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ABSTRACT

This paper attempts to investigate the relationship between blue economic activities, renewable energy and the ecological footprint in the MENA 
region from 2000 to 2022. The study utilizes the STRIPAT model, thus, the methodology involves multiple econometric techniques such as 
cointegration tests, quantile via moment, threshold regression and panel Granger causality test. Estimates confirm a significant negative impact 
of renewable energy consumption and innovations on the ecological footprint, while the effect of the total fisheries production, GDP per capita 
as well as urban population growth on the ecological footprint is positive and consistent across the study period. The findings reveal the role 
of extensive economic activities, extensive seas and oceans activities and urbanization as major drivers of environmental damages and the 
subsequent increase in ecological footprints. Therefore, by promoting sustainable practices and renewable energy utilization, MENA countries 
can effectively mitigate their ecological footprints and contribute to global climate change mitigation efforts. The study also emphasizes on the 
significance of sustainable practices and the need for comprehensive policy measures to mitigate the ecological footprint and promote a more 
environmentally conscious society.

Keywords: Blue Economy, Renewable Energy, Middle East and North Africa, Panel Threshold 
JEL Classifications: C21, C24, Q42, Q56

1. INTRODUCTION

The blue economy and renewable energies are closely interrelated 
and both contribute to environmental sustainability, since the use 
of renewable energy sources is essential to achieve sustainable 
development of economic sectors linked to the sea (Wright, 2014; 
Barr et al., 2021). Renewable energies can contribute to reducing 
the carbon footprint of maritime sectors (Serri et al., 2017; Fusco 
et al., 2022)1. Blue economy and energy technology trends are 
intersecting, building potential for future collaboration across 
sectors (Geerlofs, 2021).

1  Such as wind, solar, hydro and tidal energy, are energy 
alternatives to fossil fuels.

Renewable energy plays a vital role in the development of 
the blue economy by providing economic and environmental 
advantages, reducing carbon emissions and supporting sustainable 
growth (Kathijotes and Sekhniashvili, 2017). It is suggested by 
Puspaningtyas (2022) that the utilization of offshore renewable 
energy facilitates the emergence of new industries and employment 
opportunities. By incorporating renewable energy into the blue 
economy, CO2 emissions can be effectively decreased and stimulate 
economic expansion. Furthermore, renewable energy is essential for 
advancing economic prosperity, environmental sustainability, and 
the responsible utilization of resources within the blue economy.

The blue economy plays a crucial role in fostering global sustainable 
development through the oceans (Mohan et al., 2020; Elegbede et al., 
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2023). Its conception rests upon the sustainable exploitation of oceanic 
resources to stimulate economic expansion, enhance employment 
opportunities, improve living conditions and safeguard the integrity 
of the ocean’s ecosystem (Schutter et al., 2021). According to Bennett 
et al. (2019), marine and coastal ecosystems offer an extensive array 
of goods and services to humanity, encompassing nourishment, raw 
materials, renewable energy, transportation and tourism. Moreover, 
they play a fundamental role in confronting the challenges posed 
by climate change. As highlighted by Ehlers (2016), the blue 
economy aims to promote economic growth, and improve life and 
social inclusion without compromising the oceans’ environmental 
sustainability and coastal areas.

As projected by the International Monetary Fund (IMF), global 
economic growth would increase from an estimated 2.9% in 
2019-3.3% in 2020 and 3.4% in 2021 (IMF, 2020). However, the 
COVID-19 pandemic led to a revision of this projection (OECD 
and FAO, 2018). Within this context, in the absence of suitable 
mitigation policies, the International Maritime Organization 
(IMO) estimates that greenhouse gas emissions associated with 
the shipping sector could grow by 50-250% by 2050 (IRENA, 
2020). Overall, around 80-90% of internationally traded goods, 
totaling 8.7 gigatonnes, are transported by ship, representing 9.3% 
of carbon dioxide emissions linked to the transport sector. An IMO 
greenhouse gas study found that, between 2007 and 2012, shipping 
was responsible for an average of 2.8% of annual greenhouse gases 
on a CO2-equivalent basis (IMO, 2014). In March 2023, a historic 
agreement was reached at the United Nations for a High Seas Treaty 
which aims to place 30% of the world’s oceans to protect wildlife 
and ensure equal access to marine genetic resources (IEA, 2023).

The degradation of the environment in the skies and seas has 
significant economic implications for several economies in the 
MENA region. Studies indicate that air pollution alone costs 
an average of 2% of GDP in MENA economies, with the range 
varying from 0.4% in Qatar to over 3% in Egypt, Lebanon, and 
Yemen (World Bank, 2022a). Moreover, coastal erosion poses 
a threat to industries like tourism and fishing, which depend on 
healthy and clean seas (NOC, 2021). The average annual cost of 
coastal erosion in Morocco, which is most affected by this issue, 
is estimated to be 0.6% of GDP, ranging from 0.2% in Algeria 
to 2.8% in Tunisia. Additionally, the economic impact of marine 
plastic pollution is significant, with an average cost of around 0.8% 
of GDP. In countries like Djibouti, Tunisia, and Yemen, this cost 
exceeds 2% of GDP (World Bank, 2022b).

Recent studies witnessed a surge in the presence of the blue 
economy in the international arena, linking it to traditional 
economic activities to foster its efficiency and sustainability and 
mitigating the greenhouse effect and global warming (Voyer et al., 
2020; March et al., 2023). In the related literature, there are studies 
with different orientations, which include analyzing the impact of 
the blue economy on aquaculture activities (Campbell et al., 2021; 
Wiber et al., 2021), maritime transport (Niavis et al., 2017; Tijan 
et al., 2021), fishing (Fondo and Ogutu, 2021; Sihombing et al., 
2022), tourism (March et al., 2019; Rogerson and Rogerson, 2019; 
Karani and Failler, 2020) and marine biotechnology (Choudhary 
et al., 2021; Venugopal, 2022).

Following this line of thought, this study aims to investigate 
the nexus among the blue economy, renewable energy and 
environmental sustainability within the MENA region from 2000 
to 2022. In what follows, Section 2 reviews the related literature 
that sets out background about the topic. Section 3 provides data 
and methodology. Section 4 explains the design and construction 
of the empirical model. Section 5 presents results and discussions. 
Whilst the final section presents some conclusions.

2. REVIEW OF LITERATURE

The Blue Economy has become a crucial factor in driving the 
economic development of nations. Many coastal countries are 
focusing on enhancing the efficient utilization of marine resources, 
including marine space (Plink et al., 2021). It is mentioned by 
Joroff that “the concept of using ocean resources in a way that 
respects the environment can evaluate how both business activity 
models and new technologies satisfy economic and environmental 
conditions, contributing to the sustainability of these resources” 
(Joroff, 2009, p. 171). The European Union (EU) introduced 
the Intra Maritime Policy (IMP) as part of its 2020 Strategy to 
promote sustainable and inclusive growth in the blue economy2. 
The principles of the 2020 Strategy emphasize sustainable and 
environmentally friendly ocean management and economic 
activities (Sulanke and Rybicki, 2021).

Marine ecosystems offer resources that directly and indirectly 
contribute to economies and provide ecosystem services for human 
well-being (Park and Kildow, 2015; Phelan et al., 2020; Roberts 
et al., 2021). Furthermore, the OECD recognized in “The Ocean 
Economy in 2030” report that offshore wind power is projected to 
become the primary source of energy, while commercial shipping 
is expected to quadruple by 2050 (OECD, 2016). These actions are 
expected to increase investments in coastal infrastructure, industry 
and tourism. With an annual economic value estimated at US$2.5 
trillion, the ‘blue economy’ is equivalent to the world’s 7th largest 
economy (World Bank, 2017).

Several previous studies have integrated various perspectives 
on the blue economy and provided a comprehensive concepts 
that incorporate sustainability, productivity and development. 
For example, Martínez-Vázquez et al. (2021) emphasized that 
maintaining a balance in the capacity and resilience of ocean 
systems supports a sustainable environment. Whisnant and 
Vandeweerd (2019) noted that technological advancements, 
appropriate regulatory policies, tax deductions and research and 
development (R&D) efforts are pathways to conserve energy and 
the environment. Kontovas et al. (2022) argued that boosting 
blue growth while considering ecological, social, and economic 
sustainability is essential for maximizing societal benefits from 
ocean resources. Upadhyay and Mishara (2020) confirmed the role 
of the BE in sustainable and inclusive development.

In recent years, the environment and the global energy sector have 
received significant attention in the literature, with a particular 

2 The IMP selected five key sectors for development: biotechnology, 
renewable energy, coastal and maritime tourism, aquaculture, and mineral 
resources, along with emerging subsectors.
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emphasis on the geopolitical factors influencing long-term energy 
production. The International Energy Agency’s (IEA) projections on 
new renewable energy have been scrutinized and criticized in terms 
of their impact on economic growth, technological advancements, 
investment opportunities and sustainability of the environment (IEA, 
2023). The debate surrounding renewable energy, CO2 emissions, 
blue economy has become an intriguing topic in economic 
literature for both developed and developing countries. Economists, 
governments and policymakers are actively figuring out methods 
to ensure a sustainable and healthy environment. Various studies, 
such as those by (Kumar et al., 2014; Gevorkyan, 2017; Gielen 
et al., 2017; Koçak and Sarkgüne, 2017; Zoundi (2017); Akbar et 
al., 2020; Liu et al., 2020 and Khan et al., 2021), have contributed 
extensive literature on the economic development of renewable 
energy sources. Another batch of literature focused on oceans 
amongst (Kaczynski, 2011; De la Vara et al., 2020; Fratila et al., 
2021; Roberts et al., 2021) and others. Several studies were country-
specific oriented such as the work of (Shahbaz et al., 2013; Kadir 
and Sibe, 2014; Tang and Tan, 2015; Ahmad et al., 2017; Sulanke 
and Rybicki, 2021; Hafez et al., 2023) and others.

The future of energy, as suggested by Gielen et al. (2019), lies 
in technologies associated with renewable energy resources 
and energy efficiency. They predicted that these technologies 
will become the leading tool by 2050. (Chontanawat et al., 
2008; Chaabouni and Saidi, 2017; Ernst et al., 2018; Bulut and 
Inglesi-Lotz, 2019; Gielen et al., 2019 and Zheng and Wang, 
2021) examined the relationship between energy consumption, 
economic growth, and environment and found positive connections 
among these variables. Apergis and Payne (2010) and Kahia et al. 
(2017) are among the researchers who have advocated for greater 
investment in renewable energy sources.

Numerous empirical studies have incorporated various variables 
into the theoretical framework of the energy-sustainability 
relationship. However, the findings from these analyses have been 
inconsistent. The majority of existing studies have predominantly 
focused on linear models. However, due to conflicting results 
regarding the relationship between the energy, blue economy and 
the environment, it is necessary to introduce nonlinearity into the 
empirical methodology. Some researchers have found a positive 
association, as indicated by studies Chen et al. (2017) and Wang 
et al. (2019), while others report the opposite Ren et al. (2018) 
and Wu (2018).

3. DATA AND METHODOLOGY

3.1. Data
The primary aim of this study is to examine the relationship 
between the blue economy, renewable energy and environmental 
sustainability. To accomplish this, annual panel data from the 
Middle East and North Africa (MENA) region, including Algeria, 
Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, 
Libya, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunisia, 
United Arab Emirates (UAE) and Yemen, for the period ranging 
from 2000 to 2022. Analyzing the relationship between the blue 
economy, renewable energy and environmental sustainability in the 
MENA region can provide valuable insights into the effectiveness 

of policies and identify areas for improvement in the region and 
beyond, this is owed to various motives: (1) The MENA region is 
strategically located, encompassing countries with access to both 
the Mediterranean Sea and the Red Sea, that makes it focusing on 
sustainable economic activities related to oceans, seas and coastal 
areas. The region’s coastline, marine resources and proximity to 
major international shipping routes provide a unique context for 
investigating the interplay between the blue economy, renewable 
energy and environmental sustainability. (2) The MENA region is 
known for its abundant renewable energy resources, particularly 
solar and wind energy. It has vast deserts with high solar irradiance 
and strong winds in coastal areas, making it a prime location 
for large-scale renewable energy projects. This allows for an 
examination of how these resources can be harnessed to drive 
sustainable economic development while reducing dependence 
on fossil fuels and mitigating climate change. (3) The MENA 
region faces a range of environmental challenges, including water 
scarcity, land degradation, pollution and vulnerability to climate 
change. These challenges pose significant risks to the region’s 
ecosystems, biodiversity, and socio-economic stability. (4) Many 
countries in the MENA region have traditionally relied on oil 
and gas exports as a major source of revenue. However, there is a 
growing recognition of the need to diversify their economies and 
reduce dependence on finite fossil fuel resources. (5) The region 
has witnessed various policy initiatives and investments aimed 
at promoting renewable energy and sustainable development. 
Governments in the region have implemented renewable energy 
targets, established regulatory frameworks and launched initiatives 
to attract investments in the blue economy. Selected variables, 
descriptions and data sources are presented in Table 1 below.

Initially, it is essential to present the descriptive statistics of the 
selected variables, this helps in identifying any irregularities within 
the data series, such as outliers. The depiction of the selected 
variables is computed through some descriptive measures. Based 
on the provided descriptive statistics as illustrated in Table 2, the 
following can be concluded: The mean of the dependent variable 
(ECF) is 4.1, indicating that, on average, each individual’s per 
capita consumption contributes to an ecological footprint of 4.1 
units. With a minimum value of 0.1 and a maximum value of 16.0, 
this wide range of ECF values, suggests significant variations in 
ecological footprints across the studied population. The positive 
skewness (skewness =1.2) indicates that the distribution of ECF 
is skewed towards higher values, suggesting that a relatively 
small proportion of individuals may have significantly higher 
ecological footprints compared to the majority. The high kurtosis 
(kurtosis =3.3) implies that the distribution has heavy tails and 
potential outliers, indicating the presence of extreme values in the 
data. While, the median (p50) ECF value is 2.2, meaning that half 
of the observations fall below this value. The standard deviation 
of ECF is 3.8, suggesting a relatively large dispersion of data 
points around the mean.

Concerning the independent variables, FP has a wide range from 
0.981 to 2205.649, suggesting substantial variations in the quantity 
of fishery resources. RE has a mean of 4.6 of total final energy 
consumption, indicating differences in the adoption and utilization 
of renewable energy sources. GDP has a mean of 12118.6 with a 
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minimum value of −8.9 and a maximum value of 73493, reflecting 
substantial differences in economic development and living 
standards across the countries studied. UPG ranges from −8.8 to 
19.6, while, CE and INOV have means of 111,604.5 and 1040.7 
respectively. It’s worth noting that all variables show varying 
degrees of skewness and kurtosis, indicating deviations from a 
normal distribution and skewed distributions with heavy tails.

The correlation analysis is performed to reveal the relationships 
between the variables. The correlation matrix of the data is 
presented in Table 3. The negative correlation between ECF, FP, 
RE, and INOV suggests that higher levels of fisheries production, 
renewable energy consumption and patent applications are 
associated with lower per capita ecological footprints. This 
could imply that sustainable fisheries practices, increased use 
of renewable energy and innovation in environmentally friendly 
technologies contribute to lower ecological footprints. ECF has 
a positive correlation with GDP and UPG, suggesting that higher 
GDP per capita and urban population growth are associated 

with higher ecological footprints. This indicates that economic 
growth and urbanization may lead to increased consumption and 
resource usage, resulting in larger ecological footprints. Among 
independent variables, there is no strong correlation, indicating 
that multicollinearity may not be a major concern in the regression 
analysis.

To check the multicollinearity, the variance inflation factor (VIF) 
is adopted to assess multicollinearity among the independent 
variables. As indicated in Table 4, the VIF values for all variables 
are <10, indicating that there is no severe multicollinearity among 
assigned variables. This suggests that the independent variables 
are not highly correlated with each other, which strengthens the 
reliability of the regression analysis. The interpretations and 
analysis of the selected data provide insights into the characteristics 
and relationships of the variables, shedding light on potential 
factors influencing environmental sustainability. Further analysis 
and modeling can be performed to investigate these relationships 
in more depth and draw meaningful conclusions.

Table 2: Summary statistics
Stats ECF FP RE GDP CE UPG INOV
Mean 4.1 244.469 4.6 12118.6 111604.5 3.0 1040.7
p50 2.2 65.719 1.1 4067.2 55143.2 2.5 281.0
Min 0.1 0.981 0.0 −8.9 373.4 −8.8 1.0
Max 16.0 2205.649 34.6 73493.3 637433.7 19.6 16259.0
SD 3.8 439.021 7.8 16709.3 146105.9 3.0 2534.8
Skewness 1.2 2.2 2.4 2.1 2.2 1.9 4.2
Kurtosis 3.3 7.2 8.4 6.4 7.0 12.0 21.1
N 414 414 414 414 414 414 414
Source: Authors’ estimation (statistical work is performed using STATA version 19)

Table 1: Variable definitions and data sources. Annual data (2000‑2022)
Abbreviation Description Source
Dependent variable

ECF Ecological footprint: per capita consumption Global hectares: Global Footprint Network (GFN). Available at: https://data.
footprintnetwork.org/

Independent variables
FP Total fisheries production (metric tons) Food and agriculture organization (FAO).
RE Renewable energy consumption (% of total 

final energy consumption)
IEA, IRENA, UNSD, World Bank, WHO. 2023. Tracking SDG 7: The energy 
progress report. World Bank, Washington DC.

GDP GDP per capita (constant 2015 US$) World Bank national accounts data, and OECD National Accounts data files.
CE Carbon emissions (CO2 emissions [kt]) Climate Watch Historical GHG Emissions (1990-2020). 2023. Washington, DC: 

World Resources Institute. Available at
UPG Urban population growth (annual %) World Bank staff estimates based on the United Nations Population Division’s 

World Urbanization Prospects: 2018 Revision.
INOV Patent applications, (residents plus 

nonresidents)
World Intellectual Property Organization (WIPO), WIPO Patent Report: 
Statistics on Worldwide Patent Activity.

Table 3: Cross-correlation table
Correlations

Variables ECF FP RE GDP CE UPG INOV
ECF 1
FP −0.315−** 1
RE −0.347−** 0.097* 1
GDP 0.832** −0.207−** −0.308−** 1
CE −0.095 0.362** −0.289−** 0.031 1
UPG 0.394** −0.131−** −0.199−** 0.358** −0.068 1
INOV −0.213−** 0.477** −0.112−* −0.059 0.781** −0.088 1
**Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed). 
Source: Authors’ estimation (statistical work is performed using STATA version 19)
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For further analysis of the data at hand, Figures 1 and 2 represent 
averages of ECF, FP, and CE (2000-2022) for countries and the 
region respectively. Based on the provided data, one can note that 
Qatar and UAE have the highest ECF values of 13.02 and 10.41 
respectively indicating higher consumption patterns and energy 
demand. This is attributed to factors like industrialization and 
development. While, Yemen and Iran have the lowest ECF values 
of 0.82 and 0.11, respectively, suggesting a higher emphasis on 
environmental conservation. Average values of ECF values show 
a gradual decrease over the years.

Egypt and Morocco have the highest FP, compared to Djibouti 
and Jordon as they count the lowest values. Egypt and Morocco 
are geographically positioned along coastlines with access to large 
bodies of water, such as the Mediterranean Sea and the Atlantic 
Ocean, providing favorable conditions for fishing activities and 
abundant fish populations. On the other hand, Djibouti and Jordan 
have limited access to large bodies of water and face challenges 
such as geographical constraints, limited coastline and potentially 
smaller fish populations. FP average values are increasing over the 
studied period for the MENA regions as a whole. The increasing 
average values of FP in the MENA region as a whole over the studied 
period is due to several factors such as advancements in technology 
and fishing methods, investments and development of fishing ports 

and processing facilities, as well as, increased awareness of the 
economic potential of the fishery industry and population growth.

On the contrary, Saudi Arabia, Egypt and UAE spiked the highest 
CE values, whereas, Yemen, Iran and Djibouti scored the lowest. 
Which is aligned with the same patterns and reasons of the ECF. 
For the entire region, the CE values are continuously rising then 
showing a gradual decrease over the last years. This decreasing 
trend implies a potential decline in carbon emissions, indicating 
progress in addressing environmental concerns.

3.2. Methodology
Historically, The IPAT model introduced by Ehrlich and Holdren 
(1971) was specifically designed to analyze the factors influencing 
changes in urban eco-efficiency. The model specification includes 
the following variables: (1). Population (P): this variable represents 
the size of the population and its potential impact on the environment. 
It accounts for the number of individuals and their consumption 
patterns, which can contribute to environmental degradation. (2). 
Affluence (A): refers to the level of economic activity and wealth 
within a given population. It captures the overall standard of 
living, including income, consumption patterns, and resource use. 
Higher levels of affluence are generally associated with increased 
environmental impact. (3). Technology (T): represents the level 
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of technological development and innovation within a society. It 
includes factors such as the efficiency of production processes, 
energy consumption, and resource management. Technological 
advancements can either mitigate or exacerbate environmental 
impacts, depending on how they are utilized.  represents the 
environmental impact. This model is explained as follows:

I = P × A × T (1)

Several studies such as Dietz and Rosa (1994), Dietz and Rosa 
(1997), Waggoner and Ausubel (2002), Chertow (2008) and Sohag 
et al. (2015) used this model to investigate the interactions between 
populations, economic growth and technological development. 
However, it is important to note that the IPAT model also has 
its drawbacks. Since these statistical associations do not reflect 
the causal effects among the variables. Therefore, the Stochastic 
Regression on Population, Affluence and Technology (STIRPAT) 
model by Dietz and Rosa (1997) was developed as an improvement 
over the IPAT, to overcome its limitations and allow for empirical 
hypothesis testing. By incorporating statistical analysis, the 
model enables researchers to test hypotheses and examine the 
causal relationships between these variables and changes in urban 
eco-efficiency. Researchers such as (York et al., 2003; Fan et al., 
2006; Wei, 2011; Li et al., 2015; Chu et al., 2016; Ghazali and 
Ali, 2019; Li et al., 2019; Farazmand et al., 2020; Nasrollahi et 
al., 2020; Nosheen et al., 2020; Shixiang et al., 2020; Arshed et 
al., 2021; Montero et al., 2021; Thio et al., 2022; Manocha, 2023) 
have employed the STIRPAT model to investigate the factors 
influencing changes in urban eco-efficiency. This model provides 
a more robust framework for understanding the complex dynamics 
between population, affluence, technology, and their environmental 
implications. The STIRPAT model specification is as follows:

I P A Ti i i i i� � � �� �� � �  (2)

Where, α is the constant term; β, γ and δ are parameters to be estimated 
and ε is the error term. A represents affluence measured by GDP per 
capita, P is population measured by the number of inhabitants, 
while T denotes technology changes’ proxies are industrial activity 
calculated by the share of the manufacturing industry in total GDP 
and energy efficiency measured by GDP per unit of energy use. 
Estimated values of P, A and T vary across countries represented by 
i. To address the skewness of the distribution and make equations 
tractable, the log form of STRIPAT is employed, this involves taking 
the natural logarithm of both sides of the equation as follows:

lnI P A Ti i i i i� � � � � � � � � � �� � � � �
0

ln ln ln  (3)

Where lna = α0 and lnεi = μi, these forms allow measuring the 
environmental impact for each factor directly. The STIRPAT model 
has been previously used to examine the impact of explanatory 
variables on the environment. However, there is no consensus on the 
significance of these factors. Therefore, this study aims to estimate 
the following equations to determine their significance. The model 
analyzes the relationship between ecological footprint and various 
factors including fishery production, renewable energy, GDP per 
capita, carbon emissions, urban population and innovation. Thus, 
the functional form of the equation can be written as follows:

ln ECF lnFP lnRE lnGDP
lnCE lnUPG

it i t it it it

it

� � � � �

� �

� � � � �
� �

1 2 3

4 5 iit it itlnINOV� �� �
6

 (4)

Where the dependent variable in this model is ECF measured in 
per capita consumption, αi and λt are country and time specific 
effects respectively, which are used to control for unobservable 
country heterogeneity and for common time-varying effects that 
could affect footprints.

4. MODEL CONSTRUCTION

To provide insights into the dynamics of the data structure, the 
homogeneity or lack thereof within the data is examined. Since 
panel data is utilized, it is crucial to investigate the presence of cross-
sectional dependence. If no cross-sectional dependence is detected, 
first-generation unit root and cointegration tests are proceeded. 
Conversely, if cross-sectional dependence is observed, it indicates 
the need to employ second-generation unit root tests. Subsequently, 
to investigate the existence of second cross-sectional dependence, 
the Pesaran scaled-LM and the Pesaran CD tests are employed, as 
presented by Pesaran (2004). Furthermore, to conduct the second-
generation unit root test, the second-generation Cross-Sectionally 
Augmented IPS (CIPS) and Cross-Sectionally Augmented Dicky-
Fuller (CADF) tests are adopted. Upon verifying the stationarity at 
the first difference, the cointegration test is conducted to determine 
the presence of a long-run relationship between the variables under 
study. In this regard, the second-generation cointegration test and 
Westerlund cointegrations are employed. Upon confirming the 
existence of a long-run relationship, the study employs appropriate 
regression approaches to examine the impact of the independent 
variables on the dependent variable. Multiple regression techniques 
such as quantile via moment, Driscol Karaay regression and 
estimations with threshold were employed to validate and reinforce 
the empirical findings of this study.

4.1. Panel Quantile Regression
Due to the limitations of ordinary least-squares (OLS) regression 
(Koenker and Bassett Jr 1978; Canay, 2011; You et al., 2015), a 
panel quantile regression technique was presented to examine 
the distributional and heterogeneous effect of the different factors 
across different quantiles. This method is particularly relevant in 
scenarios where the relationship between the variables of interest 
exhibits little to no correlation in terms of their conditional means. 
One notable advantage of quantile regression is its robustness to 
outliers during the estimation process. This means that extreme 
observations in the data do not unduly influence the estimation 
results, making it a reliable tool for analyzing datasets with 
potential outliers. In this study, a specific variant of quantile 
regression known as the Method of Moments Quantile Regression 
(MMQR) developed by Machado and Silva (2019) is employed 
to address the issue of unobserved heterogeneity. The first GMM 
estimator uses a fixed grid of quantiles, while the second uses 
a number of quantiles that diverge along with the sample size. 
By explicitly revealing the conditional heterogeneity covariance 
effects of the determinants of ecological footprint, the MMQR 
methodology allows for individual influences to impact the entire 
distribution of the dependent variable, rather than just the average 
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values as in the case of Koenker (2004), Geraci and Bottai (2007), 
Chen and Westgate, (2020). The estimation of the conditional 
quantiles QY (τ|X) takes the following form:

Y X Z Uit it i it it� � � �� � � �' '( )  (5)

Where the probability P Zi it� �� �� � �' 0 1  and ( , , , ) '' '� � � �  

are parameters to be estimated. (αi, δi), i = 1,…,n designated 
the individual i fixed effects and Z is a k-vector of identified 
components of X which are differentiable transformations with 
elements l given by:

Zl = Zl (X). l = α,…,k (6)

Xit is independently and identically distributed for any fixed i and 
is independent across time t. Uit is independently and identically 
distributed across individuals i and through time t and is orthogonal 
to Xit and normalized to satisfy the moment conditions in Machado 
and Silva (2019), as implied in the following equation:

Q X iq X Z qY i it it� � � � � � �|� � � � � �� � � �' ( )'  (7)

Whereas QY (τ│X) indicates the quantile distribution of the 
dependent variable Yit that is the logarithm of the ecological 
footprint per capita consumption and is conditional on the 
independent variable Xit. αi + δiq (τ) is the scalar coefficient which 
is indicative of the quantile τ fixed effect for individual i.

4.2. Threshold Regression
This study claims that there exists a nonlinear association 
between blue economy, renewable energy and environmental 
sustainability. Nevertheless, the distributions of the Conditional 
Quantile Regression (CQR) approach are defined as conditional 
on specific covariates, which points to a critical limitation that it 
cannot fully capture dependence structures (Wenz, 2014; Porter, 
2015; Dong et al., 2020; Alejo, 2021). As a result, Firpo et al. 
(2009) developed the Unconditional Quantile Regression (UQR), 
a simple regression framework that is similar to a standard 
regression except that the dependent variable Y is replaced by the 
re-centered influence function (RIF) of the statistic of interest. 
They proposed an approximation to the functional form of the 
RIF conditional expectation, that the parameters correspond to 
a change in the covariates. In particular, as explained in Fortin 
et al. (2011), the RIF regression allows for using regression type 
tools, such as Oaxaca-Blinder type decompositions. However, 
this is only an approximation to a potentially nonlinear function, 
as such it may fail to appropriately describe the marginal effects. 
UQR has the ability to incorporate fixed effects to address selection 
bias without requiring the redefinition of quantiles (Huber and 
Ronchetti, 2009). Another notable feature of UQR is defining 
quantiles before regression. It introduces a new regression model 
that examines the impact of explanatory variables on quantiles of 
the unconditional marginal distribution of the dependent variable, 
as demonstrated by Killewald and Bearak (2014). To analyze the 
potential nonlinear relationship between the blue economy and 
the ecological footprint, the baseline-panel regression model is 
adopted from Hansen (1999):

Yit = αi +δqit + βi Xit + εit (8)

Where Yit represents ecological footprint in the country i for 
period t, while, αi and εit represent country-specific fixed effect 
and random errors respectively. While qit refers to the level of 
fishery production for each country in the sample during time t. 
Xit represents a k dimensional vector of the control variables. To 
operate with one threshold, the following form is considered:

Y x I q x I q Xit i it it it it i it it� � �� � � �� � � �� � � � � � �' '
1 2

 (9)

Whereas, γ is is the threshold variable that demarcates the two 
regimes, I denotes to the indicator function for the two regimes 
with different regression slopes β '

1
 and β '

2
. To assess the 

validity of the threshold model, through comparing it with its 
corresponding linear values, F statistic is provided:

0 1
1 2ˆ

−
=

S S
F

σ
 (10)

Where S0 is the residual sum of squared of errors of the linear 
model, S1 is the residual sum of squared errors of the panel 
threshold estimate model and 2σ̂  is the residual variance of 
the panel threshold estimation. The null hypothesis of the non-
identification of γ and its associated alternate hypothesis of the 
existence of at least one threshold are given as follows:

H0 1 2: ' '� ��  and HA : ' '� �1 2�  (11)

Referring to (Shao and Shen, 2017; Xie et al., 2017; Wang and 
Shao, 2019 and Hao et al., 2020), the panel threshold model is 
constructed with two threshold variables as follows:

lnECF lnx xI q lnx xI q

X

it it it it it

iti it

� � �� � � �� �
� �

��
� � � � �

�

1 2

1

4  (12)

Where EFPit is the dependent variable, xit is the independent 
variable, which is uncorrelated with the error term εit. While qit are 
threshold variables representing blue economy measured by FP 
(metric tons) and renewable energy measured by RE (% of total 
final energy consumption), γ are the threshold values, β1 and β2 
are the regression slopes of different regimes Xit is the vector of 
the control variables, which are GDP, CE, UPG and INOV, and 
subscripts iand t denote country and the yar, respectively.

4.3. Panel Granger Causality Test
Granger (1969) developed a procedure for analyzing the causal 
relationships between time series. Suppose and are two stationary 
series. The model is written as follows:

y Y X with t Tit i pi it p
p

qi it q itq

Q
� � � � � ��� ��� �� � � �0 0 1 1

1, ,

 (13)

This model is used to test whether x causes y. Essentially, if past 
values of x are significant predictors of the current value of y, 
even when past values of y have been included in the model. 
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Then x exerts a causal influence on y. Where, i is the number of 
countries, T is the times, and t ranges from 1 to T. In addition, 
� �it N�� ( , )0 2  and βpi the coefficients of the autoregressive 
term, whereas δqi is the coefficient of the feedback term. Thus, 
one might easily investigate this causality based on an F test, the 
null hypothesis is therefore defined as:

H0: β1 = ... = βk = 0 (14)

If H0 is rejected, one can conclude that causality from x to y exists. 
Then x and y variables can be interchanged to test for causality 
in the other direction, and it is possible to observe bidirectional 
causality (feedback). To convert equation 13, the following vector 
form is explained as follows:

1 11 1

0

, , , , , ,

, ,

, ,
' '

'

y y z X Xit it p it it it q

i i pi
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� � � ,, , ,, , , , , ,
' ' '� � � � � �i i pi i iT i iTy y y0 1 1�� � �� � �� �

 (15)

The equation is formed as:

yi = Zi βi + Xi δi + εi (16)

Homogeneity of δi is assumed, making the above equation as 
follows:

yi = Zi βi + Xiδ + εi (17)

The parameter bias is solved by calculating the value of δ as 
follows:

1 2 1 2
2 1 2 1

ˆ ˆ ˆ ˆ1 12 ( ( ˆ ˆ )
2

ˆ
2

  = − + = + − +      
δ δ δ δ δ δ δ δ  (18)

Recently, Panel Granger non-causality testing developed by 
Juodis et al. (2021) was initiated to analyze the causal relationship 
between variables in panel data, additionally, it is valid in models 
with homogeneous or heterogeneous coefficients. It is an extension 
of the Granger causality test, which is commonly used to assess 
the causal relationship between variables in time series data. 
The novelty of their approach lies in the fact that under the null 
hypothesis, the Granger-causality parameters equal zero and thus 
they are homogeneous. This allows the use of a pooled fixed effects-
type estimator for these parameters only, which guarantees a NT  
convergence rate, where N denotes the number of cross-sectional 
units in the panel. To account for the so-called “Nickell bias” of 
the pooled estimator, their testing procedure makes use of the Half 
Panel Jackknife (HPJ) approach of Dhaene and Jochmans (2015). 
The resulting approach works very well under circumstances that 
are empirically relevant: moderate time dimension, heterogeneous 
nuisance parameters and high persistence.

Implementing panel Granger non-causality testing provides a 
comprehensive approach to assess causal relationships in panel 
data, considering both the individual and temporal dimensions of 
the data. The advantages of the Panel Granger non-causality testing 

are: (1) it accounts for the lagged values of the variables over 
time, which helps capture the dynamic relationships between the 
variables. (2) It considers the individual-specific effects, allowing 
for a more accurate analysis of the causal relationship. (3) Panel 
Granger non-causality testing addresses endogeneity concerns 
by incorporating lagged values of the variables, which can help 
control for potential reverse causality or omitted variable bias. (4) 
by utilizing the pooled data from different countries across periods, 
Panel Granger non-causality testing can enhance the statistical 
analysis, leading to more reliable and robust results.

5. EMPIRICAL RESULTS AND DISCUSSION

5.1. Diagnostics
Before estimating the model, some standard preliminary tests 
are undertaken to verify the time-series properties of the selected 
variables. First, the Pesaran CD (Cross-Sectional Dependence) test 
and the Pesaran Scaled-LM (Lagrange Multiplier) test are used 
to examine the presence of cross-sectional dependence in panel 
data analysis3. These tests help determine if there is a correlation 
between the observations across different cross-sectional units 
(countries) in the dataset. The Pesaran’s CD test assesses whether 
the residuals from a panel regression model are cross-sectionally 
correlated. The Pesaran Scaled-LM test examines whether the 
residuals of the panel regression model exhibit cross-sectional 
correlation after controlling for the presence of individual-
specific effects. A robust test that takes into account the potential 
heteroscedasticity and serial correlation in the panel data. Results 
reported in Table 5 show that the null hypothesis of strict cross-
sectional independence is rejected for all variables, indicating 
that the assumption of independence among observations within 
the same nation is violated. This confirms the presence of cross-
sectional dependence, which implies that there are unobserved 
factors common to the selected countries that affect the dependent 
variable. In such cases, appropriate methods that account for 
cross-sectional dependence can be employed to address this issue.

To investigate the homogeneity assumption in panel data analysis, 
Pesaran and Yamagata (2008) and Blomquist and Westerlund 
(2013) are tested. The former introduced the common correlated 
effects (CCE) approach, which assumes that there are common 
unobserved factors that affect all individuals in the panel. The 
latter proposed a homogeneity test based on the idea that if 

3 The approach was first introduced by Koenker and Bassett Jr. (1978) and 
applied in a number of empirical applications (see, Lamarche 2010; Canay 
2011; Galvao Jr 2011, for early contributions).

Table 4: Results of VIF test
Variable VIF 1/VIF

7.52 0.132951
CE 5.61 0.178410
INOV 2.97 0.336263
FP 2.38 0.420659
GDP 1.77 0.566011
RE 1.34 0.745789
UPG 1.18 0.849656
Mean VIF 3.25
Source: Authors’ estimation (statistical work is performed using STATA version 19)
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the relationship between variables is homogeneous, then the 
coefficients estimated from different subsamples of the panel 
should be similar. They developed a test statistic called the 
Blomquist-Westerlund (BW) statistic, which measures the 
difference in coefficients between different subsamples. It is crucial 
to conduct the homogeneity test to assess whether the relationships 
between variables are consistent across individuals and make 
appropriate adjustments in their analysis if necessary. Table 6 
shows the results of the slope homogeneity tests. By comparing the 
BW statistic to critical values, there is evidence of heterogeneity 
in the coefficients at a 5% significance level. Therefore, this leads 
to unbiased and consistent estimates.

Subsequently, the stationary properties of all variables in this study 
are assessed. To accomplish this, the Augmented Dickey-Fuller 
(ADF) test is utilized, which is widely recognized for examining 
time series stationarity. Additionally, the panel unit root test 
(CADF) proposed by Breitung and Das (2005) is employed. 
These tests assume a common autoregressive parameter for all 
individuals in the panel and address cross-sectional dependence by 
subtracting the cross-sectional averages from the analyzed series. 
Table 7 presents the outcomes of the panel unit root tests, revealing 
that it is not possible to reject the null hypothesis of a unit root 
for all selected variables at the level form. However, when the 
variables were integrated to the first differences, the null hypothesis 
of a unit root was entirely rejected at the 1% level. This suggests 
that it is necessary to utilize variables in first differences for the 
empirical analysis to avoid biased estimation results arising from 
spurious relationships. Nonetheless, it is important to note that 
adopting variables expressed in the first differences would result 
in the loss of the long-term relationship between the variables. 
Since the primary interest lies in examining the long-run effects 
of determinants of the ecological footprints on the environment, 
using first differences is not a proper option.

Therefore, in a subsequent step, the cointegration analysis 
is conducted to investigate whether a long-run equilibrium 
depicts the variables in the panel. If a long-run equilibrium is 
found, regression techniques can be applied to obtain consistent 
estimates, even in the presence of nonstationary data. To this end, 
the cointegration tests proposed by Pedroni (2004), Kao (1999), 
Kao and Chiang (2001) and Westerlund (2007) are employed. 
Additionally, the Westerlund variance ratio is used to control for 
cross-sectional dependence. The results of the tests are presented 
in Table 8. Results consistently indicate that the data is integrated 
to order one. This aligns with existing literature that has adopted a 
similar panel quantile regression approach, as observed in studies 
by (Ike et al., 2020; An et al., 2021; and Aziz et al., 2021).

5.2. Quantile via Moment
As mentioned earlier, this study employs MMQR, since it provides 
insights into the relationships between the ecological footprint 
and the independent variables (fishery, renewable energy, GDP 
per capita, carbon emissions, urban population growth, and 
innovations) at different quantiles. The coefficients at different 
quantiles help understand how these independent variables affect 
the dependent variable across different parts of its distribution. 
The results of MMQR are provided in Table 9.

Concerning the blue factor, the coefficient estimates of total 
fisheries production for different quantiles (0.00102, 0.00182, 
0.00699, 0.0138, 0.0252) suggest that the effect of the total 
fisheries production on the ecological footprint is consistent across 
different quantiles. The positive coefficients of all quantiles suggest 
that there is a direct impact of the total fisheries production on 
the ecological footprint. It is worth noting that the magnitude of 
the impact is increasing at higher levels of fishery production, 
as the coefficient at the 0.1 percentile is 0.001 compared to 0.9 

Table 8: Cointegration test results
Test Method T. statistic P-value
Pedroni Modified Phillips–Perron 4.5033 0.0000

Phillips–Perron −7.5176 0.0000
Augmented Dickey–Fuller −7.0654 0.0000

Kao Modified Phillips–Perron −2.3145 0.0045
Phillips–Perron −3.2167 0.0022
Augmented Dickey–Fuller −3.2216 0.0138
Unadjusted modified 
Dickey-Fuller

−2.4528 0.0168

Unadjusted Dickey-Fuller −2.0072 0.0446
Westerlund Variance ratio −1.8633 0.0650
Source: Authors’ estimation (statistical work is performed using STATA version 19)

Table 6: Results of slope homogeneity tests
Variables ∆ Adj ∆
ECF 36.51*** 40.49***
FP 2.46** 2.713***
RE −0.702* −0.774*
GDP 1.752* 1.93*
CE 3.58*** 3.949***
UPG 1.642* 1.89*
INOV 2.14** 5.08***
***denotes 1% significance level. **denotes 5% significance level. *denotes 10% 
significance level 
Source: Authors’ estimation (statistical work is performed using STATA version 19)

Table 7: Results of unit root test
Variables CADF (1st difference)
ECF −16.216***
FP −14.046***
RE −9.913**
GDP −12.63***
CE −12.16***
UPG −16.13***
INOV −13.66***
***denotes 1% significance level. **denotes 5% significance level. *denotes 10% 
significance level 
Source: Authors’ estimation (statistical work is performed using STATA version 19)

Table 5: Results of the cross-sectional dependence tests
Variables Pesaran’s CD Pesaran Scaled—LM
ECF 4.038*** 52.38***
FP 1.78* 39.67***
RE 7.91*** 7.481***
GDP 4.568*** 56.03***
CE 31.122*** 210.2***
UPG 14.495*** 144.26***
INOV 25.05*** 69.59***
***denotes 1% significance level. **denotes 5% significance level. *denotes 10% 
significance level 
Source: Authors’ estimation (statistical work is performed using STATA version 19)
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percentile which counted as 0.025. This confirms that an increase 
(decrease) in fishery, increases (decreases) carbon footprint. This 
result is aligned with (Sieghart et al., 2019; Wang et al., 2019 and 
Moneer, 2023).

As reported by the World Bank (2023), the MENA region faces 
a significant threat to its blue economy, which is crucial for the 
region’s economic growth, due to high levels of marine and 
coastal pollution. The MENA region has the highest per capita 
plastic footprint, with the average resident releasing over 6 kg 
of plastic waste into the ocean each year. The Mediterranean 
Sea, in particular, generates $450 billion annually through its 
Blue Economy, however, it is currently one of the world’s major 
hotspots for plastic pollution. Despite some progress in raising 
awareness and managing plastic pollution, it continues to cost 
MENA countries an average of 0.8% of GDP per year. Plastic 
pollution has adverse effects on various sectors, including tourism, 
fisheries, shipping, and the well-being of people in the region. 
Recognizing the magnitude of the challenge, the governments 
of Tunisia and Morocco for example developed action plans in 
2022 to reduce marine plastic pollution and promote a “circular 
economy.” This circular economy approach aims to minimize 
waste and pollution by extending the lifespan of plastic products 
and encouraging material and product sharing. Study conducted 
by Heger et al. in 2022 reveals that approximately 6.3 k of 
mismanaged plastic waste enter the Mediterranean waters off the 
coast of Morocco per kilometer every day, equivalent to nearly 14 
pounds over every half a mile. The estimated amount is even higher 
off the coast of Tunisia, with 9.5 k or 21 pounds per kilometer4.

4 Wind energy potential is especially high in North African countries, and it 
is estimated that wind power potential in this region is 34 times greater than 
that of northern European countries. Morocco, for example, is estimated 
to have an offshore wind potential of 200 GW, benefiting from average 
wind speeds of 7.5-9.5 m per second (m/s) in the south and 9.5-11.0 m/s 
in the north. Algeria also has tremendous technical wind energy potential 
estimated at 7,700 GW. To put this in perspective, the total wind capacity in 
Europe at the end of 2020 was only 216 GW.

On the contrary, the coefficient estimates for renewable energy 
consumption (−0.0118, 0.0121, 0.000187, −0.0124, −0.0222, 
−0.0385) indicate a significant impact of renewable energy 
consumption on the dependent variable at different quantiles. 
The negative coefficients suggest that an increase in renewable 
energy consumption is associated with a decrease in the ecological 
footprint at different quantiles. The positive coefficient at the 
0.1 percentile suggests that at lower levels of renewable energy 
consumption, there is a positive relationship with the ecological 
footprint. This could be due to factors like challenges in integrating 
high levels of renewable energy into existing systems, while it 
has a significant negative impact on 0.5, 0.75 and 0.9 quantiles. 
That is increasing renewable energy consumption by 1%, median 
of ecological footprint will decrease by 0.022%. The negative 
coefficients at higher percentiles suggest that as renewable energy 
consumption increases, that tends to enhance the environmental 
conditions.

Recent studies have shed light on the potential negative effects 
of renewable energy on ecological footprint and environmental 
sustainability. While renewable energy sources such as wind, 
solar, and hydropower are often hailed as clean and sustainable 
alternatives to fossil fuels, these studies suggest that their 
implementation may not be without drawbacks. One major concern 
is the impact of large-scale renewable energy projects on wildlife 
and ecosystems. For instance, wind turbines have been found to 
pose a significant threat to birds and bats, leading to increased 
mortality rates. Similarly, the construction of solar farms and 
hydropower dams can disrupt natural habitats and affect the 
migration patterns of fish and other aquatic species. Additionally, 
the production and disposal of renewable energy infrastructure 
can result in the release of toxic materials and contribute to 
environmental degradation. These findings emphasize the need for 
careful planning and consideration of the ecological consequences 
when implementing renewable energy technologies to ensure a 
truly sustainable and environmentally friendly energy transition 
(Hanley and Nevin, 1999; Owen, 2004; Tsoutsos et al., 2005; Patel, 

Table 9: Quantile via moments results
Variables location scale 0.1 0.25 0.5 0.75 0.9
Total fisheries production −0.00653*** −0.00989*** 0.00102** 0.00182*** 0.00699** 0.0138*** 0.0252***

(0.00101) (0.00812) (0.00114) (0.00829) (0.00102) (0.00142) (0.00224)
Renewable energy 
consumption

−0.0118*** −0.0142*** 0.0121** 0.000187 −0.0124*** −0.0222*** –0.0385c

(0.00449) (0.00362) (0.00534) (0.00377) (0.00440) (0.00614) (0.00961)
GDP per capita 3.73e−05*** 6.56e−06*** 4.83e−05*** 4.28e−05*** 3.70e−05*** 3.24e−05*** 2.49e-05***

(2.78e−06) (2.24e−06) (3.23e−06) (2.31e−06) (2.70e−06) (3.77e−06) (5.92e-06)
Carbon emissions 2.35e−07 1.07e−06 −1.57e−06 −6.68e−07 2.85e−07 1.02e−06 2.25e-06

(8.91e−07) (7.19e−07) (1.02e−06) (7.35e−07) (8.92e−07) (1.25e−06) (1.96e-06)
Urban population growth −0.0100 0.0179 −0.0402* −0.0251* −0.00917 0.00319 0.0238

(0.0184) (0.0148) (0.0209) (0.0151) (0.0186) (0.0260) (0.0409)
Patent applications, residents 
plus nonresidents

−0.00252*** −4.39e−05 −0.00178*** −0.00215*** −0.00254*** −0.00285*** -0.00335***

(4.14e−05) (3.34e−05) (4.71e−05) (3.41e−05) (4.16e−05) (5.82e−05) (9.16e-05)
Constant 1.297*** 0.367** 0.523** 1.059*** 1.319*** 1.656*** 1.902***

(0.177) (0.162) (0.227) (0.112) (0.176) (0.303) (0.401)
Observations 414 414 414 414 414 414 414
Standard errors in parentheses
***P<0.01, **P<0.05, *P<0.1 
Source: Authors’ estimation (statistical work is performed using STATA version 19)

https://ufmsecretariat.org/wp-content/uploads/2017/12/UfMS_Blue-Economy_Report.pdf
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2009; Solangi et al., 2011; Zound, 2017; Majeed and Luni, 2019; 
Gareiou et al., 2021; Edenhofer et al., 2022, Enserink et al., 2022; 
Olabi and Abdelkareem, 2022; Sarwar et al., 2022).

With respect to the other independent variables, the consistently 
positive coefficients for GDP per capita across different percentiles 
indicate a positive and significant relationship between economic 
prosperity (higher GDP per capita) and ecological footprint. That 
is increasing GDP by 1%, median of ecological footprint will 
increase by 3.70%. While GDP growth is often associated with 
positive economic outcomes, it can also contribute to an increase 
in the ecological footprint, this can be attributed to several 
reasons: resource intensive economic activities; increased energy 
demand; expanding infrastructure; increased waste generation; 
overconsumption and unsustainable production. This not only 
affects the ecological balance but can also have far-reaching 
consequences for ecosystems, biodiversity, and natural habitats. 
It is important to note that the relationship between GDP and the 
ecological footprint is complex and can be influenced by various 
factors, including policy choices, technological advancements, and 
societal values. While economic growth can contribute to negative 
environmental impacts, it is crucial to implement sustainable 
development strategies, promote resource efficiency, and adopt 
environmentally conscious policies to mitigate these negative 
effects and ensure a more sustainable future.

The relatively small and fluctuating coefficient estimates for 
carbon emissions suggest a weak relationship between carbon 
emissions and the ecological footprint. This could be due to 
complex interactions between carbon emissions and other factors, 
such as policy interventions, technological advancements or 
varying levels of environmental awareness and regulations 
across different percentiles. While the coefficient estimates for 
urban population growth (−0.0100, 0.0179, −0.0402, −0.0251, 
−0.00917, 0.00319, 0.0238) suggest that urban population growth 
has a mixed effect on the ecological footprint across different 
quantiles. The negative coefficients at lower percentiles suggest 
that at the early stages of urban population growth, there might 
be challenges related to infrastructure, resource allocation, or 
environmental sustainability, leading to a negative impact on the 
ecological footprint. Nevertheless, higher percentiles indicate that 
as urban population growth becomes more substantial or reaches 
a certain threshold, the positive effects of increased urbanization, 
such as market expansion, or technological advancements, start to 
dominate, resulting in a positive impact on the ecological footprint.

Focusing on innovations, the negative coefficients for patent 
applications across all percentiles suggest that higher levels 
of patent applications are associated with a decrease in the 
ecological footprint. This could be due to factors such as increased 
competition, market saturation or intellectual property rights 
that arise as patent applications increase, potentially impacting 
footprint negatively and significantly. An increase in patent 
application by 1%, median of ecological footprint decreases by 
0.00254%.

5.3. Threshold Regression
Based on the literature previously reviewed, it is evident that 
the blue economy has a substantial impact on the environment. 
However, previous studies have overlooked the potential presence 
of non-linear effects within the blue economy. Recognizing 
the possibility of non-linearity, a panel threshold approach is 
employed to investigate this phenomenon. To begin, we conducted 
a test to examine the existence of a single threshold using 1000 
bootstraps. The null hypothesis (H: δ1 = δ2) assumes that no 
threshold exists, while the alternative hypothesis suggests the 
presence of a single threshold. By rejecting the null hypothesis, 
testing for the existence of multiple thresholds can be proceeded, 
thereby leading to a more appropriate model. Table 10 displays the 
existence of a single threshold for the blue economy at 4920.86 
(in log form), with a confidence interval ranging from 490.82 
to 4970.57. Table 11 reports the results of the significance level 
test for a single threshold. The obtained P-value is significant, 
providing evidence to reject the null hypothesis that no threshold 
exists. Additionally, the F-statistic surpasses the critical value, 
favoring non-linearity and indicating the absence of a linear 
relationship between fishery and carbon footprint. These findings 
highlight the importance of considering non-linear effects within 
the blue economy and emphasize the need for a more sophisticated 
model that accounts for multiple thresholds. By doing so, we can 
gain a deeper understanding of the relationship between the blue 
economy, environmental impact and carbon footprint.

Table 10: Estimation 0f a model with a unitary threshold
Model Threshold 95% CI

Lower Upper
Th-1 492.8652 490.8233 497.5745
CI: Confidence interval. Threshold estimator (CI=95%), with 1000 bootstrap estimates 
Source: Authors’ estimation (statistical work is performed using STATA version 19)

Table 11: Test for the unitary threshold model
Threshold RSS MSE F. stat Probability Crit 10 Crit 5 Crit 1
Single 1.587 0.008 57.951 0.048 54.759 59.681 64.316
CI: Confidence interval, RSS: The residual sum of squares, MSE: Mean squared error. Threshold estimator (CI=95%), with 1000 bootstrap estimates 
Source: Authors’ estimation (statistical work is performed using STATA version 19)

Table 12: Estimation of models with multiple thresholds
Model Threshold 95% CI

Lower Upper
Th-1 492.8652 490.8233 497.5745
Th-2 506.46653 505.6529 509.8902
Th-3 511.6796 510.1445 512.0635
CI: Confidence interval. Threshold estimator (CI=95%), with 1000 bootstrap estimates 
Source: Authors’ estimation (statistical work is performed using STATA version 19)
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In recent research, a comprehensive investigation was conducted 
to explore the potential existence of double and triple thresholds 
in the intricate relationship between the blue economy and the 
environment. This statistical significance involved conducting 
rigorous analyses and statistical tests. Table 12, provides the 
identification of multiple thresholds within the context of fishery 
production levels. Specifically, three distinct thresholds were 
estimated, namely 492.8, 506.4, and 511.6, arranged for Th-1, Th-2 
and Th-3 respectively. To further validate and assess the presence of 
these thresholds, Table 13 shows the estimates of 1000 bootstrapping 
iterations, which were utilized to approximate the likelihood of 
double and triple thresholds in the examined relationship.

Notably, the results obtained from this finding indicate that a 
single threshold is statistically significant, with a P = 0.04. This 
suggests that a specific threshold level significantly influences 
the association between the blue economy and the environment. 
However, intriguingly, the analysis reveals that the presence 
of double and triple thresholds are statistically insignificant, as 
indicated by probability values of 0.27 and 0.56, respectively. 
This suggests that the relationship between the blue economy and 
the environment is primarily characterized by a singular threshold 
level, rather than multiple thresholds.

5.4. Panel Granger Non-Causality Test
As explained earlier, the panel non-causality test conducted by 
Juodis, Karavias and Sarafidis examines the relationship between 
ECF and several independent variables, namely FP, RE, GDP, 
CE, UPG and INOV. The test aims to determine whether there is 
a causal relationship between ECF and each of these variables. 
Based on the test results as explained in Table 14, with a 95% 
confidence level, several remarks can be noted. There is evidence 
of a heterogeneous bidirectional relationship between the ECF and 
each of FP and CE. This means that changes in ECF may have an 
impact on these variables, and vice versa.

The statistically significant relationship between FP and ECF as 
indicated by the coefficients of (7.38*** and −1.3**), shows that 

FP positively affects ECF, which means that as FP increases, it puts 
additional pressure on ecosystems, leading to ecological changes 
and potentially increasing the ecological footprint. While ECF can, 
in turn, negatively influence fishery production. As the ecological 
footprint increases, it can lead to depletion of fish stocks, loss of 
biodiversity and degradation of marine habitats. These negative 
impacts can reduce the productivity and sustainability of fishery 
resources, thereby affecting FP in the long run.

There is statistically significant positive bidirectional relationship 
between CE and ECF with magnitudes of (4.21*** and 1.21*) 
due to extensive activities associated with human development, 
industrialization, and the burning of fossil fuels tend to result 
in higher carbon emissions. Factors such as increased energy 
consumption, transportation demands, and deforestation can 
contribute to the release of greenhouse gases into the atmosphere, 
leading to climate change and environmental degradation.

On the other hand, there is evidence of heterogeneous unidirectional 
relationship between the ECF and each RE and INNOV. Results 
indicate a significant inverse relationship between RE and 
ECF, with a coefficient of (−1.97**). This is attributed to the 
development and utilization of renewable energy sources, such 
as solar, wind, hydro, and tidal energy, which can contribute to 
environmental sustainability and mitigate ECF. Furthermore, 
the coefficient of INNOV −10.3*** proves negative association 
with EFP.

Conversely, there is insignificant evidence of a causal relationship 
between ECF and each of GDP and UPG. This suggests that 
changes in ECF are unlikely to cause changes in GDP and UPG. 
Suggesting that changes in ECF are unlikely to have a causal 
impact on GDP and UPG, and vice versa.

6. CONCLUSION

This paper contributes to the understanding of sustainability and 
environmental impact by shedding light on the complex interplay 
between economic, demographic and energy-related factors. The 
paper examines the relationship between various variables and the 
ecological footprint in the MENA countries over the period from 
2000 to 2022. Through the utilization of the STRIPAT model and a 
range of econometric techniques. Correlation analysis is conducted 
to examine the relationships between variables. Multicollinearity 
is assessed using variance inflation factor (VIF), the results suggest 
no significant multicollinearity issues among the variables. The 
examination of cross-sectional dependency using Pesaran’s CD 
and scaled-LM tests confirmed the presence of distinct shocks in 
the data. This finding underscores the importance of considering 
individual heterogeneity when analyzing causal relationships 
within panel data. Additionally, the method of moments quantile 

Table 14: Juodis, Karavias, and Sarafidis Non‑Causality 
test
Variables (X-Y) X not cause Y Y not Cause X
FP-ECF 7.38*** −1.32**
RE-ECF −1.97** −0.81
GDP-ECF 0.82 1.25
CE-ECF 4.21*** 1.21*
UPG-ECF 1.29 −0.68
INOV-ECF −10.3*** 0.28
***Denotes 1% significance level. **denotes 5% significance level. *denotes 10% 
significance level 
The reported values are HPJ Wald test 
Source: Authors’ estimation (statistical work is performed using STATA version 19)

Table 13: Test for multiple threshold models
Threshold RSS MSE F. stat Probability Crit 10 Crit 5 Crit 1
Single 1.5878 0.0082 57.951 0.048 54.759 59.681 64.316
Double 1.7195 0.0061 49.853 0.276 50.583 52.864 58.036
Triple 1.4903 0.0048 36.693 0.561 51.856 58.845 65.964
CI: Confidence interval, RSS: The residual sum of squares, MSE: Mean squared error. Threshold estimator (CI=95%), with 1000 bootstrap estimates
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regression is employed, since it provides insights into the 
relationships between the ecological footprint and the independent 
variables (fishery, renewable energy, GDP per capita, carbon 
emissions, urban population growth, and innovations) at different 
quantiles. The coefficients at different quantiles help understand 
how these independent variables affect the dependent variable 
across different parts of its distribution.

One significant finding is the consistent and direct impact of total 
fisheries production on the ecological footprint. The positive 
coefficients observed across all quantiles suggest that an increase in 
fisheries production leads to an increase in the ecological footprint. 
Moreover, the magnitude of this impact becomes more pronounced 
at higher levels of fishery production. Another noteworthy 
finding is the significant negative relationship between renewable 
energy consumption and the ecological footprint. The negative 
coefficients observed at different quantiles indicate that an increase 
in renewable energy consumption is associated with a decrease 
in the ecological footprint. Additionally, the study explores the 
impact of other independent variables. The relationship between 
carbon emissions and the ecological footprint is found to be 
relatively weak, suggesting the presence of complex interactions 
and other influencing factors. The effects of urban population 
growth on the ecological footprint vary across different quantiles, 
with negative impacts observed at lower percentiles and positive 
impacts at higher percentiles. The study also reveals that higher 
levels of patent applications are associated with a decrease in the 
ecological footprint, possibly due to increased competition and 
market saturation. Furthermore, recognizing the possibility of non-
linearity, a panel threshold approach is employed to examine the 
existence of single and multiple thresholds using 1000 bootstraps. 
Results suggest that a specific threshold level significantly 
influences the association between the blue economy and the 
environment. However, the analysis reveals that the presence of 
double and triple thresholds are statistically insignificant.

It is important to note that the analysis is based on available data 
and assumes certain relationships and functional forms. Further 
research and refinement of the model could provide additional 
insights. Moreover, the study focuses on a specific set of variables 
and countries, and generalizing the findings to other contexts 
could add further contribution. Nevertheless, this work contributes 
to the existing literature on sustainability and environmental 
economics and provides a foundation for future research and 
policy discussions aimed at promoting sustainable development 
and reducing ecological footprints worldwide. The findings 
have important implications for policymakers, highlighting the 
importance of conservation measures, renewable energy adoption, 
and careful urban planning. Further research can build upon these 
findings to explore additional variables and complex interactions, 
ultimately guiding efforts towards achieving environmental 
sustainability.
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