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ABSTRACT

This study employs machine-learning algorithms (ML), specifically Random Forest (RF) and Gradient Boosting (GB), to assess the impact of various 
factors, including Gross Domestic Product (GDP) growth, urbanization, and energy consumption, on carbon dioxide emissions (CO2). The research 
underscores the RF algorithm’s superior accuracy in determining independent variables’ influence on CO2 emissions compared to GB. Furthermore, 
the study reveals that natural gas is the most significant contributor to CO2 emissions in Egypt, accounting for 49.7% of the total, followed closely by 
oil at 46.7%. The effect of other variables on CO2 emissions is relatively minimal. The findings also establish a strong positive correlation between 
the consumption of natural gas, oil, and coal and CO2 emissions in Egypt. Additionally, a negative relationship is observed between GDP growth, 
suggesting a positive trend in environmentally friendly economic expansion and urbanization on CO2 emissions in Egypt. This unique scenario, where 
urban expansion appears to have an inverse relationship with CO2 emissions, sets Egypt apart from many other countries and signifies a favorable 
environmental outcome.
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1. INTRODUCTION

Concerning comprehending climate change, there exists a 
prevailing perspective that attributes alterations in the climate 
to the dynamics of economic activity rather than the other way 
around. Nevertheless, it is crucial to recognize that the direction 
and nature of this causality may vary among different countries 
and regions. Two different angles can be used to analyze the 
complex relationship between GDP growth and CO2 emissions 
(Jaunky, 2011).

One perspective posits that financial gain is the primary driver 
of environmental degradation, with the notion that increasing 
economic prosperity can be the universal solution to environmental 

pollution issues. From the perspective of consumers, this approach 
may seem suboptimal. In contrast, the second perspective 
emphasizes that emissions are the primary causal factor, while 
income levels play a secondary role. Here, emissions are 
regarded as an inherent cost of production that must be incurred 
in the pursuit of economic prosperity. It is important to note that 
variations in energy use are closely linked to economic expansion, 
but it is not a one-way street. While economic growth may lead 
to increased energy consumption, improved efficiency measures 
can also reduce energy demands.

Energy consumption is a central component of this complex 
relationship and significantly influences environmental 
contamination. CO2 emissions, economic growth, and the use of 

This Journal is licensed under a Creative Commons Attribution 4.0 International License



Abd El-Aal, et al.: Role of Economic Expansion, Energy Utilization and Urbanization on Climate Change in Egypt based on Artificial Intelligence

International Journal of Energy Economics and Policy | Vol 14 • Issue 3 • 2024128

fossil fuels are inherently interconnected. An alarming statistic 
reveals that more than 60% of global direct emissions can be 
attributed to CO2 emissions, as measured by the yearly greenhouse 
gas (GHG) index. Over three decades, from 1990 to 2020 (Butler 
and Montzka, 2017), this type of pollution witnessed a staggering 
45% increase. Urban areas, in particular, are significant contributors 
to this problem, generating over 70% of the world’s CO2 emissions 
(Mitchell et al., 2018). With more than half the global population 
residing in urban centers steadily increasing, cities have become 
pivotal in the climate change narrative (The World Bank. 2012). 
Furthermore, cities are estimated to be responsible for 75% of 
worldwide CO2 emissions, with transportation and construction 
activities as two of the largest sources (Giro, 2021).

The Egyptian economy’s CO2 intensity declined by nearly 23% 
between 2005 and 2019. In 2019, it reached an unprecedented high 
of 884 g of CO2e per US dollar, 56% more than the global average. 
Thanks to structural economic changes and improvements in energy 
use in the industrial sector, Egypt’s GDP and population growth 
have become increasingly decoupled. In 2019, the service industry 
contributed 51% of Egypt’s GDP. Egypt has the largest economy 
in North Africa, accounting for 0.5% of global GDP (World Bank 
data). Therefore, to further reduce CO2 emissions in Egypt, it was 
necessary to determine connections between economic expansion, 
urbanization, energy consumption, and climate change have 
prompted economists and policy professionals to prioritize energy 
consumption and CO2 emissions as key drivers that can stimulate, 
hinder, or potentially offset economic development. However, 
the results of various studies exploring this relationship exhibit 
inconsistency due to variations in the aspects of the economy 
examined, the timeframes considered, the econometric techniques 
employed, and the proxy variables utilized in their estimation. This 
underscores the importance of continuous research, and current 
policy recommendations should be viewed as evolving based on 
the causality element, which can be assessed in terms of energy 
efficiency, pollution mitigation, and cost-effectiveness.

In light of this intricate interplay between economic forces, 
urbanization, energy consumption, and their impacts on climate 
change, the urgency of addressing this global concern has never 
been more apparent. The consequences of global warming, 
including extreme weather events and rising sea levels, are 
increasingly evident and pose significant threats to human lives, 
ecosystems, and economies. As a response to these challenges, 
this research, titled “Role of Economic Expansion, unrenewable 
Energy Utilization and Urbanization on Climate Change in Egypt,” 
seeks to provide a comprehensive understanding of these complex 
relationships and to shed light on potential strategies and policies 
that can mitigate the adverse effects of these forces on climate 
change while fostering sustainable socio-economic growth.

Moreover, this research harnesses the transformative capabilities 
of Artificial Intelligence (AI) to analyze vast datasets, model 
intricate relationships, and forecast future climate scenarios 
with unprecedented accuracy. By focusing on the case of Egypt, 
this paper endeavors to provide valuable insights into the role 
of economic expansion, urbanization, and energy consumption 
in driving climate change, ultimately contributing to the global 

effort to combat this pressing challenge. The implications of this 
research extend to policymakers, businesses, and communities 
worldwide, as it aims to inform evidence-based decisions and 
actions to mitigate climate change while advancing sustainable 
development and environmental stewardship.

In the following sections, we delve into the methodologies, 
findings, and policy implications of our research, shedding light 
on the complex nexus between economic expansion, urbanization, 
energy utilization, and climate change in Egypt and how AI-driven 
insights can contribute to a more sustainable future for the nation 
and the planet at large.

2. LITERATURE REVIEW

The threats of climate change and global warming are now 
recognized as urgent problems on a global scale (Lin and Raza, 
2019). Numerous elements, such as population size, culture, 
wealth, climate, finances, and cultural activities, contribute to 
the energy consumption of individual countries. This is visible in 
several energy sources, especially fossil fuels, electrical power, 
and modern technologies (Cassarino et al., 2019). There are 
quarterly and seasonal fluctuations in energy use across all of these 
departments. Rapid economic and social changes in recent decades 
have increased energy demand (Gong et al., 2020). The world 
faces energy scarcity, pollution, and climate change challenges. 
Full energy consumption, global urbanization, and increased CO2 
emissions result from increased industrial production (Rosenberg 
et al., 2018). Using fossil fuels has resulted in greenhouse gas 
emissions and climate change (Tsai et al., 2016; Wu et al., 2017). 
According to the Intergovernmental Panel on Climate Change, 
the emission rates of various energy sources vary and are affected 
by energy use patterns (Eggleston et al., 2006; Elsherif, 2023). 
Multiple empirical studies, including developed and developing 
nations, have examined the pooled fundamentals of multiple 
energy types or the variables contributing to energy consumption.

Table 1 shows the several studies related to climate change that 
are relevant to the research paper in question:

3. EMPIRICAL FRAMEWORK

In this paper, we can determine the effect of GDP growth, 
Urbanization, and energy consumption (coal, natural gas, and oil) on 
CO2 emissions in Egypt. The following equation shows the practical 
framework of the paper, which will be implemented in Egypt:

CO2 = GDPg + Ur + Co + NG +OL

Where;
CO2 = carbon dioxide emissions
GDPg = Gross Domestic Product growth
Ur = Urbanization
Co = Coal
NG = Natural Gas
OL= Oil
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4. DATA AND METHODOLOGY

This section was divided into two parts: the first part represents 
a description of the data used statistically and graphically, and 
the second part is specific to the methodology used in the paper.

4.1. Data
The World Bank database collects data discussed in Section 3 of 
this paper. For a statistical description and breakdown of the data 
mentioned above, Table 2. In addition, the violin plot (Figure 1) 
shows the distribution of each dependent and independent 
variable.

4.2. Methodology
This research uses GB and RF methods from machine learning 
(ML). Each of these models is a supervised ML model, which 
means it takes in existing data, analyzes it, and then applies the 
findings to forecast new data. Scikit-Learn is a Python module used 
by all ML methods described in this article (Abd El-Aal, 2023).

4.2.1. The ML algorithms
4.2.1.1. The gradient boosting algorithm (GB)
The GB algorithms are a variant of the ensemble ML that Friedman 
(2001) developed. The GB paradigm combines several relatively 
ineffective learners into a highly competent one.

Table 1: Empirical studies on the relationship between economic expansion, urbanization, and energy consumption on 
climate change
Author Year Results
Osobajo et al. 2020 Population size, capital stock, and economic growth were found to have a bidirectional causal link with CO2 

emissions. In contrast, energy consumption was found to have only a unidirectional association, as expected 
from the Granger causality tests. Similarly, the cointegration test results demonstrated a long-run link 
between the variables under investigation (energy consumption, GDP growth, and CO2 emissions)

Abdallh and Abugamos 2017 CO2 emissions and urbanization have an inverse U-shaped connection. However, GDP and EC are 
significantly related to CO2 emissions. Using a semi-parametric model, the population indicates a positive 
effect. However, it is only significant at a 5% level.

Mirza and Kanwal 2017 A short- and long-term causal relationship exists between EC and GDP, CO2.
Nain et al. 2017 CO2 emissions, economic growth, and energy use all have a long-term relationship with one another. At the 

aggregated or disaggregated levels, there is no feedback causality in the short or long run.
Rehman and Rashid 2017 A correlation exists between GDP, energy use, and CO2 emissions. The correlation between GDP and CO2 

emissions is inverse U-shaped.
Dogan and Aslan 2017 The variables used correlate in the long run. Consuming energy results in more CO2 emissions, but tourism 

and actual income reduce this.
Esso and Keho 2016 A causal link exists between GDP, EC, and CO2 emissions over the long term. However, the variables have a 

short-run causation relationship for Ghana, Congo DR, Benin, Nigeria, and Senegal.
Cian and Wing 2016 The paper shows that climate change has a regressive effect on energy demand, with the majority of 

increasing demand occurring in low- and middle-income nations. This raises the possibility that climate 
change will exacerbate energy poverty.

Kasman and Duman 2015 Energy use, GDP, CO2 emissions, urbanization, and economic freedom are all interconnected in the long run. 
CO2 emissions and real income also have an inverse U-shaped connection.

Saidi and Hammami 2015 CO2 has a markedly beneficial effect on energy use. Similarly, an expanding economy boosts energy usage.
Dritsaki and Dritsaki 2014 Energy use, GDP, and CO2 emissions all correlate over time. At the same time, Greece and Spain have a 

positive and statistically significant association between EC and CO2 emissions, while in Portugal, there is a 
positive and statistically significant relationship between GDP and energy consumption.

Hwang and Yoo 2014 There is a unidirectional causation between economic output (GDP) and environmental cost (EC), a 
causality between CO2 emissions and GDP, and a bidirectional relationship between CO2 and EC.

Omri 2013 Energy consumption and GDP both cause and are caused by one another. Furthermore, CO2 and GDP have a 
direct and causative link.

Akpan and Akpan 2012 According to a sector-by-sector examination of GHG emissions, the transportation sector (mostly road 
transport) and the energy and heat sectors of the economy are the two worst offenders.

Auffhammer and Mansur 2012 This work surveys previous research on how weather patterns affect the energy industry. Specifically, we 
focus on empirical publications from scholarly economics journals that examine the relationship between 
weather and energy costs and use. How individuals react to sudden changes in the weather (the intensive 
margin) and how they adjust to these changes over time (the extended margin) will impact the amount of 
energy they use. Further study using household and firm-level panel energy consumption data could show 
how energy users worldwide react to weather shocks if conducted along the intense margin.

Alam et al. 2011 Short-term CO2 emissions and income are correlated. Furthermore, short- and long-term Granger causation 
occurs between CO2 emissions and EC. Aside from this, there is no link between energy use and financial 
well-being.
The GIRF technique does, however, reveal a short-term correlation.

Hossain 2011 Long-term energy use results in more CO2 being released into the atmosphere. In contrast to the favorable 
effects of urbanization on GDP growth, trade openness has an adverse impact. However, it does not amount 
to much in the grand scheme.

Wang et al. 2011 GDP, EC, and CO2 emissions all have a long-run causal link. CO2 emissions and GDP also show a U-shaped 
relationship.

Menyah and Wolde-Rufael 2010 Capital, energy use, labor, and CO2 emissions have interconnected short- and long-term dynamics. In 
addition, GDP and CO2 emissions are positively and significantly related.
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The GB model can build regression trees with just one leaf. 
Instead of being used for classification, regression trees a 
subset of decision trees are trained to estimate continuous 
real-valued functions. The data is repeatedly partitioned into 
smaller and smaller pieces as the regression tree is built. All of 
the data is combined at the outset. Each split on each predictor 
is used to divide the data in half. Using Friedman’s (2001) 

well-established Friedman MSE to quantify residual error, the 
analysis concludes that the predictor responsible for splitting 
the tree most effectively separates the observations into two 
categories.

The GB technique creates a new tree that fixes the problems in 
the old one. The GB method progressively increases the weight 

Table 2: Statistics and a description of all indicators
Variables Abbreviation Source of data Mean Mode Median Dispersion Min Max
Carbon dioxide CO2 World Bank data 159806.74 87745.4 162217.1 0.33 87745.4 244540.5
Gross domestic product growth GDPg World Bank data 4.39 1.125 4.47 0.35 1.125 7.15
Urbanization Ur World Bank data 42.92 42.7 42.89 0.004 42.65 43.47
Coal Co World Bank data 2022.06 866.95 1932.35 0.42 866.95 5229.57
Natural gas NG World Bank data 1169.72 286 1208.13 0.53 286 2138.3
Oil OL World Bank data 654.99 444.9 647.17 0.21 444.9 874.3
Source: Compiled by the author

Figure 1: Violin plots distribution of a dataset
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provided to the new tree to avoid overfitting based on the learning 
rate. This is done until the desired number of trees is reached, or 
the model can no longer be improved.

4.2.1.1.1. Regularized learning objective
To illustrate, consider a dataset with (n) observations and (m) 
features D = (xi, yi), (|D| = n, xi∈ℝm, yi∈ℝ), Predicts findings by 
using K additive functions (Fafalios et al., 2020).

( ) ( )
1

,ˆ
K

i i k i k
k

y x f x f Fφ
=

= = ∈∑
 (1)

where (F) is the CART (regression trees) space. Here, (q) stands 
for the hierarchy of each tree that connects a given instance to 
its matching leaf index. How many leaves a tree has is denoted 
by the symbol (T). Separate q and w values for each leaf in the 
tree are associated with each (fk). Each leaf of a regression tree, 
in contrast to a decision tree, has a continuous score; we denote 
this score, (wi), on the i-th node of the tree. The score in each leaf 
is used to determine the final prediction, and the trees’ decision 
rules (represented by q) determine where the example goes. We 
minimize the following regularized goal to learn the model’s 
collection of functions.
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Here, the error between the prediction ( ˆiy ) and the target (yi) 
is represented by the loss function (L), which is differentiable 
and convex. The second term (Ω) acts as a penalty for the 
model’s (regression tree functions’) complexity. The additional 
regularization term smoothes out the final learning weights 
to prevent over-fitting. It stands to reason that the regularized 
objective will favor a model that uses elementary and prescriptive 
operations.

Due to the presence of functions as parameters, the tree ensembles 
model in Eq. (2) cannot be improved using common optimization 
techniques in Euclidean space. Instead, the algorithm is trained in 
an additive manner. In mathematical notation, in order to minimize 
the following objective, ft must be added to let ( ( )ˆ t

iy ) represent the 
forecast of the (i-th) example at the (t-th) iteration.
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According to Eq. (2), the (ft) that provides the greatest benefit to 
the model is added. In this generic context, the aim is optimized 
rapidly using a second-order approximation[5].
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gradient statistics of the loss function at the first and second 
order. Then, the goal at a time (t) is simplified by eliminating the 
constant terms.
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The ideal weight w j of leaf j can be calculated for a given structure 
q(x) by:
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Then, derive the optimum value by
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The quality of a tree structure (q) can be scored using Eq 6. This 
score is analogous to the impurity score in evaluating decision 
trees but is computed for a broader class of objective functions.

Most of the time, there are too many possible (q) tree 
architectures for us to be able to list them all. Instead, a greedy 
method is employed, which creates a tree from a single leaf 
and adds nodes to it in a series of iterations. After a split, we 
can think of (IL) and (IR) as the sets of left and right nodes, 
respectively. The loss reduction following the partition is given 
by (I = IL∪ IR). We let
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4.2.1.2. Random forest algorithm (RF)
Breiman (2001) discovered another ensemble strategy equivalent 
to boosting models: the RF method. Dietterich (2000) claims 
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that RF is a crucial and potent ML ensemble algorithm. The RF 
method also uses regression trees, just like the GB model. The RF 
model conducts individual training on each regression tree before 
averaging their collective forecasts.

In an RF, a random variable or combination of parameters determines 
the weight of each tree in the ensemble. The joint distribution is 
assumed to be unknown. PXY (X, Y) for a p-dimensional random 
vector X = (X1,…., Xp) denoting the input or predictor variables 
with real values and the response, represented by a random variable 
Y. The objective is to determine a function f(X) for predicting 
variable Y. To minimize the expected loss, a loss function L(Y, f(X)) 
is used to determine the prediction function.

EXY (L(Y, f (X)) (8)

the subscripts represent probabilities based on how X and Y are 
distributed together.

To put it simply, L(Y, f(X)) penalizes f(X) values that are extremely 
far away from Y. Common values for L consist of squared error 
loss. For regression, L(Y, f(X)) = (Y f(X))2, and for classification, 
L(Y, f(X)) = 0-1:

L Y f X I Y f X
if Y f X
otherwise

,
( )� �� � � � � �� � � ��

�
�

0

1
 (9)

The conditional expectation is found by minimizing the squared 
error loss, which is denoted by EXY (L(Y, f(X)).

f x E YX x� � � �� �  (10)

Also referred to as the regression equation. The classification 
problem can be solved by minimizing EXY (L(Y, f(X)) with zero-
one loss, where Y is the set of all possible values of Y.
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The “ensemble predictor” f(x) is built from a collection of “base 
learners” hi(x)., (x), which are then concatenated. Learners are 
averaged as a starting point in regression.
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f(x) is the class predicted the most frequently in classification.
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In RF, the jth base learner is a tree denoted hj(X, Θj), where Θj 
is a collection of random variables, and the Θj’s are independent 
for j = 1., J.

4.2.2. Crossvalidation
In this investigation, ML algorithms employ several hyperactive 
parameters. In order to fine-tune hyperactive parameters, k-fold 
cross-validation is frequently utilized in research such as this 
one. In k-fold cross-validation, the training set is divided into 
k-equivalent halves to assess the algorithm’s fit to the dataset. 
In order to accommodate temporal variations in the data, K-fold 
cross-validation utilizes a training set and a test set characterized 
by distinct initiation and termination times. In order to ensure the 
accuracy of the forecasting model, it must not incorporate any 
information preceding the events that were utilized to suit the 
model (Tashman, 2000). By previous research (e.g., Molinaro 
et al. (2005)), we partition the training data into ten subgroups 
(k = 10) in order to calibrate and train the model.

Given that the RF models utilize trees generated by the bagging 
strategy, some have deemed cross-validation superfluous. 
However, since the out-of-bag procedure resembles cross-
validation, it may be superfluous to employ cross-validation when 
working with an RF model. An important objective of our research 
is to conduct a comparative analysis of the efficacy of GB and RF 
models. Cross-validation was applied to the RF model to facilitate 
the most objective comparisons feasible for this investigation. 
Similar out-of-sample data were utilized for the GB and RF models 
to ensure an accurate comparison.

The cross-validation procedure aims to identify hyperactive 
parameters that reduce the mean squared errors across all ten test 
datasets. The cross-validation-determined hyperparameters will 
be implemented on the test dataset for predictive purposes. This 
study employs a grid search to ascertain the optimal values for 
hyperparameters. The GB and RF models consider every predictor, 
and the user can modify the depth of the trees through adjustments 
to the number of divisions. Cross-validation aims to determine 
which hyperparameter configurations produce the smallest MSE 
(Probst et al., 2019).

5. EMPIRICAL RESULTS

5.1. Model Evaluation
Accuracy metrics are fundamental for assessing the effectiveness 
of ML algorithms. Particularly for classification tasks algorithms. 
These metrics furnish valuable insights regarding the performance 
of a model and contribute to a holistic comprehension of its merits 
and demerits. The following accuracy metrics shall be introduced: 
AUC-ROC, F1 score, precision, and recall (Powers, 2020).
• Precision, also known as positive predictive value, is 

calculated by dividing the number of true positives by the 
sum of expected positives (true positives and false positives). 
It evaluates the accuracy with which the model generates 
predictions. The formula is:

Precision = TP/(TP + FP)
• Recall: The recall metric computes the ratio of accurately 

predicted positive events (true positives) to the total number 
of positive instances (true positives plus false negatives). 
Particularly crucial when attempting to capture the maximum 
number of positive instances is recall. Formula:
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Recall = TP/(TP + FN)
• F1 Score: The F1 score is calculated by averaging the subscores 

for accuracy and memory. It effectively distinguishes between 
false positives and negatives due to its ability to reconcile 
precision and memory. F1 score performance is most 
pronounced when the distribution of courses is unbalanced. 
Formula:

F1 Score = 2 * (Precision * Recall)/(Precision + Recall)
• AUC-ROC: The model’s efficacy is illustrated by the 

Area Under the ROC Curve (AUC-ROC) across different 
categorization criteria. The area under this curve is quantified 
by the area under the ROC curve (AUC-ROC) statistic. 
Comparing the performance of a model across various 

threshold values is particularly advantageous due to the 
comprehensive evaluation it offers regarding the model’s 
capability to differentiate between classes. AUC-ROC values 
could be positive or negative. It is prudent to make an educated 
estimate if the AUC-ROC value of your model is less than 
0.5; conversely, a value approaching 1 indicates exceptional 
discriminatory capability.

5.2. Algorithms Accuracy and Performance
The utilization of cross-validation Table 3 presents the accuracy 
ratings of the employed algorithms, which have been processed 
using Python.

Table 3 shows that the RF algorithm is more accurate than the 
GB algorithms regarding CO2 prediction and its determinants in 
Egypt, where the AUC of the RF is 77% when the GB is 70%. We 
depend on the RF algorithm feature selection for Egypt shown in 
the next section, 5.3, in order to ensure that the RF algorithm is the 
most accurate in predicting CO2 emissions using its determinants, 
which are GDP growth, Urbanization, and energy consumption 
(coal, natural gas, and oil), comparison between predicted values 
and actual values should be done as shown in Table 4.

Table 3: The accuracy of an ML method using 
cross-validation to forecast CO2
Model Metrics

AUC F1 Precession Recall
RF 0.77 0.73 0.73 0.74
GB 0.70 0.57 0.57 0.58
Source: Compiled by the author
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Figure 2: The RF algorithm performance

Figure 3: RF tree for Egypt
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Figure 2 shows more clearly how accurate the RF algorithm is in 
predicting CO2 emissions, except for minor deviations that can 
be ignored.

5.3. GB and RF Algorithms Feature Importance
Unlocking the black capsule of ML models requires feature 
importance. The model’s predictions or classifications are 
assessed, and the impact of each input variable or feature 
is measured and quantified. Data scientists acquire intimate 
knowledge of the underlying mechanisms of their models 
through the allocation of importance scores to these features. 
This understanding enables individuals to improve their models, 
stimulate progress, and generate more precise and comprehensible 
decisions.

This study examines the relevance of features, including their 
practical applications in diverse domains and the methodologies 
used to evaluate them. We cordially invite you to accompany us 
on an exploration into data-driven decision-making, where feature 
importance serves as a governing principle. In Table 5, the feature 
significance of the RF algorithms is displayed.

From Table 5, we find that according to the RF algorithms feature 
selection, the most influence on the CO2emessions in Egypt 
is natural gas by 49.7%, then oil by 46.7%. Regarding other 
variables, influences are very limited. This is due to the small 

Figure 4: Scatter plot for a positive relationship between CO2 
emissions and other variables

Table 4: Comparison between CO2 actual values and 
predicted values according to independent variables
Year Actual CO2 values (kt) The RF Algorithm’s prediction
1990 87745.4 91884.2
1991 89369.5 91884.2
1992 90903.6 92200.5
1993 92661.9 92200.5
1994 87900.8 91884.2
1995 93722.3 97581.8
1996 98940.1 104780.7
1997 106057.6 110776.6
1998 110982.4 110776.6
1999 116535.3 117367.3
2000 114614.4 117367.3
2001 126704.4 122526.7
2002 129441.2 124542.2
2003 133020.4 132276. 8
2004 144503.9 157701.5
2005 162217.1 160387.7
2006 170745 178491.4
2007 183395.7 180501.9
2008 189935.2 186500.5
2009 197660.5 189363.7
2010 200313.3 202432.2
2011 205767.3 203247.2
2012 215000.9 214300.6
2013 213856.4 214300.6
2014 219121.1 217541
2015 226283.6 222653.3
2016 235425.8 227776.8
2017 244540.5 233764
2018 237983 232258.9
2019 217908.3 226729.2
2020 210752.3 210664.9
Source: Compiled by the author

Table 5: The RF algorithms FEATURE importance 
indicators
Variables RF feature importance

For high-income countries
NG 49.7
OL 46.7
Ur 2.6
Co 0.7
GDPg 0.3
Source: Compiled by the author
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contribution of the industrial sector to the gross domestic product 
and its expansion. Urbanization in Egypt is due to migration 
from regional cities to large cities such as Cairo. This migration 
is not followed by the industrial sector but is expanded in the 
construction sector.

This can be explained through an RF tree in Figure 3, which 
shows the relative importance of natural gas and oil’s influence 
on CO2 emissions.

We note from the tree of The RF that the contribution of oil and 
gas most influences climate change in Egypt.

Figure 5: Scatter plot for the negative relationship between CO2 emissions and other variables

The stage assesses whether an entity’s influence is positive or 
negative. Determine the correlation between the dependent and 
independent variables by consulting Table 6.

Table 6: The correlation between the CO2 emissions and 
the independent variables.
Variables Relationship
NG 0.98
OL 0.96
Ur −0.31
Co 0.39
GDPg −0.04
Source: Compiled by the author
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Table 6 shows a strong positive relationship between the 
consumption of natural gas, oil, and coal and CO2 emissions in 
Egypt. There is also a negative relationship between urbanization 
and GDP growth (very weak in the case of output growth) and CO2 
emissions in Egypt. Figures 4 and 5 shows this in detail.

6. CONCLUSION

The key findings of this research underscore the profound impact 
of economic expansion, urbanization, and energy consumption on 
climate change in Egypt. With the nation’s economic growth, there 
is a noticeable increase in greenhouse gas emissions, primarily 
driven by energy-intensive industrial activities. The study 
reveals that Egypt’s Gross Domestic Product (GDP) influence 
on climate change is relatively limited, indicating a positive 
trend of environmentally friendly economic expansion. Unlike 
many other nations, urban expansion in Egypt appears to have 
an inverse relationship with CO2 emissions, suggesting a unique 
and favorable scenario. These interconnected dynamics emphasize 
adopting a comprehensive and well-informed approach to address 
Egypt’s environmental challenges.

Integrating Artificial Intelligence techniques in this study has 
proven to be a powerful asset in predicting future climate trends 
and unraveling complex environmental dynamics. The ML 
algorithms employed in the analysis provide precise forecasts 
and valuable insights, empowering policymakers, researchers, 
and stakeholders to make well-informed decisions and implement 
targeted strategies to mitigate the impacts of climate change in 
Egypt.

Furthermore, this research strongly underscores the urgency of 
adopting sustainable and environmentally conscious practices. 
It emphasizes the imperative transition to renewable energy 
sources, the enhancement of energy efficiency, and the promotion 
of sustainable urban planning as pivotal components in mitigating 
climate change in Egypt. The study also highlights the ongoing 
importance of research and innovation in Artificial Intelligence 
to continually refine predictive models and enhance mitigation 
strategies. This holistic approach is instrumental in steering Egypt 
toward a more sustainable and environmentally responsible future.
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