 
real-time and day-ahead dollar returns are replaced with their 
current week’s counterparts. The hedge ratios estimated in week 
t are then used to create a hedged portfolio in week t+1. This 
process is repeated throughout the sample period and results in a 
total of 252 weekly hedged portfolios for each hour of the day on 
every hub within the MISO footprint.

The out-of-sample hedging performance for each strategy is 
measured by percentage variance reduction as compared to the 
unhedged position (ΔRTi,j):

%
,

,

reduction hedged portfolioi j

unhedged portfolioi j
� �

�

�
�1

2

2

�

���

�

�
�
�
.  (6)

σunhedged portfolioi j,
2  is defined as the variance in weekly real-time 

returns (in terms of $/MWh) on hub in hour j. Equation 6 is applied 
to each of the 1-week hedged portfolios for all 24 of the hourly 
time series created for each of the 8 MISO hubs. Since four hedging 
strategies are employed per hourly time series, 96 hedged 
portfolios are created per hub. Overall, a total of 768 hedged 
portfolios are assessed across 192 hourly time series. This level 
of granularity is critical given that time and location are key 
components in the price formation process for wholesale 
electricity. Furthermore, the simulation results reported by 
Boroumand et al. (2019) suggest that hedging effectiveness may 
vary throughout the day.

Table 1 shows the descriptive statistics for hourly DA and RT 
LMPs on the exchange. Since the generalizations which follow 
also apply hub-level descriptive statistics, Table 1 reports 
aggregate LMP summary statistics across the entire footprint 
for brevity. While the real-time and day-ahead price series have 
similar means, the former is more volatile. As expected, average 
DA and RT LMPs are higher during peak hours (06:00 EST-21:00 
EST) on the exchange. The average DA price for electricity 
during peak hours is $39.74 per megawatt hour as compared 
to $27.65 during off-peak hours, for peak/off-peak spread of 
$12.09. The mean price for real-time power during peak hours 
is $39.33 as compared to $26.95 during off-peak hours, which 
results in a spread of $12.37/MWh. Volatility is also greater 
during peak demand hours in both markets. Neither series is 
normally distributed, and the Augmented Dickey-Fuller (ADF) 
null hypothesis of a unit root is rejected for each hour of the day 
for both time series.

The following Table 1 shows descriptive statistics for hourly DA 
and RT LMPs across all 8 hubs within the MISO footprint. The 
augmented Dickey-Fuller (ADF) test was performed with 4 lags 
and a time trend coefficient.
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Table 1: Descriptive statistics
Hour Mean DA 

($/MWh) 
SD DA 

($/MWh)
Skew.

DA
Kurt. DA ADF

DA
Mean RT 
($/MWh)

SD RT 
($/MWh)

Skew.
RT

Kurt. 
RT

ADF
RT

0:00 27.87 17.39 4.79 55.81 −9.83* 27.07 18.30 4.67 57.94 −11.06*
1:00 26.28 15.68 4.58 54.82 −9.97* 25.64 17.51 5.99 114.84 −10.64*
2:00 25.46 15.09 4.85 60.83 −9.93* 24.73 16.61 6.17 128.70 −10.64*
3:00 25.35 15.31 5.22 68.71 −10.16* 24.59 16.75 6.89 157.35 −10.94*
4:00 26.28 16.42 5.89 85.86 −10.30* 25.71 20.15 10.53 286.28 −12.02*
5:00 29.09 18.78 5.91 85.65 −10.38* 28.40 22.40 8.75 212.68 −11.78*
6:00 33.23 26.35 10.04 215.90 −11.91* 32.36 29.65 8.97 176.15 −13.00*
7:00 37.02 34.63 12.40 287.98 −12.94* 36.53 44.23 10.07 160.86 −14.62*
8:00 36.66 30.16 10.60 205.79 −12.16* 36.01 45.64 17.93 477.52 −15.45*
9:00 37.37 29.39 10.44 212.84 −11.63* 36.76 38.13 13.83 347.90 −14.17*
10:00 37.88 26.62 7.71 127.94 −10.72* 37.82 39.59 12.34 259.44 −14.25*
11:00 38.38 25.56 6.01 91.28 −9.68* 38.13 35.66 9.37 166.87 −12.93*
12:00 39.24 25.97 5.03 69.00 −8.96* 38.89 42.17 11.87 272.91 −12.96*
13:00 40.62 26.89 3.94 38.41 −8.20* 39.71 42.97 9.38 208.82 −11.99*
14:00 41.93 28.81 3.87 40.76 −7.87* 40.21 42.11 7.90 172.55 −10.47*
15:00 43.97 31.15 3.40 30.99 −7.40* 43.01 53.95 12.30 289.54 −11.97*
16:00 44.91 32.05 3.50 34.05 −7.33* 44.48 66.39 19.34 572.83 −14.47*
17:00 44.87 29.78 3.35 28.16 −7.97* 44.68 68.74 21.00 627.73 −15.41*
18:00 44.33 28.66 4.03 44.15 −8.92* 44.57 61.23 16.54 443.12 −15.10*
19:00 41.95 28.16 5.99 93.72 −9.81* 42.13 52.44 10.71 199.65 −14.68*
20:00 38.78 26.14 6.44 108.57 −9.87* 38.90 62.54 19.03 565.02 −15.18*
21:00 34.68 23.54 7.10 129.99 −10.23* 35.02 63.07 20.64 657.53 −15.25*
22:00 31.56 19.39 4.88 64.45 −9.49* 31.00 29.71 10.22 259.22 −12.58*
23:00 29.30 17.21 3.94 43.20 −8.72* 28.47 18.84 4.73 57.32 −10.02*
AVG 35.71 24.55 6.00 94.95 −9.76* 35.20 39.53 11.63 286.37 −12.98*
*Significant at 5% level. Hub-level summary statistics are available upon request.

Table 2: Out of sample variance‑Arkansas Hub

Hour σUnhedged
2

Naïve (%) MV (%) ARDL (1,1) (%) GARCH (1,1) (%)

0:00 45.81 39.25 35.67 33.46 31.02
1:00 46.12 34.97 30.75 34.41 27.32
2:00 75.15 34.30 28.40 28.97 23.50
3:00 60.3 43.28 30.65 32.29 32.80
4:00 109.54 32.76 21.03 19.98 25.95
5:00 119.62 19.29 3.76 11.15 10.93
6:00 1426.35 5.48 −22.40 −34.41 −6.78
7:00 3737.3 6.72 −10.96 −18.07 −5.28
8:00 350.64 34.88 22.84 17.46 21.08
9:00 986.67 28.46 44.06 42.81 37.30
10:00 3291.76 17.58 36.45 36.69 33.68
11:00 993.54 25.41 43.49 40.30 33.80
12:00 3399.61 15.08 13.24 12.81 14.94
13:00 1195.85 22.67 33.32 29.46 33.10
14:00 1299.62 26.72 43.13 27.69 42.58
15:00 2122.68 16.36 5.35 −3.39 6.94
16:00 1374.56 26.04 17.44 12.06 22.87
17:00 1886.82 20.05 22.01 0.24 25.27
18:00 2049 28.62 46.63 56.60 45.26
19:00 4312.62 24.32 51.25 54.32 53.35
20:00 1431.83 30.65 52.75 55.53 52.97
21:00 6212.99 19.18 56.36 61.62 54.24
22:00 184.62 68.81 72.80 75.06 72.36
23:00 103.45 59.85 61.25 58.22 61.90
Avg. (24 h) 1534.02 28.36 30.80 28.55 31.30
Avg. (off-peak) 93.08 41.56 35.54 36.69 35.72
Avg. (peak) 2254.49 21.76 28.44 24.48 29.08

4. RESULTS

Tables 2-9 show the variance reduction obtained from applying 
each hedging approach to the 24 hourly time series for each 
MISO hub. Only 91% (7/768) of total portfolios constructed 

meet the 80% variance reduction threshold commonly used to 
classify a hedge as highly effective. All of the 7 highly effective 
hedges occur on the Texas hub between the off-peak hours 
of 22:00-23:00. Overall, hedging tends to be most effective 
in Texas. The 24-h average variance reduction per technique 
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Table 3: Out of sample variance‑Illinois Hub

Hour σUnhedged
2

Naïve (%) MV (%) ARDL (1,1) (%) GARCH (1,1) (%)

0:00 334.6 58.91 52.23 51.75 50.30
1:00 357.89 60.46 59.97 60.39 60.80
2:00 260.64 57.31 42.45 45.23 35.93
3:00 257.25 60.38 55.29 58.06 55.66
4:00 348.16 46.34 33.19 39.77 31.09
5:00 542.88 46.50 21.80 33.78 21.85
6:00 2098.88 10.51 −1.14 0.74 −2.44
7:00 3940.42 1.50 −52.76 −97.51 −41.18
8:00 1049.87 5.76 12.51 17.07 14.42
9:00 1008.18 42.42 41.31 40.92 40.57
10:00 4469.84 28.26 51.65 52.46 51.94
11:00 2111.35 39.32 52.17 55.52 57.13
12:00 4184.7 30.90 33.55 35.33 25.71
13:00 1741.09 28.15 3.40 −1.84 24.32
14:00 1228.2 28.35 22.07 18.85 24.71
15:00 1946.15 22.37 13.20 −2.58 20.40
16:00 2309.48 24.11 21.26 13.31 28.45
17:00 1940.1 19.09 8.65 9.36 9.12
18:00 918.7 14.56 10.50 13.72 10.92
19:00 1964.45 23.23 17.93 24.28 16.47
20:00 928.62 16.76 −0.34 15.38 16.99
21:00 2774.2 32.81 46.10 41.01 46.92
22:00 494.9 60.55 45.37 51.98 51.40
23:00 197.64 46.42 22.98 26.86 26.20
Avg. (24 h) 1558.67 33.54 25.56 25.16 28.24
Avg. (off-peak) 349.25 54.61 41.66 45.98 41.65
Avg. (peak) 2163.39 23.01 17.50 14.75 21.53

Table 4: Out of sample variance‑Indiana Hub

Hour σUnhedged
2

Naïve (%) MV (%) ARDL (1,1) (%) GARCH (1,1) (%)

0:00 126.02 40.22 24.59 20.48 21.37
1:00 165.12 36.27 8.25 −3.89 0.85
2:00 147.36 43.53 24.97 28.01 23.85
3:00 174.38 61.30 46.29 40.57 44.74
4:00 335.58 35.40 19.49 13.80 20.99
5:00 849.75 25.25 10.82 16.32 16.22
6:00 2856.02 11.62 −8.55 −11.81 −2.22
7:00 7221.02 3.40 −49.39 −59.34 −44.59
8:00 987.35 14.59 8.48 12.56 8.94
9:00 633.19 25.27 10.97 9.97 17.49
10:00 2591.32 26.86 30.73 21.00 27.57
11:00 1329.13 27.62 17.03 22.85 16.54
12:00 4090.04 15.38 −47.25 −20.84 −55.67
13:00 2536.24 18.30 8.09 15.07 12.50
14:00 1718.51 18.10 11.99 −4.23 17.49
15:00 5627 10.13 −3.28 −2.18 −21.93
16:00 6169.63 8.15 3.39 −13.62 −12.84
17:00 1869.24 6.23 −2.13 −8.71 3.14
18:00 869.02 19.38 2.23 7.67 −9.87
19:00 2276.05 14.01 6.82 10.93 7.98
20:00 1070.45 18.28 6.36 4.10 13.57
21:00 2226.36 23.05 31.81 23.22 31.19
22:00 208.67 −1.08 −47.75 −14.64 −19.46
23:00 156.87 33.82 25.12 23.64 25.59
Avg. (24 h) 1926.43 22.30 5.79 5.45 5.98
Avg. (off-peak) 270.47 34.34 13.97 15.54 16.77
Avg. (peak) 2754.41 16.27 1.71 0.41 0.58

ranges between 40.20% and 44.34% on the Texas hub. The 
only other hub to have an average variance reduction >40% 
for any technique is Minnesota (naïve). Overall, these findings 

are consistent with the lack of hedging effectiveness reported 
by Bystrom (2003), Hanly et al. (2017), and Boroumand et al. 
(2019) and Pena (2023).
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Table 5: Out of sample variance‑Louisiana Hub

Hour σUnhedged
2

Naïve (%) MV (%) ARDL (1,1) (%) GARCH (1,1) (%)

0:00 41.74 34.91 35.36 23.65 34.16
1:00 230.64 2.92 2.02 −21.45 −0.15
2:00 306.17 5.26 −2.51 −39.54 −3.68
3:00 303.19 6.58 3.81 −7.49 3.92
4:00 91.53 26.76 8.55 10.23 11.19
5:00 137.97 12.72 −0.93 1.86 −1.38
6:00 1623.37 5.30 −38.15 −55.57 −31.46
7:00 4111.44 2.91 −22.52 −37.78 −31.15
8:00 414.6 −11.11 6.75 −6.26 7.22
9:00 612.29 31.33 33.56 34.01 38.93
10:00 3196.01 19.04 19.61 21.23 23.75
11:00 3457.63 0.66 −14.32 −15.86 −8.40
12:00 6695.69 1.45 −4.85 −6.35 −0.66
13:00 10909.61 0.19 −6.18 −3.79 −1.72
14:00 2479.8 3.43 −1.77 0.21 −2.76
15:00 7870.03 3.99 −9.49 −18.79 −13.17
16:00 2919.91 6.02 −16.47 −25.35 −16.34
17:00 1653.79 3.27 −16.32 −32.10 −6.95
18:00 1143.02 16.61 12.04 22.67 12.94
19:00 3304.59 13.61 9.58 10.04 12.81
20:00 1469.69 5.76 −0.23 3.71 −0.09
21:00 2749.85 36.26 49.94 63.78 50.03
22:00 444.33 −4.18 −28.55 −21.48 −23.04
23:00 79.67 −25.73 1.19 −9.09 −7.31
Avg. (24 h) 2343.61 8.25 0.84 −4.56 1.95
Avg. (off-peak) 204.41 7.40 2.37 −7.91 1.72
Avg. (peak) 3413.21 8.67 0.08 −2.89 2.06

Table 6: Out of sample variance‑Michigan Hub

Hour σUnhedged
2

Naïve (%) MV (%) ARDL (1,1) (%) GARCH (1,1) (%)

0:00 200.90 29.57 11.76 13.91 13.70
1:00 169.40 38.81 18.87 20.81 16.58
2:00 228.30 18.23 −12.51 −3.99 −0.97
3:00 166.99 48.44 28.56 32.61 27.56
4:00 394.35 20.32 −0.06 −0.34 1.44
5:00 491.73 27.38 16.08 16.94 23.37
6:00 2413.34 10.21 −11.52 −22.53 −6.31
7:00 5185.95 4.73 −44.37 −93.11 −37.77
8:00 937.42 14.53 6.70 7.64 10.11
9:00 715.10 34.41 28.40 13.22 30.22
10:00 3145.86 25.61 31.59 36.95 38.59
11:00 1369.73 30.23 31.32 30.88 31.46
12:00 2969.51 26.72 14.22 19.97 1.87
13:00 2158.97 25.34 −3.96 1.15 −0.42
14:00 1395.95 26.10 5.65 1.20 5.98
15:00 4843.34 14.71 −11.39 −17.20 −11.39
16:00 5531.77 12.84 3.61 −15.07 −2.17
17:00 2060.19 19.09 1.96 0.54 2.19
18:00 574.98 −13.34 −10.33 −16.83 −5.68
19:00 1870.69 7.92 −3.92 0.98 −7.95
20:00 949.75 −5.23 −6.86 −20.42 −7.57
21:00 2219.18 22.32 32.81 29.92 35.06
22:00 203.97 23.27 −5.03 −7.22 4.37
23:00 225.71 12.61 −10.28 −3.28 −7.16
Avg. (24 h) 1684.29 19.78 4.64 1.11 6.46
Avg. (off-peak) 260.17 27.33 5.92 8.68 9.86
Avg. (peak) 2396.36 16.01 3.99 −2.67 4.76

The Table 2 shows the out-of-sample percentage variance 
reduction of dollar returns (as compared to an unhedged 
position) for 1-week hedged portfolios on the Arkansas hub. 

MV, ARDL(1,1), and GARCH(1,1) hedge ratios are calculated 
using an 8-week estimation period. A rolling window approach 
is then used to update the MV, ARDL (1,1) and GARCH (1,1) 
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Table 7: Out of sample variance‑Minnesota Hub

Hour σUnhedged
2

Naïve (%) MV (%) ARDL (1,1) (%) GARCH (1,1) (%)

0:00 301.48 39.15 −7.89 7.84 −8.40
1:00 308.53 57.01 46.89 52.09 50.83
2:00 295.70 61.36 56.98 59.22 55.90
3:00 358.60 60.38 55.24 56.91 53.29
4:00 353.05 38.47 −2.15 −26.45 10.61
5:00 491.04 65.41 56.69 59.51 57.53
6:00 2022.22 26.73 7.67 1.54 9.96
7:00 3200.61 4.51 −304.16 −548.79 −357.79
8:00 1066.95 32.94 −28.18 −69.34 −35.28
9:00 1685.82 61.38 49.32 42.64 57.28
10:00 6287.70 44.62 67.15 71.53 68.29
11:00 2543.26 58.03 67.16 72.95 64.06
12:00 4729.13 43.15 52.65 59.80 56.71
13:00 1171.23 53.26 45.18 46.85 38.83
14:00 1542.98 48.28 30.93 26.19 24.07
15:00 995.07 49.33 50.73 51.85 47.55
16:00 1056.70 36.46 22.03 27.63 22.21
17:00 1747.94 39.27 30.76 36.81 34.29
18:00 1078.15 38.39 24.39 27.54 28.21
19:00 2496.94 40.15 27.62 26.79 25.74
20:00 1687.77 44.75 33.53 35.21 34.20
21:00 4061.54 34.10 45.42 46.04 43.90
22:00 475.82 15.96 −35.95 17.06 −39.19
23:00 319.89 38.37 17.22 34.16 28.81
Avg. (24 h) 1678.26 42.98 17.05 8.98 15.48
Avg. (off-peak) 363.01 47.01 23.38 32.54 26.17
Avg. (peak) 2335.88 40.96 13.89 −2.80 10.14

Table 8: Out of sample variance‑Mississippi Hub

Hour σUnhedged
2

Naïve (%) MV (%) ARDL (1,1) (%) GARCH (1,1) (%)

0:00 42.10 33.05 41.72 37.00 37.95
1:00 40.91 29.40 33.90 39.30 41.83
2:00 66.80 9.52 8.69 2.72 11.21
3:00 61.45 15.68 27.09 27.70 29.28
4:00 93.75 17.36 13.92 12.64 19.73
5:00 123.00 −2.99 0.24 1.60 −0.76
6:00 1520.77 5.90 −42.89 −63.83 −35.99
7:00 4332.15 4.50 −17.10 −27.95 −20.19
8:00 293.52 0.09 24.79 23.15 18.62
9:00 437.50 56.19 22.48 33.99 33.41
10:00 1829.18 31.89 32.98 33.47 30.77
11:00 569.01 25.89 7.03 3.44 −5.10
12:00 2406.28 17.42 8.13 9.10 7.56
13:00 1291.80 10.45 6.63 10.29 6.45
14:00 1609.09 23.98 −0.68 14.68 5.29
15:00 4626.03 9.87 −7.46 −2.94 −8.88
16:00 3271.50 13.94 8.93 −2.92 2.17
17:00 1444.68 17.48 3.41 4.64 12.73
18:00 884.15 31.68 34.02 39.21 28.77
19:00 2269.32 42.59 32.47 28.92 23.22
20:00 606.39 −0.69 −2.55 −19.72 9.41
21:00 3085.54 62.23 56.17 70.52 57.16
22:00 105.50 −152.64 −236.49 −99.39 −84.78
23:00 70.37 −115.95 10.72 −91.42 −4.87
Avg. (24 h) 1295.03 7.79 2.76 3.51 8.96
Avg. (off-peak) 75.49 −20.82 −12.52 −8.73 6.20
Avg. (peak) 1904.81 22.09 10.40 9.63 10.34

hedge ratios each week. The best performer for each hour is 
highlighted in bold.

The Table 3 shows the out-of-sample percentage variance 
reduction of dollar returns (as compared to an unhedged position) 
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Table 9: Out of sample variance‑Texas Hub

Hour σUnhedged
2

Naïve (%) MV (%) ARDL (1,1) (%) GARCH (1,1) (%)

0:00 306.40 41.22 52.86 54.64 52.16
1:00 535.46 33.06 57.12 59.04 57.16
2:00 542.86 27.68 46.95 48.54 47.49
3:00 506.57 29.24 51.96 54.06 51.41
4:00 488.03 34.21 51.71 55.80 52.03
5:00 688.05 39.79 55.70 59.34 55.81
6:00 2337.87 34.80 17.18 14.08 20.19
7:00 4140.07 20.57 −127.09 −140.28 −62.06
8:00 2076.98 69.33 47.83 65.36 27.96
9:00 5494.59 49.81 60.76 60.81 63.63
10:00 11707.41 34.28 61.84 56.19 62.84
11:00 4882.56 38.95 68.11 71.95 63.99
12:00 11458.66 24.21 −88.31 −71.11 −63.10
13:00 5156.81 34.98 37.44 35.25 39.80
14:00 6367.13 30.55 52.25 53.94 53.11
15:00 5895.24 21.73 11.24 12.91 11.55
16:00 3022.77 31.21 31.12 13.30 25.86
17:00 4610.39 42.75 59.93 14.87 58.43
18:00 4963.05 52.24 65.43 69.50 56.88
19:00 9554.48 42.63 64.37 66.49 66.58
20:00 4567.58 49.23 76.66 79.50 77.40
21:00 12375.31 30.20 62.47 73.70 62.66
22:00 1141.02 68.50 90.14 88.78 90.13
23:00 565.20 83.80 90.77 92.18 92.18
Avg. (24 h) 4307.69 40.21 41.60 41.20 44.34
Avg. (off-peak) 596.70 44.69 62.15 64.05 62.30
Avg. (peak) 6163.18 37.97 31.32 29.78 35.36

The Table 7 shows the out-of-sample percentage variance 
reduction of dollar returns (as compared to an unhedged position) 
for 1-week hedged portfolios on the Minnesota hub. MV, 
ARDL(1,1), and GARCH(1,1) hedge ratios are calculated using 
an 8-week estimation period. A rolling window approach is then 
used to update the MV, ARDL (1,1) and GARCH (1,1) hedge ratios 
each week. The best performer for each hour is highlighted in bold.

The Table 8 shows the out-of-sample percentage variance 
reduction of dollar returns (as compared to an unhedged position) 
for 1-week hedged portfolios on the Mississippi hub. MV, 
ARDL(1,1), and GARCH(1,1) hedge ratios are calculated using 
an 8-week estimation period. A rolling window approach is then 
used to update the MV, ARDL (1,1) and GARCH (1,1) hedge ratios 
each week. The best performer for each hour is highlighted in bold.

The Table 9 shows the out-of-sample percentage variance 
reduction of dollar returns (as compared to an unhedged position) 
for 1-week hedged portfolios on the Texas hub. MV, ARDL(1,1), 
and GARCH(1,1) hedge ratios are calculated using an 8-week 
estimation period. A rolling window approach is then used to 
update the MV, ARDL (1,1) and GARCH (1,1) hedge ratios each 
week. The best performer for each hour is highlighted in bold.

The frequency in which hedging leads to more risk as compared 
to the unhedged position is striking. 20.57% (158/768) of the 
1-week hedged portfolios have a variance greater than their 
respective unhedged spot return series. This phenomenon is not 
evenly distributed across the MISO footprint as 64.56% (102/158) 
occur on three hubs: Louisiana (45), Michigan (33) and Mississippi 

for 1-week hedged portfolios on the Illinois hub. MV, ARDL(1,1), 
and GARCH(1,1) hedge ratios are calculated using an 8-week 
estimation period. A rolling window approach is then used to 
update the MV, ARDL (1,1) and GARCH (1,1) hedge ratios each 
week. The best performer for each hour is highlighted in bold.

The Table 4 shows the out-of-sample percentage variance 
reduction of dollar returns (as compared to an unhedged position) 
for 1-week hedged portfolios on the Indiana hub. MV, ARDL(1,1), 
and GARCH(1,1) hedge ratios are calculated using an 8-week 
estimation period. A rolling window approach is then used to 
update the MV, ARDL (1,1) and GARCH (1,1) hedge ratios each 
week. The best performer for each hour is highlighted in bold.

The Table 5 shows the out-of-sample percentage variance 
reduction of dollar returns (as compared to an unhedged 
position) for 1-week hedged portfolios on the Louisiana hub. 
MV, ARDL(1,1), and GARCH(1,1) hedge ratios are calculated 
using an 8-week estimation period. A rolling window approach 
is then used to update the MV, ARDL (1,1) and GARCH (1,1) 
hedge ratios each week. The best performer for each hour is 
highlighted in bold.

The Table 6 shows the out-of-sample percentage variance reduction 
of dollar returns (as compared to an unhedged position) for 
1-week hedged portfolios on the Michigan hub. MV, ARDL(1,1), 
and GARCH(1,1) hedge ratios are calculated using an 8-week 
estimation period. A rolling window approach is then used to 
update the MV, ARDL (1,1) and GARCH (1,1) hedge ratios each 
week. The best performer for each hour is highlighted in bold.
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Table 10: Variance reduction by hedging strategy‑24 h
Hub Naïve 

(%)
MV 
(%)

ARDL 
(%)

GARCH 
(%)

AR 28.36 30.80 28.55 31.30
IL 33.54 25.56 25.16 28.24
IN 22.30 5.79 5.45 5.98
LA 8.25 0.84 −4.56 1.95
MI 19.78 4.64 1.11 6.46
MN 42.98 17.05 8.98 15.48
MS 7.79 2.76 3.51 8.96
TX 40.21 41.60 41.20 44.34
Average (all hubs) 25.40 16.13 13.68 17.84

Table 11: Variance reduction by hedging strategy‑peak 
hours
Hub Naïve 

(%)
MV 
(%)

ARDL 
(%)

GARCH 
(%)

AR 21.76% 28.44% 24.48% 29.08%
IL 23.01 17.50 14.75 21.53
IN 16.27 1.71 0.41 0.58
LA 8.67 0.08 −2.89 2.06
MI 16.01 3.99 −2.67 4.76
MN 40.96 13.89 −2.80 10.14
MS 22.09 10.40 9.63 10.34
TX 37.97 31.32 29.78 35.36
Average (all hubs) 23.34 13.42 8.84 14.23

Table 12: Variance reduction by hedging strategy‑off peak 
hours
Hub Naïve 

(%)
MV 
(%)

ARDL 
(%)

GARCH 
(%)

AR 41.56 35.54 36.69 35.72
IL 54.61% 41.66 45.98 41.65
IN 34.34 13.97 15.54 16.77
LA 7.40 2.37 −7.91 1.72
MI 27.33 5.92 8.68 9.86
MN 47.01 23.38 32.54 26.17
MS −20.82 −12.52 −8.73 6.20
TX 44.69 62.15 64.05 62.30
Average (all hubs) 29.52 21.56 23.35 25.05

(24). Risk management seems to be especially challenging in 
Louisiana and Mississippi given this concentration and the fact 
the 24-h average variance reduction was less than 10% for each 
technique on both hubs.

Unsurprisingly, hedged portfolios that increase risk are more 
prevalent during peak demand hours. Of the 512 hedged portfolios 
employed during peak hours (6:00 EST-21:00 EST), 113 (22.07%) 
have a variance larger than the return series they are intended 
to hedge. 17.58% (45/256) of the hedged portfolios created 
during off-peak hours have a variance larger than the unhedged 
position. Each hedging strategy tends to be less effective during 
peak demand hours, which could be the result of intense hedging 
pressure creating a disconnect between real-time and day-ahead 
prices as described in Bonaldo et al. (2022).

While none of the hedging strategies consistently meet the 80% 
variance reduction benchmark, there are noticeable intraday and 
intra-hub differences in effectiveness. When comparing each 
technique across all 192 hourly time series, the naïve strategy most 
often ranks first in reducing risk. The naïve method was the top 
performer for 63.02% (121/192) of the hourly time series across 
MISO, followed by ARDL(1,1) (17.19%), GARCH(1,1) (13.02%), 
and MV (6.77%). While the naïve and ARDL (1,1) models are 
much more likely to finish first as compared to MV and GARCH 
(1,1), they also are more likely to rank last. ARDL(1,1) is the worst 
performer 33.33% of the time, followed by naïve (26.04%), MV 
(21.35%) and GARCH(1,1) (19.27%).

Tables 10-12 provide the average variance reduction obtained per 
technique for the following three clusters, respectively: 24 h, peak 
demand hours, and off-peak demand hours. Table 10 reveals the 
naïve strategy produces the largest 24-h average variance reduction 
across the MISO footprint (25.40%) and is the most effective in 
reducing risk on 5 of the 8 MISO hubs (IL, IN, LA, MI, MN) over 
a 24-h period. The ARDL (1,1) model is the least effective risk 
management technique over a 24-h timeframe with an average 
reduction in variance of 13.68%. Tables 11 and 12 reveal a similar 
pattern during the peak and off-peak hours. The naïve approach 
results in the greatest average reduction in variance during peak 
(23.34%) and off-peak (29.52%) hours across the exchange. The 
ARDL (1,1) model is least effective risk management tool during 
peak hours, while MV hedging results in the lowest average 
variance reduction during off-peak hours.

The following Table 10 shows the 24-h average variance reduction 
associated with each hedging strategy on the exchange.

The following Table 11 shows the average variance reduction 
associated with each hedging strategy during peak hours (6:00 
EST-21:00 EST) on the exchange.

The following Table 12 shows the average variance reduction 
associated with each hedging strategy during off-peak hours (22:00 
EST-23:00 EST, 0:00 EST-5:00 EST) on the exchange.

When first established, MISO covered several midwestern 
states and Manitoba. MISO’s footprint has recently extended 

to the southern United States. The factors of generation vary 
between the northern and southern hubs. For instance, coal 
plays a much larger role in power generation in the northern 
hubs, while wind and natural gas generation are more prevalent 
in the southern zones. These production differences may create 
discrepancies in the ability to effectively hedge between the two 
regions. Table 13 is a revisualization of the information shown 
in Tables 10-12 to assess this possibility. The naïve strategy is 
clearly the best performer in the 4 northern hubs (IL, IN, MI, 
MN) as it has the highest average variance reduction during peak 
hours, off-peak hours, and across the entire day. This is not the 
case for the southern hubs (AR, LA, MS, TX). While the naïve 
approach provides the largest variance reduction during peak 
hours, GARCH(1,1) is the best risk management tool during 
off-peak hours and throughout the day in the southern region. 
Table 13 also reveals that for all 3 timeframe clusters, the best 
hedging strategy for the northern hubs is more effective than the 
top performer in the southern hubs.
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The following Table 13 summarizes the average variance reduction 
obtained with each hedging strategy based on geographic region. 
The technique that produces the greatest risk reduction is shown 
in bold.

5. CONCLUSION

The purpose of this study is to provide an in-depth analysis of 
hedging effectiveness on the largest wholesale electricity market 
in North America. The short-term (1-week) out- of-sample 
performance of four hedging techniques (naïve, minimum 
variance, ARDL(1,1), and GARCH(1,1)) is evaluated for 
24 hourly time series on each of MISO’s eight regional hubs. An 
8-week rolling windows estimation technique is used to update 
the minimum variance, ARDL(1,1) and GARCH(1,1) hedge ratio 
estimates throughout the sample. Consistent with prior research 
covering European markets, none of the hedging strategies can be 
classified as highly effective, and several of the hedged portfolios 
have a variance larger than the spot price return series they are 
designed to hedge. While none of the hedging strategies are highly 
effective, the naïve approach is the best of the four risk reduction 
strategies in the northern hubs, while naïve and GARCH(1,1) are 
the top performers in the southern hubs. Hedging seems to be 
more effective overall on the older, northern hubs, which could 
be a function of the differences in generation sources used in the 
two regions.

The inability to store wholesale power is likely a major factor in the 
relative ineffectiveness of hedging electricity as compared to other 
commodities. Since electricity cannot be efficiently stored, real-
time and day-ahead prices exhibit large price spikes, seasonalities, 
and may fall below zero during times of high congestion and/or 
low demand. These unique properties accentuate the need for 
effective risk mitigation tools in wholesale electricity markets. 
Risk management efforts in wholesale electricity markets is further 
hindered by noncompetitive market participants and asymmetric 

information as identified by Hesamzadeh et al. (2020). While 
all wholesale power market participants would benefit from 
advancements in risk management, electricity retailers—who 
typically do not own generation capacity and oftentimes have 
limited short-term control over their revenue structure—are 
perhaps in the greatest need of effective hedging strategies.

The challenges that practitioners and academicians face in hedging 
wholesale power are likely to expand as the world continues to 
shift from non-renewable to renewable forms of generation. The 
transition from fossil fuels (coal, natural gas) to wind and solar 
power equates to a greater reliance on non-storable factors of 
production. Market participants are increasingly being faced with 
hedging concerns on two fronts: power generation and delivery. 
Future research should focus on these challenges to identify 
effective hedging strategies as we continue to transition to more 
environmentally friendly power generation methods.
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