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ABSTRACT 

Energy management systems are experiencing significant transformations due to the adoption of innovative business models and advanced digital 

technologies. This study aims to investigate the intersection of artificial intelligence and cybersecurity within energy infrastructures, specifically 

focusing on developing a comprehensive methodology that effectively detects security threats in digitalized systems. The research evaluates existing 

energy policies and regulations while emphasizing the critical role of deep learning algorithms in enhancing cybersecurity through advanced threat 

detection, predictive analytics, automated responses, and continuous learning capabilities. A significant aspect of this study is the effective handling 

of imbalanced datasets, which is essential for optimizing deep learning performance in cybersecurity applications. Furthermore, the paper presents a 

comparative analysis of network intrusion detection systems and proposes a feature selection methodology by a novel feature reduction methodology 

designed to enhance deep learning capabilities for addressing specific challenges in imbalanced datasets of critical energy infrastructure. The expected 

results include insights into how artificial intelligence-driven methodologies can effectively mitigate cybersecurity threats in energy systems through 

a robust hybrid deep learning framework that addresses imbalanced datasets via advanced feature reduction techniques. Ultimately, this research 

contributes to enhancing both the immediate security of energy infrastructures and their long-term resilience against evolving cyber threats. By 

clarifying the contributions of deep learning methods to the literature on supervisory control and data acquisition system security, this study aims to 

bridge existing gaps and provide actionable insights for practitioners and policymakers in the energy sector and integrates regulatory frameworks 

(EU AI Act, NIST CSF 2.0, ISO/IEC standards) with a hybrid deep learning model addressing spatial, temporal, and structural intrusion patterns in 

SCADA systems using imbalanced data and a novel feature selection methodology within artificial intelligence. 
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1. INTRODUCTION 

Deep learning (DL) algorithms significantly enhance cybersecurity 

(CS) in digitalized energy systems by enabling advanced threat 

detection, predictive analytics, automated response mechanisms, 

and adaptive intrusion detection systems (IDS). These capabilities 

contribute to improved data protection and real-time mitigation 

strategies. The integration of DL with existing CS frameworks 

offers a more holistic and dynamic approach to threat management. 

By combining traditional security protocols with artificial 

intelligence (AI), organizations can strengthen their defense 

mechanisms and build a more resilient CS posture. In energy 

management systems, AI serves as a unifying layer between 

intelligent devices and digital technologies, enabling the analysis 

of resource utilization and consumption trends while supporting 

environmentally optimized decision making (EC, 2010). It is 

a precursor for energy markets through the Internet of Things 

(IoT). IoT based data generation causes enormous and sensory 

data with a wide range of data streams. This huge amount of data, 

combine it with the latest innovations in AI, ML, Cloud Computing 

(CC), Big Data and Analytics (BDA), Business Intelligence (BI), 

Digital Twins (DT), CS for intelligent and secured organizational 
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processes, smarter decisions, regulation and efficient, flexible 

and sustainable digital system infrastructure (Tomazzoli et al., 

2020; Javed et al., 2023). Therefore, utilities and organizations 

should understand the digital energy metamorphosis, novel energy 

strategies and design structures through data management and 

security concepts. 

 

Various digital transformation project frameworks, methodologies 

and approaches lead to more complex and misunderstanding than 

they support transformation (Prisecaru, 2016). Smart Grid (SG) 

represents an evolved and intelligent version of the conventional 

network, embodying a two-way exchange through data and energy 

flow. This results in a smart and exceptionally sophisticated energy 

distribution system (Wu et al., 2022; Yenioğlu and Ateş, 2022). 

SG operates increased efficiency, facilitates improved interactions 

with customers, ensures widespread resilient voltage control, 

frequency regulation, and utilizes smart management. It also 

responds effectively to various system events (Zheng et al., 2020; 

Shahab et al., 2021). For instance, when a feeder or transformer 

fails, SG restores power flow to the load through its self healing 

capabilities automatically. Another example is seen in the use 

of smart meters to shape customer loads, which subsequently 

decreases peak demand on the power grid and reduces energy 

costs. The decrease in load triggers a cascade of advantages, 

including reducing energy loss, balancing the load on the network, 

and reducing the necessity for extra capital investments in the 

system (Gulzar et al., 2022). 

 

Traditional network infrastructure consists of numerous 

substations and control centers, spanning extensive geographical 

regions. Each substation is equipped with various components, 

including transformers, lines, actuators, sensors, and phasor 

measurement units (PMU). Additionally, these substations feature 

supervisory control and data acquisition (SCADA) componenets 

that enable remote monitoring of the system elements (Teixeira 

et al., 2018). The energy sector places considerable emphasis on 

the protection and consolidation of critical infrastructure systems 

such as SCADA, given their central role in ensuring operational 

continuity and national energy security. SCADA systems serve 

as the foundational layer of critical infrastructure by enabling 

real time monitoring and control of essential parameters, such as 

voltage, current, pressure, and throughput, across dispersed assets. 

These systems integrate graphical user interfaces, alarm systems, 

data acquisition modules, and analytical tools to manage and 

supervise operations throughout all stages of energy generation 

and distribution (Almaleh et al., 2023). 

 

Architecturally, SCADA systems are categorized into three 

structural models: monolithic, distributed, and network- 

based systems, each offering varying levels of scalability and 

interoperability (Marković-Petrović, 2020). SCADA environments 

incorporate programmable control devices such as Programmable 

Logic Controllers (PLC) and Remote Terminal Units (RTU), which 

interface with physical assets like pumps, circuit breakers, and 

valves, transmitting data to central control units for coordinated 

decision making (El Mrabet et al., 2018; Cui et al., 2018). 

Efficient SCADA operation requires seamless synchronization 

and communication across heterogeneous hardware and 

communication protocols, facilitated by both short-range and 

long-range network infrastructures. 

 

The evolution of SCADA has been marked by increased 

adoption of commercial off-the-shelf components and hybrid 

communication protocols, contributing to their scalability and 

affordability. However, this has also heightened their exposure 

to cyber threats, particularly due to their expanded web based 

accessibility and integration with external networks (Kamboj et al., 

2018). A significant body of literature addresses the cybersecurity 

vulnerabilities of SCADA systems, encompassing simulation 

frameworks, threat modeling, risk assessments, and mitigation 

strategies (Cui et al., 2018; Teixeira et al., 2018). 

 

In light of the increasing frequency and sophistication of 

cyberattacks targeting Industrial Control Systems (ICS) and energy 

networks, there is a critical need for advanced cybersecurity 

solutions tailored to SCADA infrastructures. This study proposes 

a deep learning based framework aimed at enhancing the cyber 

resilience of digitalized energy systems. By leveraging the 

strengths of deep learning in anomaly detection, adaptive learning, 

and real time response, the approach presented herein contributes 

to the development of robust cybersecurity architectures capable 

of addressing the dynamic threat landscape faced by modern 

SCADA environments. 

 

2. CRITICAL ENERGY INFRASTRUCTURE 

PROTECTION AND POLICY INFLUENCES 

The existing power grids consist of multiple substations and 

control centers, covering extensive geographical areas. Each 

substation comprises various elements, including power lines, 

transformers, sensors, actuators and PMU, accompanied by 

SCADA units to remotely monitor the system components. 

Distributed Control Systems (DCS) are responsible for 

monitoring and managing processes distributed across various 

points within a single location. The definition of critical 

infrastructure aims to identify sectors that hold the utmost 

importance for a country’s economy concerning security 

and stability. Definitions of critical sectors may slightly vary 

among countries due to their distinct cultures and economies. 

A comparative chart that maps critical infrastructure sectors will 

facilitate the exploration of general trends and country specific 

sectors (Upadhyay et al., 2021). 

 

Smart technologies, including Smart Meters, Phasor Measurement 

Units (PMUs), Advanced Metering Infrastructure (AMI), Electric 

Vehicles (EV) and Electric Chargers, Renewable Energy Sources 

(RES) and Distributed Electricity Storage (DES) are introducing a 

wide area of new smart devices to the CEI that communicates and 

controls energy distribution. The emergence of novel infrastructure 

elements, business paradigms, and increased reliance on mobile 

devices within energy infrastructure settings brings new digital 

susceptibilities and expands physical entry/access points. These 

new applications oversee energy usage, encompassing retail 

service providers, energy and financial market participants, 

industrial, commercial, and residential consumers, necessitating 
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protection of confidential consumer and energy market data. Given 

the evolving landscape, there is a requirement for a comprehensive 

Critical Energy Infrastructure (CEI) security plan and roadmap, 

concentrating broadly on energy distribution systems, including 

control systems, smart grid technologies, and the convergence 

of cyber and physical security, where physical access to system 

components may affect cybersecurity (Hakansson et al., 2022). 

 

In the 2018 “Critical Infrastructure Resilience and Security” 

survey conducted by the OECD, the most common critical 

infrastructure sectors were analyzed based on responses from 25 

OECD countries. According to the survey, all countries regarded 

the energy sector as a critical infrastructure, ranking it first in 

importance (Linkov et al., 2018; OECD, 2021; 2022). 

 

The European Commission (EC) drew attention to the risks on 

the energy sector critical infrastructures such as; power plants and 

pipelines. EC pointed out that the interruption or destruction of 

energy critical infrastructure would have a devastating effect on 

at least two European Union (EU) countries. The critical energy 

infrastructure (CEI), has become the most critical element of the 

countries as it has the power to affect all other infrastructures 

(Carrapico and Barrinha, 2018; EC, 2013; 2022). 

 

The US Cybersecurity and Infrastructure Security Agency (CISA) 

and the Department of Energy (DOE) made the recommendations 

at the 3rd National Cybersecurity Summit to ensure the security 

of SCADA critical infrastructures (CISA,2020) for cyber security 

trainings should be organized for industrial control systems 

operators and managers, incident response plans against cyber 

attacks should be updated and tested, a risk-based approach should 

be adopted to the security of industrial control systems machines 

and network. Framework for Improving Critical Infrastructure 

Cybersecurity (NIST) and the Critical Infrastructure Threat 

Information Sharing Framework are the key documents for CEI in 

DOE. The US documentation offers a wide range of standards, with 

the NIST being particularly significant. This document serves a 

complementary role, providing accessibility to every organization 

to enhance their cybersecurity level and evaluate their performance 

in this regard (Gordon et al., 2020; Tvaronavičienė et al., 2020). 

An established cybersecurity framework introduced by NIST 

was utilized to understand the necessary solution categories for 

protecting, detecting, reacting and defending against cyberattacks 

(Barrett, 2018). 

 

The core components of the NIST cybersecurity framework 

outlines the methods to enhance the cybersecurity of any 

organization. This core is comprised of four key components 

such as; functions, categories, subcategories and references. 

The foundational components of the NIST framework include 

five cybersecurity functions and 23 categories of solutions, 

illustrated in Table 1. Within each function, the enumerated 

solution categories offer a robust starting point for identifying 

AI applications that can enhance cybersecurity awareness. For 

instance, the “Detect” function encompasses activities aimed at 

promptly identifying intrusions and anomalies to ensure vigilant 

monitoring, prevention, and recognition of cyber events. AI has the 

potential to enhance detection speed by monitoring both internal 

and external information sources, assessing the significance 

of these sources, and selecting and reducing source features. 

Moreover, AI can correlate information from various sources to 

identify unusual activities, thereby minimizing the risk of attacks 

through AI based intrusion detection within the anomalies and 

events domain. A a consequence, NIST published the Artificial 

Intelligence Risk Management Framework (AI RMF), outlining 

the ideal characteristics for AI systems: They should be valid 

and reliable, safe, fair and unbiased, secure and resilient, 

transparent and accountable, explainable and interpretable, and 

privacy enhanced. NIST aims to provide a framework that assists 

companies in assessing risks and making voluntary commitments 

within govern, identify, protect, detect, respond and recovery 

function steps and related solutions of each step (Barrett, 2018; 

Tvaronavičienė et al., 2020; NIST, 2023a). 

 

NIST Cybersecurity Framework (NIST CSF 2.0) changes, 

particularly the inclusion of supply chain security and updated 

implementation tiers for evaluating cybersecurity readiness. In 

addition, the NIST AI RMF enhances the broader cybersecurity 

framework by addressing AI specific risks, focusing on 

governance, transparency, fairness, and accountability in AI 

systems. It complements energy system cybersecurity by ensuring 

that AI driven models are secure, resilient, and aligned with ethical 

and regulatory standards (Pascoe, 2023; NIST, 2023a; 2023b; 

NIST CSF, 2024). 

 

In relation to Critical Energy Infrastructure (CEI) security, the 

Defending the European Energy Infrastructures, DEFENDER 

project’s consortium has thoroughly analyzed CEI threats and 

needs, leading to the presentation and proposal of a draft roadmap 

for CEI protection. The DEFENDER project introduces innovative 

methodologies that offer a comprehensive explanation of fundamental 

ideas, techniques, fundamental truths and regulations that facilitate 

and oversee the safeguarding of CEI. These systems are characterized 

by their dynamic nature, diversity, widespread distribution, 

discretionary nature and extensive integration with both human 

elements and their operational surroundings. The DEFENDER 

platform offers a comprehensive system for data integration, 

identifying attacks, enhancing situational awareness, selecting 

optimized attack responses, and visualizing and managing controls. 

To navigate this intricate security landscape effectively, the strategies 

for establishing policies, doctrines and standards must possess 

adaptability, evolutionary potential and responsive management. 

This flexibility guarantees ample adaptability to effectively address 

both known and unknown threats in this complex security landscape. 

Moreover, incorporating integrated data from existing systems such 

as Intrusion Detection Systems (IDS), SCADA, Smart Meters, AMI, 

and PMU has been employed. Additionally, DEFENDER aims to 

create a European-level platform for exchanging incident information 

and insights into countermeasures. The resulting architecture follows 

big data principles and is managed using a suite of cutting edge open 

source services. Throughout the development and implementation 

process of the roadmap, DEFENDER has defined a series of 

strategies, milestones and goals. This roadmap outlines near-term, 

mid-term and long-term milestones in safeguarding CEI, as shown 

in Table 1 (Gugliandolo et al., 2018). 
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Table 1: Critical energy infrastructure protection strategies, DEFENDER Roadmap and Goals 

Strategies 

1. Risk assessment 2. Protective measures 3. Manage incidents 4. Culture of security 

Near-term milestones (Project duration) 

1.1. Common terms and 

measures specific to each 

CEI segment. 

1.2. CEI segments 
categorization in Security 

Tiers. 

2.1. Evaluate the robustness 

and self-healing of new 

platforms, systems, networks, 

architectures, and policies. 

3.1. Tools to identify incidents across 

all levels of CEI. 

3.2. Tools to support and implement 

incidents management 
commercially available. 

4.1. Public awareness of CEI 

resilience efforts. 

4.2. Pan-European 
Stakeholders group to 

share mitigation strategies 

and define a security 

roadmap. 
Mid-term milestones (4-7 years) by 2024 

1.3. Majority of infrastructure 

and asset owners baseline 

their security posture via 

energy subsector specific 

metrics. 

2.2. Scalable access control for all 

energy delivery system devices 

available. 

2.3. Next-generation, interoperable 

solutions for secure 
communications. 

3.3. Incident reporting guidelines 

accepted and implemented by 

each energy subsector. 

3.4. Real-time forensics capabilities 

and cyber event detection tools 
commercially available. 

4.3. Active involvement of 

citizens and Humans 

in the Loop for CEI 

protection. 

4.4. Compelling business case 
developed for investment 
in CEI security. 

Long-term milestones (8-10 years) by 2028 

1.4. Cyber-physical risk 

assessment tools 

commercially available. 

2.4. Self-configuring infrastructure 

enables operations’ 

continuation during incidents. 

3.5. Lessons learned and best 

practices from cyber/ 

physical incidents shared and 
implemented. 

4.5. Significant increase in the 

skilled employees and 

volunteers in CEI security. 

Goals    

Security monitoring of 

all CEI levels and across 

cyber-physical domains. 

CEI architectures able to continue 

operating during cyber/physical 

disruptions. 

Fast self-mitigation of cyber/physical 

incidents, quickly returning to normal 

operations. 

CEI security practices 

shared among stakeholders, 

academia, and government. 

 

The current CEI security roadmap provides high-level strategies 

that address the security requirements of CEI but does not 

prescribe a single specific course of action. Instead, agencies 

and organizations are advised to engage in cybersecurity 

initiatives, either individually or in collaboration with the EU 

Network and Information Security (NIS) directive and ENISA, 

leveraging their unique skills, capabilities, and resources 

while meeting their specific missions and requirements. The 

DEFENDER project serves as an autonomous stakeholders’ 

group, contributing to relevant sectorial frameworks or regulatory 

initiatives aimed at shaping the CEI Security Roadmap (EC, 2013; 

Gugliandolo et al., 2018; EC, 2022). 

 

In the context of risks and threats, arising from digital services 

expanding with transformation critical infrastructure operations 

are a growing concern. As integration in critical infrastructures 

increases, preventing and detecting disruptions in the industry 

will be possible with security policies for additional critical 

infrastructure protection measures. There are a large amount of 

intrusions or attacks as unexpected bad network connections, 

therefore securing ICS and SCADA environments essential. 

Intrusion detection is a way to detect network intrusion and 

this study gives a methodology for detecting network based 

anomalies for system continuity. In such detecting studies, 

artificial intelligence ensures valuable analysis. Policymakers and 

regulators are recognizing the potential AI applications within 

deep learning algorithms that could contribute to ensuring the 

safe operation of the energy sector. After extensive consultation 

with various stakeholders, the European Commission (EC) and 

Parliment released the proposal for a regulation on a European 

approach for AI, known as the Artificial Intelligence Act. In 

December 2023, the European Commissioner for Internal Market 

declared that an agreement had been achieved and energy sector 

included in high risk statement (EC, 2022; EP et al., 2022; NIST, 

2023a; NIST CSF, 2024). As outlined within the AI Act from the 

EC and national strategies report, AI holds promise in aiding grid 

management, flexibility assets, and conducting electricity market 

operations. AI regulation in Europe is a challenging task, aiming 

to balance innovation and safety, with the white paper on AI in 

outlining policy options to mitigate human and ethical risks of 

AI use. The AI Act, proposed in April 2021, adopts a risk-based 

approach rather than a sector-based one, significantly impacting the 

EU energy sector due to its classification as critical infrastructure 

closely linked with climate change and environmental objectives 

(EC, 2020; 2022). Article 3 of the proposed regulation defines an 

Artificial Intelligence System as software created using one or 

more of various techniques and approaches such as deep learning, 

logic based, and statistical approaches, can generate outputs like 

content, predictions, recommendations, or decisions, influencing 

their environments based on human-defined objectives. However, 

potential high risks include transparency issues, reduced human 

autonomy, cybersecurity threats, market dominance, and potential 

manipulation of electricity market prices (EC, 2013; EC, 2022; 

Pascoe, 2023; NIST, 2023a; 2023b; NIST CSF, 2024). 

In the context of enhancing intrusion detection within energy 

SCADA systems, several frameworks and standards offer guidance 

on information security and AI governance. ISO/IEC 27001 

provides a comprehensive framework for information security 

management systems, focusing on safeguarding information assets 

across various technologies. ISO/IEC 42001, on the other hand, 

is tailored specifically for organizations managing AI systems, 

emphasizing ethical use, transparency, and accountability in AI 

operations. The NIST AI Risk Management Framework (NIST 
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AI RMF) offers a structured approach to managing AI related 

risks, aiming to enhance the trustworthiness and reliability of AI 

systems. The EU’s AI Act establishes regulatory guidelines for AI 

applications, balancing innovation with safety through clear risk 

management protocols and human oversight. For energy SCADA 

systems, which are increasingly integrating AI technologies, 

aligning with these standards can bolster security measures. 

Implementing ISO/IEC 27001 ensures robust information security 

practices, while adopting ISO/IEC 42001 and adhering to the NIST 

AI RMF can address AI specific risks. Compliance with the EU AI 

Act further ensures that AI applications within SCADA systems 

meet stringent safety and ethical standards, thereby enhancing the 

overall resilience and reliability of critical energy infrastructure 

(Yatagha et al., 2024; Gstrein et al., 2024; Volkova et al., 2024; 

EC, 2023; NIST CSF 2024). 

 

Building upon these standards and regulations, the proposed study 

contributes to the evolving regulatory and technical discourse by 

developing a hybrid AI based intrusion detection system tailored 

for SCADA environments, aligning with the principles outlined 

in ISO/IEC 27001, ISO/IEC 42001, NIST AI RMF, and the EU 

AI Act. The paper addresses core objectives such as ensuring 

data confidentiality, integrity, and availability (as per ISO/ 

IEC 27001), while integrating explainable AI and transparency 

mechanisms (in accordance with ISO/IEC 42001 and the AI Act) 

through techniques like SHAP analysis and attention mechanisms. 

Furthermore, the risk based validation and performance evaluation 

of the deep learning models reflect alignment with the NIST AI 

RMF’s emphasis on trustworthy and robust AI systems. The 

study’s focus on imbalanced data, contextual awareness, and 

behavior based anomaly detection enhances compliance with 

both technical resilience (NIST, ISO/IEC 27001) and AI specific 

governance (ISO/IEC 42001, AI Act). As such, this research 

not only delivers a technically effective SCADA intrusion 

detection framework but also ensures its regulatory readiness and 

alignment with internationally recognized standards for secure and 

responsible AI deployment. 

 

As outlined by the standards, AI Act and NIST Cybersecurity 

Framework, high risk AI applications such as SCADA must 

ensure compliance with transparency, reliability, and resilience 

requirements. 

 

3. SOLUTIONS FOR CRITICAL ENERGY 

INFRASTRUCTURE THROUGH DEEP 

LEARNING 

The implications of the AI Act for deep learning models in smart 

grids are particularly relevant when addressing the challenges 

associated with imbalanced datasets. In SCADA intrusion 

detection systems, where normal operational data often vastly 

outnumbers anomalous events, effective model training is critical. 

The AI Act mandates that data governance practices ensure datasets 

are sufficiently representative to enhance model performance and 

reduce false positives. This requirement is vital for developing 

reliable deep learning models that can accurately detect intrusions 

without compromising the integrity of critical infrastructure 

operations. The focus on ethical data practices aligns with the 

need to address issues related to dataset imbalance, ultimately 

contributing to safer and more accountable AI applications in 

energy management (Ferrag et al., 2020; Gstrein et al., 2024; 

Volkova et al., 2024). 

 

As the types and frequency of cyber threats continue to grow, there 

is an increasing demand for innovative technologies to secure 

critical energy infrastructure components, particularly SCADA 

systems. These systems are essential for monitoring and managing 

energy flows but remain vulnerable to advanced cyberattacks such 

as Distributed Denial of Service (DDoS) attacks. Implementing 

robust IoT security measures is critical for safeguarding 

decentralized edge devices, enhancing the resilience of these 

systems against large-scale disruptions. Blockchain technology, 

another emerging solution, is increasingly adopted for its ability 

to provide privacy, integrity, and availability; the three pillars 

of cybersecurity. By creating immutable and transparent data 

logs, blockchain holds significant promise as a next-generation 

framework for managing CEI. 

On the other hand, DL methods can be detection, prediction, and 

prevention components for SCADA communications through 

malicious network traffic detection. In the field of cybersecurity, 

deep learning techniques have been employed to monitor 

suspicious network activities. Many of these methods utilize DL 

to categorize network traffic, aiming to identify various types of 

attacks. Additionally, a significant portion of research focuses on 

distinguishing between malicious and non-malicious network 

traffic (Ahakonye et al., 2023; Zhang et al., 2024). 

 

DL techniques, including Convolutional Neural Networks (CNN), 

Long Short Term Memory Networks (LSTM), and Graph Neural 

Networks (GNN), have become widely adopted in cybersecurity 

applications for digital energy systems due to their capacity to 

model complex, high-dimensional, and structured data. Recent 

literature increasingly emphasizes these architectures for detecting 

malicious behaviors within critical infrastructures. 

 

CNN is particularly effective in extracting localized spatial 

features from structured inputs such as communication matrices, 

PMU signals, or spectrogram representations of log data. These 

characteristics enable CNN to detect subtle patterns of intrusion 

without requiring manual feature engineering, as demonstrated by 

Oswal et al. (2023), who confirmed the capability of CNN based 

architectures to identify spatial regularities in cyber physical 

environments. 

 

LSTM networks, a subclass of Recurrent Neural Networks (RNN), 

are designed to capture long range temporal dependencies in 

sequential data. Their gated memory structure allows them to retain 

historical context over time, which is essential for detecting time- 

based threats such as replay or injection attacks in Industrial Control 

Systems (ICS) and SCADA systems. Yin et al. (2017) demonstrated 

the effectiveness of LSTM based models in accurately identifying 

temporally evolving intrusions, reporting improvements in 

classification performance over traditional methods. 
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GNN offers a powerful framework for representing graph- 

structured data, making them especially suited for modeling 

topologies in SCADA networks, smart grids, and distributed 

energy systems. These networks propagate feature information 

across nodes and edges, enabling the detection of relational 

anomalies and multi-hop attack behaviors that are often overlooked 

by conventional models. Peng et al. (2024) introduced a dynamic 

spatiotemporal GNN (DST-GNN) architecture for detecting 

cyberattacks in grid tied photovoltaic systems, leveraging system 

dynamics and topology to achieve superior detection performance. 

 

The combined use of GNN, CNN, and LSTM architectures enables 

a comprehensive, multi dimensional approach to cybersecurity 

in energy systems. While CNN captures spatial features and 

LSTM models temporal sequences, GNN provides relational 

insights across networked components. This synergy supports 

advanced intrusion detection by simultaneously addressing the 

spatial, temporal, and topological dimensions of cyber physical 

infrastructure threats. These DL approaches collectively reduce 

reliance on traditional rule-based detection mechanisms and 

improve adaptability to heterogeneous network configurations 

(Sowmya and Anita, 2023; Zhang et al., 2024). Their capacity 

to process high-volume data and reveal latent patterns allows 

for timely and accurate identification of evolving threats, thus 

reinforcing the operational resilience of digitalized energy systems. 

 

Through detecting and preventing digitalized energy system 

threats, the system has crucial security difficulties, since there 

are combining of heterogeneous communication networks such 

as technological or IoT devices and other wireless components 

distinguished by varying security risks (Khan et al., 2016). In 

smart grids, linking smart meters with other interconnected devices 

raises additional security considerations. The advancement of 

SCADA systems in smart power energy management amplifies 

potential threats if these systems fail to employ updated security 

measures. Intrusions into smart grids pose risks to the availability, 

integrity, and confidentiality of assets. Additionally, various forms 

of DoS attacks aim to disrupt network services and may result in 

significant disruptions such as power outages and unauthorized 

access to information (Teixeira et al., 2018; Akheel, 2023). 

 

In order to safeguard critical assets within SCADA systems, it is 

crucial to determine weaknesses and deficiencies in the defense 

and control mechanisms to prevent potential breaches. This 

can be accomplished through employing techniques that detect 

weaknesses in the system and assess the level of protection against 

potential attacks, utilizing tools to gather pertinent information 

related to the target system under consideration. Numerous 

approaches have been suggested in the literature to safeguard 

SCADA systems against DDoS attacks, encompassing various 

mitigation and detection methods. Notably, DL techniques have 

proven to be highly effective in real-time detection of diverse 

types of attacks, including DDoS attacks (Akheel, 2023). DL 

based methodologies address these challenges by enabling real- 

time detection of anomalies, minimizing risks through predictive 

analysis, and adapting to evolving threats. 

 

The finalized provisions of the EU AI Act classify AI systems 

into various risk categories, with a particular emphasis on ‘high 

risk’ applications that include AI systems used in the management 

and operation of critical energy infrastructure, such as SCADA 

and smart grids. These high risk systems are defined in Annex 

3 of the Act, which specifies that AI applications intended for 

safety components in critical infrastructure covering sectors 

like electricity, water, gas, and heating must adhere to stringent 

compliance requirements. These stipulations aim to ensure that AI 

technologies are developed and deployed responsibly, safeguarding 

public safety and fundamental rights while promoting innovation 

in energy systems (Sovrano and Masetti, 2022; EC, 2024). 

 

The AI Act’s classification of critical energy infrastructures as high 

risk applications emphasizes the need for deep learning models to 

address challenges like imbalanced datasets, ensuring reliable and 

unbiased decision-making. Imbalanced datasets occur when the 

number of instances in one class significantly outweighs those in 

another. In cybersecurity, this often manifests as a disproportionate 

representation of normal versus attack data. For example, in a 

dataset used for intrusion detection, there may be thousands of 

normal network traffic instances compared to only a few instances 

of actual attacks. Cyber threats are constantly evolving, with 

attackers developing new strategies that can exploit vulnerabilities 

in critical systems (Presekal et al., 2023; Balla et al., 2023). 

Researchers can employ techniques such as oversampling the 

minority class or generating synthetic data to balance datasets. This 

helps improve model performance by providing more examples of 

rare events like cyber attacks. Deep learning models must adapt to 

these changes, which is difficult if they are trained on imbalanced 

datasets that do not reflect the latest threat scenarios. By mandating 

transparency, risk management, and fairness, the act supports the 

development of robust AI systems that can effectively detect and 

mitigate anomalies in these critical systems (Oswal et al., 2023). 

 

3.1. Integration of NIST Cybersecurity Framework 
with AI-Relevant Subcategories and Imbalanced Data 
Issues 
The NIST CSF 2.0 provides a comprehensive structure 

for improving the cybersecurity posture of critical energy 

infrastructures, which is well-aligned with the integration of 

DL technologies. The “Identify” function highlights the need to 

inventory AI systems and assess risks such as algorithmic bias 

or model vulnerabilities. This is particularly relevant in SCADA 

systems, where understanding dependencies and interconnections 

is crucial. Imbalanced data risk analysis is a key part of AI 

risk management during inventory and assessment. Within 

the “Protect” function, measures like secure data storage for 

training datasets and access control protocols align seamlessly 

with DL requirements, ensuring robust operational safeguards. 

Training and secure practices should address imbalanced data 

challenges to minimize biases and improve model generalization. 

For the “Detect” function, DL enhances cybersecurity through 

real-time monitoring of anomalies and adversarial activities. 

By incorporating AI-relevant subcategories such as adversarial 

attack detection, SCADA systems gain an additional layer of 

resilience. Models trained to handle imbalanced datasets can 

improve anomaly detection accuracy. The “Respond” function 

benefits from automated DL models that can rollback compromised 
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systems or trigger updates in real-time, mitigating the impact of 

incidents. Finally, the “Recover” function ensures the restoration 

of compromised systems, where DL models play a role in 

backup and recovery strategies, offering adaptive learning for 

future improvements. By bridging the NIST CSF with advanced 

DL methodologies, critical energy infrastructure gains a dual 

advantage: adherence to a globally recognized cybersecurity 

standard and leveraging cutting-edge technology to address unique 

challenges in the energy sector. The “Govern” function serves as 

a foundational element, guiding the development and oversight 

of cybersecurity risk strategies, policies, and responsibilities. In 

AI contexts, it ensures ethical governance, accountability, and 

compliance by addressing risks such as algorithmic bias and 

imbalanced data, aligning AI use with organizational objectives 

and regulatory frameworks. Write as this with commas AI model 

inventory, algorithm classification, and dependency mapping 

(Barrett, 2018; EC, 2022; NIST, 2023b; EC, 2024). For instance, 

applying the Identify and Detect functions in tandem with AI based 

feature reduction enhances the ability to pinpoint vulnerabilities 

in real time, as demonstrated in Table 2. These novel integrated 

strategies enable energy organizations to develop a more proactive 

and resilient cybersecurity posture. 

 

While the Artificial Intelligence Act (Regulation EU 2024/1689) 

was formally adopted in 2024 and will become enforceable in 

February 2025, particularly for high-risk AI systems in critical 

domains such as digital energy infrastructures, this regulatory 

milestone underscores the urgency for aligning AI based 

cybersecurity solutions with emerging European legal standards 

and reinforces the role of the Govern function in the NIST 

Cybersecurity Framework, which mandates the formalization of AI 

governance structures, ethical oversight, accountability protocols, 

and compliance mechanisms to ensure lawful, transparent, and 

responsible deployment of AI systems, especially in contexts 

involving algorithmic bias and imbalanced data. 

 

3.2. Cybersecurity and Deep Learning: Power Grid 
Intrusion Detection Methodology 

DL has been extensively utilized in energy management systems 

for forecasting, anomaly detection, and cybersecurity monitoring, 

offering scalable solutions for remote supervision and real time 

optimization of energy inputs and outputs. According to recent 

literature, a wide range of machine learning and deep learning 

models have been employed for these tasks. Traditional algorithms 

such as k-Nearest Neighbors (kNN), Naïve Bayes (NB), Support 

Vector Machines (SVM), Artificial Neural Networks (ANN), 

Decision Trees (DT), and Random Forests (RF) continue to 

provide foundational baselines in both anomaly detection and 

system optimization scenarios (Ravipati and Abualkibash, 2019; 

Oswal et al., 2023). However, more recent advances emphasize 

the growing effectiveness of deep learning architectures, including 

CNN for spatial pattern extraction, LSTM for modeling temporal 

dependencies in time-series energy data (Yin et al., 2017; Yatagha 

et al., 2024), and GNN for capturing complex topologies in 

interconnected energy systems and communication infrastructures 

(Peng et al., 2024; Altaf et al., 2024). Collectively, these models 

reflect the shift toward more robust, scalable, and context aware 

intelligence in energy cybersecurity and management domains. 

 

J48, based on the C4.5 decision tree algorithm, serves not only as 

a classifier but also as a feature selection tool due to its recursive 

attribute evaluation and interpretability. When integrated with 

RF, J48 enhances the feature reduction process by identifying 

and retaining the most relevant variables, thus improving model 

accuracy and efficiency. RF and J48 offer robust performance in 

high-dimensional and imbalanced datasets. Collectively, these 

models allow for a comparative assessment of classification 

performance within a reduced feature space, supporting the 

development of efficient intrusion detection systems tailored to 

digitalized energy infrastructures and SCADA security contexts 

(Senthilnayaki et al., 2013; Aljawarneh et al., 2019). 

 

NSL-KDD dataset (2023) has features compatible with attack 

structures on SCADA systems and it is very important through 

CEI cybersecurity monitoring and contains essential intrusion 

types. Its imbalanced features include the unequal distribution 

 
Table 2: NIST components to include AI-relevant subcategories and imbalanced data issues 

NIST CSF function Category AI‑relevant subcategories and ımbalanced data ıssues 

Identify Asset management AI model inventory, algorithm classification, and dependency mapping 

 Risk management AI bias identification, model risk quantification, and mitigation strategies; imbalanced 
data risk analysis 

 Supply chain risk management Risk evaluation for third-party AI systems and datasets 
Protect Access control Role-based access to AI models and datasets 

 Data security Secure storage and processing of training data; encryption of AI inputs/outputs 

 Awareness and training Specialized training on AI risks and cybersecurity, including challenges in handling 
imbalanced datasets 

Detect Anomalies and events Monitoring AI behaviors for anomalies; detecting adversarial attacks, feature selection 
and classifiers within AI; improving detection in imbalanced datasets 

 Security continuous monitoring Real-time tracking of model performance and drift, and imbalanced issues 

Respond Incident response planning Protocols for AI specific incidents, such as model poisoning or adversarial examples 

 Mitigation Automated rollback to prior model versions; reinforcement learning updates to 
address imbalanced datasets 

Recover Recovery planning improvements Backup systems for AI model states and training datasets, Post-incident reviews 
focusing on AI specific vulnerabilities 

Govern Governance strategy and policy Cybersecurity oversight policies, ethical AI governance frameworks, accountability 
protocols for AI driven decisions, algorithmic bias mitigation strategies, compliance 

with regulatory standards, and organizational alignment with mission driven AI 

objectives 
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of normal and attack classes, with certain attack types being 

significantly underrepresented. The NSL-KDD dataset exhibits 

significant class imbalance, with a majority of records labeled 

as ‘Normal’ or common attacks like DoS, while rare attacks 

such as U2R and R2L are underrepresented, making them 

harder to detect. Features like src_bytes and dst_bytes are 

strongly correlated with majority classes, skewing model 

predictions. Additionally, the testing set introduces unseen 

attack types, amplifying the challenge of training models to 

handle imbalanced and diverse data effectively. Deep learning 

models trained on NSL-KDD must address these imbalances to 

ensure effective detection of minority class attacks. Techniques 

like oversampling, undersampling, or cost-sensitive learning 

can help mitigate these issues and improve model performance 

in identifying rare but critical threats like U2R and R2L attacks 

(Serinelli et al., 2020). 

 

NSL-KDD was introduced to address issues of data redundancy 

and duplicate records. Consequently, the NSL-KDD dataset 

contains a more modest number of records compared to the KDD 

Cup 99 dataset, and it demonstrates superior performance relative 

to KDD Cup 99. To avoid biased outcomes, redundant records 

were eliminated from the dataset before applying the classifier. 

The remaining records were found to be rational and adequate 

in both the training and testing datasets. Many researchers have 

adopted it as the standard dataset for conducting experiments on 

various intrusion detection systems. The dataset includes features 

labeled as normal or attack types in both training and testing 

datasets, which are utilized for statistical and empirical analysis 

of intrusion detection techniques (Ingre et al., 2020). The feature 

types of it under content, basic, host based and traffic categories 

can be summarized as its 41 network features and five simulated 

attacks within below: 

• Normal; is a normal activity performed by an authenticated 

user. 

• DoS attacks; occur when there is an excessive consumption 

of bandwidth or unavailability of system resources (Neptune, 

Smurf, Back, Teardrop, Pod, Land). 

• Probe attack; Gain access to the entire network before 

launching an attack (Ipsweep, Nmap, Satan, Portsweep). 

• In User to Root (U2R) attack; the attacker first gains access 

to a normal user account, then exploits system vulnerabilities 

to obtain root access (Perl, Loadmodule, Rootkit, Buffer_ 

overflow). 

• In Root to Local (R2L) attack; the attacker obtains local access 

by sending packets to a remote machine (Imap, Guess_passwd, 

ftp attacks etc.) (Asgharzadeh et al., 2023; Samunnisa et al., 

2023). 

 

The features capture various aspects of network connections, 

including traffic patterns, error rates, and host behaviors, which 

are essential for intrusion detection and network security analysis. 

The dataset’s features and attack types divide the entire DL 

methodology into data processing, feature selection and intrusion 

detection. In this research, KDDTrain+ training set with total 

number of instances 125.973 and KDDTest+ testing set with total 

number of instances 22.544 have been used for attack and normal 

classes. Attacks features of data set are; attack duration, attack 

 

Table 3: NSL-KDD analysis through number of attack 

type instances and dataset type (train and test data 

distribution) 

Attack Type Instances Training dataset Test dataset 

Normal instances 67.343 9.711 

DOS instances 45.927 7.458 

Probe istances 11.656 2.421 

U2R instances 52 200 

R2L instances 995 2.754 

 

type, network metrics within bytes and counts, protocol_type and 

service (Table 3). 

 

Recent advancements in graph and DL based intrusion detection 

have shown promising results in cybersecurity applications 

across energy and IoT systems. Peng et al. (2024) proposed a 

dynamic spatiotemporal GNN model for detecting cyberattacks 

in grid-tied photovoltaic (PV) systems. Their method integrated 

CNN and GNN derivatives to capture both temporal patterns and 

the underlying graph topology of the power grid, demonstrating 

superior detection performance compared to baseline approaches. 

In Altaf et al. (2024) developed a sequential gated graph 

convolutional network (GGCN) for analyzing IoT network traffic 

and identifying sequential botnet attacks. Their model effectively 

combined time-stamped graph structures with specialized 

message-passing mechanisms, achieving notable improvements 

in detection accuracy, up to 25% for Mirai attacks, on imbalanced 

datasets. Meanwhile, earlier work by Nadiammai and Hemalatha 

(2014) focused on data mining techniques for intrusion detection, 

employing hybrid intelligent decision technologies that integrated 

both supervised classification and unsupervised clustering. Their 

approach included data filtering and ensemble classification, 

which proved effective on benchmark datasets such as NSL- 

KDD. Although the study primarily emphasized classical machine 

learning, it laid the groundwork for later semi-supervised deep 

learning models in network-based intrusion detection. The 

proposed method in the study was restricted to binary classification 

tasks. However, in the study conducted by Yin et al. (2017), a 

Recurrent Neural Network (RNN) algorithm was applied for both 

binary and multiclass intrusion detection. The performance of the 

RNN model was evaluated and compared against conventional 

machine learning algorithms, including J48 and RF, demonstrating 

its effectiveness in modeling sequential network traffic data. 

 

In this paper; there is a comparison of DL methodology of network 

based intrusion detection for SCADA system continuity within 

imbalanced data intrusion attack detection scenarios. The paper 

aims to propose a potential security solution using a simulation 

framework that incorporates DL techniques for detecting DDoS 

attacks on SCADA systems. Based on the reviewed taxonomy 

of deep learning approaches in cybersecurity, the integration of 

LSTM, CNN, and GNN architectures in the proposed hybrid 

model is strategically designed to exploit their complementary 

strengths across the temporal, spatial, and structural dimensions 

of SCADA data. LSTM, as a recurrent neural network, effectively 

captures long-term temporal dependencies within sequential 

SCADA signals, enabling the detection of time-dependent 

anomalies and evolving attack patterns. CNN contributes by 
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extracting localized and hierarchical features from transformed 

representations of network traffic, facilitating the identification of 

spatial irregularities in communication flows. Meanwhile, GNN 

offers a graph-based perspective, modeling the relational structure 

of SCADA systems, such as the interconnections between sensors, 

actuators, and control units, allowing the model to propagate 

contextual information and capture topological dependencies. The 

combined use of LSTM, CNN, and GNN thus enables a holistic 

and robust intrusion detection framework, improving accuracy, 

generalization, and responsiveness to complex threats in cyber- 

physical infrastructures. 

 

4. METHODOLOGY: FEATURE 

SELECTION AND MODELS 

This study investigates network intrusion detection by evaluating 

the performance of advanced deep learning models, CNN, LSTM, 

and GNN, within the RF based feature reduction framework 

using the NSL-KDD dataset. These models are selected for their 

capability to capture spatial, temporal, and relational dependencies, 

which are often present in cyber-physical intrusion scenarios. The 

experiments were conducted in Python 3.8 using the Scikit-learn 

library for preprocessing and feature reduction, and PyTorch or 

TensorFlow-based frameworks for model development. Each 

model was trained and validated on the RF-selected feature subset, 

allowing for a consistent comparative evaluation. The integration 

of CNN, LSTM, and GNN models allows for a multi-perspective 

approach to intrusion detection, leveraging spatial, temporal, 

and topological dimensions, to enhance detection robustness and 

accuracy across diverse attack scenarios. 

 

According to the RF feature importance analysis and feature 

reduction through feature importance scores of the NSL-KDD are 

illustrated in Figure 1. the number of bytes sent by the source (src_ 

bytes), the number of bytes sent by the destination (dst_bytes) and 

the percentage of connections to the same service (same_srv_rate) 

have highest first three importance among features. 

 

Following the execution of feature reduction and acquiring feature 

importance scores from RF, the chosen features are presented in 

Table 4. The proposed methodology resulted in the selection of 

21 features out of the initial 41 features. 

 

The application segment of this research introduces an approach for 

reducing features based on their importance scores to investigate 

correlations among features and subsequently remove highly 

correlated ones. Initially, the process involves identifying columns 

with strong correlations within the dataset. Using the Pandas 

library, the corr () function conveniently computes correlations 

between columns in a dataframe. The resulting correlation 

matrix contains values ranging from 0 to 1, where 0 indicates 

no correlation and 1 denotes perfect correlation, facilitating the 

identification of features with high correlations. Following the 

identification of these highly correlated features, the subsequent 

step involves their elimination. The variance inflation factor (VIF) 

serves as a measure for detecting multicollinearity among features 

 
Table 4: Selected features within RF feature reduction 

methodology 

 Selected features  

F1=src_bytes, 

F2=dst_bytes, 

F3=same_srv_rate, 

F4=flag, 

F5=dst_host_same_srv_rate, 

F6=dst_host_srv_count, 

F7=protocol_type, 

F8=count, 
F9=dst_host_srv_serror_rate, 

F10=dst_host_diff_srv_rate, 

F11=logged_in, 

F12=diff_srv_rate, 

F13=dst_host_same_src_port_rate, 

F14=dst_host_serror_rate, 

F15=srv_serror_rate, 

F16=service, 
F17=dst_host_srv_diff_host_rate, 

F18=dst_host_count, 

F19=srv_count, 

F20=dst_host_srv_rerror_rate, 

F21=serror_rate 

 

Figure 1: RF feature importance analysis and feature reduction through feature importance scores of the NSL-KDD 
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by assessing how much the variance of the estimated regression 

coefficients increases due to multicollinearity in the model. If a 

feature’s variance exceeds a predefined threshold value, typically 

set at 5 or 10, it indicates significant correlation with other features 

within the model. After conducting correlation analysis, the feature 

selection process resulted in 14 features out of the initial 21. These 

are depicted in Table 5 as a grey heatmap, where features F1, F2, 

F3, F5, F8, F9, F10, F11, F12, F14, F15, F16, F20, and F21 exhibit 

meaningful and highly correlated relationships among themselves. 

 

The process of intrusion detection using deep learning models 

involves several steps, including feature reduction and the use 

of evaluation metrics. In summary, it encompasses outlining the 

procedures for identifying intrusions, minimizing the number 

of features involved, and assessing the performance of the 

detection system through various metrics. Table 6 shows the steps 

implemented approach in detail. 

 

For temporal modeling with LSTM, we organized the selected 

features into windowed time sequences of network sessions 

using a sliding window. For GNN, features were mapped onto 

graph nodes representing host entities, with edges representing 

communication flows, enabling topological learning over device 

interactions in SCADA-like architectures. For CNN, the selected 

features were reshaped into 2D matrices simulating spatial patterns 

of network traffic, allowing the model to extract localized feature 

representations and detect spatially correlated anomalies within 

communication snapshots. In the implementation of CNN, LSTM, 

and GNN models for SCADA intrusion detection, hyperparameter 

optimization was conducted to ensure both convergence stability 

and generalization performance in accordance with established 

deep learning practices in cybersecurity literature. For all models, 

the Adam optimizer was employed with an initial learning rate 

of 0.001 and weight decay set to 0.00001 to prevent overfitting. 

The CNN architecture consisted of two convolutional layers with 

64 and 128 filters, respectively, followed by ReLU activation and 

max-pooling layers, and a fully connected layer for classification. 

The LSTM model utilized two stacked LSTM layers with 128 

hidden units each, exploiting their capacity to retain long-range 

temporal dependencies inherent in sequential SCADA data. 

Dropout regularization (rate = 0.3) was applied between layers to 

mitigate overfitting. The GNN was implemented using a Graph 

Convolutional Network (GCN) with two graph convolution layers 

and 64-dimensional node embeddings, leveraging the adjacency 

matrix derived from SCADA network topologies to capture 

spatial and relational dependencies. Each model was trained for 

100 epochs with early stopping patience of 10 epochs based on 

validation loss, using a batch size of 64. These hyperparameter 

settings are consistent with contemporary studies in intrusion 

detection systems (IDS), ensuring the models achieved balanced 

accuracy, sensitivity, and precision, as reflected in the experimental 

results. 

 

5. RESULTS AND DISCUSSION 

In the field of SCADA security, choosing the right features is 

crucial for boosting the effectiveness of classification algorithms, 

especially when working with imbalanced datasets. The suggested 

feature reduction method employs a hybrid strategy that merges 

conventional statistical techniques with cutting-edge deep learning 

approaches to enhance accuracy and efficiency. By the use of 

CNN, LSTM, and GNN algorithms in intrusion detection, study 

shows that even if having a simple structure GNN models has 

higher accuracy, CNN and LSTM provide competitive results. The 

experimental study is done on NSL-KDD intrusion data set. The 

data set’s traffic can be classified into five groups: Normal, DOS, 

U2R, R2L, Probe, or more broadly categorized as Normal versus 

Anomalous, which encompasses any deviations observed for the 

binary classification task. An attack map is generated based on the 

attack class labels and the algorithms utilized. Considered attacks 

depending on normal and abnormal, behavior precision rates are 

given in Table 7 and Figure 2 for the models. 

 
Table 5: Selecting important features based on correlation heat table of RD reducted features 

 Features  F1  F2  F3  F4  F5  F6  F7  F8  F9  F10  F11  F12  F13  F14  F15  F16  F17  F18  F19  F20  F21  

F1 1.00 0.79 −0.05 −0.10 −0.09 0.04 0.09 0.18 0.17 0.12 0.03 0.15 −0.00 0.17 0.18 0.18 −0.02 −0.10 0.10 0.24 0.17 

F2 0.79 1.00 −0.03 −0.05 −0.08 0.04 0.06 0.17 0.16 0.12 0.02 0.13 −0.00 0.15 0.16 0.16 −0.02 −0.08 0.09 0.23 0.15 
F3 −0.05 −0.03 1.00 −0.24 0.72 0.31 −0.57 −0.12 −0.11 −0.02 −0.17 −0.16 0.01 −0.11 −0.11 −0.11 0.01 0.26 −0.11 −0.20 −0.11 

F4 −0.10 −0.05 −0.24 1.00 −0.00 −0.13 −0.27 0.35 0.35 0.12 0.12 0.37 −0.07 0.12 0.12 0.11 −0.07 0.04 0.14 0.04 0.12 

F5 −0.09 −0.08 0.72 −0.00 1.00 0.50 −0.14 −0.33 −0.34 −0.15 −0.28 −0.33 0.06 −0.33 −0.33 −0.33 0.06 0.07 −0.22 −0.25 −0.32 

F6 0.04 0.04 0.31 −0.13 0.50 1.00 −0.37 −0.15 −0.19 −0.09 −0.11 −0.16 0.12 −0.18 −0.19 −0.18 0.13 −0.01 −0.11 −0.18 −0.19 

F7 0.09 0.06 −0.57 −0.27 −0.14 −0.37 1.00 0.35 0.36 0.12 0.24 0.32 −0.06 0.36 0.35 0.36 −0.06 −0.08 0.18 0.29 0.36 
F8 0.18 0.17 −0.12 0.35 −0.33 −0.15 0.35 1.00 0.98 0.20 0.28 0.89 0.00 0.98 0.98 0.98 0.03 −0.06 0.14 0.85 0.97 

F9 0.17 0.16 −0.11 0.35 −0.34 −0.19 0.36 0.98 1.00 0.21 0.29 0.88 0.00 0.99 0.99 0.99 0.04 −0.05 0.13 0.83 0.99 

F10 0.12 0.12 −0.02 0.12 −0.15 −0.09 0.12 0.20 0.21 1.00 0.84 0.13 −0.01 0.22 0.22 0.22 −0.02 0.08 0.11 0.11 0.21 

F11 0.03 0.02 −0.17 0.12 −0.28 −0.11 0.24 0.28 0.29 0.84 1.00 0.18 −0.00 0.29 0.29 0.29 0.01 0.10 0.05 0.11 0.29 

F12 0.15 0.13 −0.16 0.37 −0.33 −0.16 0.32 0.89 0.88 0.13 0.18 1.00 −0.00 0.87 0.87 0.87 0.04 0.06 0.11 0.84 0.87 
F13 −0.00 −0.00 0.01 −0.07 0.06 0.12 −0.06 0.00 0.00 −0.01 −0.00 −0.00 1.00 −0.00 −0.00 −0.00 −0.00 −0.01 0.00 −0.00 −0.00 

F14 0.17 0.15 −0.11 0.12 −0.33 −0.18 0.36 0.98 0.99 0.22 0.29 0.87 0.00 1.00 1.00 1.00 0.04 −0.05 0.13 0.83 1.00 

F15 0.18 0.16 −0.11 0.12 −0.33 −0.19 0.35 0.98 0.99 0.22 0.29 0.87 0.00 1.00 1.00 1.00 0.04 −0.05 0.12 0.84 1.00 

F16 0.18 0.16 −0.11 0.11 −0.33 −0.18 0.36 0.98 0.99 0.22 0.29 0.87 0.00 1.00 1.00 1.00 0.04 −0.05 0.13 0.84 1.00 

F17 −0.02 −0.02 0.01 −0.07 0.06 0.13 −0.06 0.03 0.04 −0.02 0.01 0.04 −0.00 0.04 0.04 0.04 1.00 0.02 0.01 0.03 0.04 
F18 −0.10 −0.08 0.26 0.04 −0.01 −0.11 −0.06 −0.06 −0.05 0.08 0.10 0.06 −0.01 −0.05 −0.05 −0.05 0.02 1.00 0.24 −0.02 −0.05 

F19 0.10 0.09 −0.11 0.14 −0.22 −0.11 0.18 0.14 0.13 0.11 0.05 0.11 0.00 0.13 0.12 0.13 0.01 0.24 1.00 0.11 0.13 

F20 0.24 0.23 −0.20 0.04 −0.25 −0.18 0.29 0.85 0.83 0.11 0.11 0.84 −0.00 0.83 0.84 0.84 0.03 −0.02 0.11 1.00 0.83 

F21 0.17 0.16 −0.11 0.12 −0.32 −0.19 0.36 0.97 0.99 0.21 0.29 0.87 −0.00 1.00 1.00 1.00 0.04 −0.05 0.13 0.83 1.00 
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Table 7 and Figure 2 illustrates the comparative performance 

of three deep learning models, CNN, LSTM, and GNN, across 

 
Figure 2: Visualization of the normal and abnormal connections 

behavior precision scores through models 
 

two network behavior types: Anomaly and normal. As depicted, 

LSTM consistently achieves the highest precision in both 

behavior classes, with a slight decrease from 0.97 (anomaly) 

to 0.96 (normal), indicating robust generalization across 

behavioral contexts. GNN follows closely, demonstrating stable 

performance (0.96-0.95), leveraging topological relationships 

within SCADA network data. In contrast, CNN exhibits a more 

pronounced drop in precision from 0.94 to 0.88, suggesting 

limitations in capturing temporal dependencies or structural 

variations in normal behavior. These results confirm the 

effectiveness of LSTM and GNN in maintaining high detection 

reliability in both anomalous and benign network conditions, 

supporting their integration within the proposed hybrid intrusion 

detection framework. 

 

Anomaly network behavior connection number often exhibits 

higher scores than normal network behavior in deep learning 

methodologies because anomalies represent deviations from the 

expected patterns or norms within the data. In many cases, normal 

network behavior is well-understood and follows predictable 

patterns, making it easier for deep learning models to accurately 

classify. However, anomalies, by their nature, are less frequent 

and may manifest in various unexpected ways, making them more 

challenging to detect accurately. As a result, anomalies can have 

a higher impact on the performance metrics such as sensitivity, 

precision, or accuracy, especially if the dataset is imbalanced 

with fewer instances of anomalies compared to normal behavior. 

Additionally, anomalies often represent potential security threats 

or system malfunctions, which makes their detection crucial 

for ensuring the integrity, availability, and security of network 

systems. Therefore, deep learning methodologies often prioritize 

the accurate detection of anomaly network behavior to prevent 

potential security breaches or system failures. 

 

On the other hand, perfomance evaluation of the selected feature 

according to attack types’ accuracy, sensitivity and precision are 

 

 

 

 

 

 

 

 

Table 8: A comparative validation score analysis of the 

models within attack types and accuracy 

 DoS Probe U2R R2L 

CNN     

Accuracy 0.84 0.92 0.96 0.79 

Sensitivity 0.71 0.84 0.72 0.64 

Precision 0.95 0.93 0.63 0.72 

LSTM     

Accuracy 0.98 0.96 0.99 0.96 
Sensitivity 0.98 0.94 0.88 0.94 

Precision 0.98 0.94 0.86 0.95 

GNN     

Accuracy 0.95 0.98 0.92 0.94 

Sensitivity 0.91 0.95 0.89 0.91 

Precision 0.95 0.96 0.93 0.95 

Table 7: The normal and abnormal connections/network 

behavior precision scores through models 

Network behavior/ 

Precision scores 

CNN LSTM GNN 

Anomaly network behavior 0.94 0.97 0.96 

Normal network behavior 0.88 0.96 0.95 

 

Table 6: Outlining the steps for intrusion detection using deep 

 learning models, feature reduction, and evaluation metrics  

Step 1: Load NSL-KDD dataset 
Step 2: Preprocess the dataset (e.g., encode categorical features, 

normalize values) 
Step 3: Train Random Forest model to determine feature importance 

RandomForest.train (features, labels) 
Step 4: Select top features based on Random Forest feature importance 

selected_features=RandomForest.getImportantFeatures() 

Step 5: Refine selected features using correlation heatmap to remove 

multicollinearity 

Step 6: Split the dataset into training and testing sets 
train_set, test_set=splitDataset (dataset) 

Step 7: Train deep learning models using selected features: 

a. Train CNN model 

CNN.train (train_set, selected_features) 

b. Train LSTM model 
LSTM.train (train_set, selected_features) 

c. Train GNN model (ensure graph structure is defined from 

features or relationships) 
GNN.train (train_set, selected_features) 

Step 8: Test the trained models on the test set: 

a. Test CNN model 

cnn_accuracy=CNN.test (test_set) 

cnn_predictions=CNN.predict (test_set) 

b. Test LSTM model 

lstm_accuracy=LSTM.test (test_set) 

lstm_predictions=LSTM.predict (test_set) 
c. Test GNN model 

gnn_accuracy=GNN.test (test_set) 

gnn_predictions=GNN.predict (test_set) 
Step 9: Evaluate model performance and compare results: 

a. Calculate precision, recall, and sensitivity for each model 

cnn_precision, cnn_recall, cnn_sensitivity=calculateMetrics 

(cnn_predictions, test_set.labels) 

lstm_precision, lstm_recall, lstm_sensitivity=calculateMetrics 

(lstm_predictions, test_set.labels) 

gnn_precision, gnn_recall, gnn_sensitivity=calculateMetrics 

(gnn_predictions, test_set.labels) 
b. Compare accuracy of models 

compareAccuracy (cnn_accuracy, lstm_accuracy, gnn_accuracy) 

c. Compare validation metrics across models 
compareMetrics (cnn_precision, cnn_recall, cnn_sensitivity, 

lstm_precision, lstm_recall, lstm_sensitivity, gnn_precision, 

gnn_recall, gnn_sensitivity) 
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Figure 3: Visualization of the validation score analysis of the models within attack types 

 

presented in the Table 8, Figure 3. The line chart visualizations in 

Figure 3 illustrate the comparative performance of CNN, LSTM, 

and GNN models across four attack categories, DoS, Probe, U2R, 

and R2L, based on accuracy, sensitivity, and precision metrics. The 

LSTM consistently exhibits the highest accuracy across all attack 

types, peaking notably at U2R with near-perfect accuracy (0.99), 

demonstrating its superior ability to capture temporal dependencies 

in complex sequences. GNN follows closely, particularly excelling 

in the Probe and R2L categories due to its strength in modeling 

structural relationships among SCADA components. CNN, while 

effective in detecting DoS and Probe attacks, shows a noticeable 

decline in performance for U2R and R2L attacks, especially in 

precision (approximately 0.63 for U2R), likely due to its limited 

capacity to handle long-range dependencies or rare event patterns. 

Sensitivity results reinforce these observations, with LSTM and 

GNN maintaining robustness, whereas CNN exhibits significant 

drops for U2R and R2L, indicating weaker detection of true 

positives in sophisticated or infrequent attack types. These results 

validate the hybrid use of LSTM and GNN in intrusion detection 

systems for SCADA networks, offering complementary benefits 

in sequential pattern recognition and relational inference. 

 

These results support prior research advocating for advanced and 

hybrid deep learning strategies, such as integrating LSTM, CNN, and 

GNN, coupled with feature reduction and data balancing techniques. 

The superior and more stable performance of LSTM and GNN 

models across attack types, particularly in detecting underrepresented 

classes like U2R and R2L, demonstrates the effectiveness of 

temporal, spatial, and relational learning mechanisms in addressing 

class imbalance. These findings emphasize the necessity of 

leveraging model complementarity and deep architectural diversity to 

enhance the robustness and precision of intrusion detection systems 

in highly imbalanced cybersecurity datasets. 

 

6. CONCLUSION AND POLICY 

RECOMMENDATIONS 

Evaluation of future behavior with environmental indicators is a 

way of real-time decision making and cautions for energy risks. 

Digitalized energy system continuity needs to follow DL models 

for robust cybersecurity. The paper presents recommendations 

in the context of preventing risks, detecting attacks, predictive 

maintenace, demand and capacity forecasting. 

 

This study demonstrates the application of diverse deep learning 

architectures for constructing an effective IDS using the NSL- 

KDD dataset, which is widely recognized for benchmarking IDS 

performance. Unlike traditional classifiers the proposed hybrid 

deep learning approach addresses the complex temporal, spatial, 

and structural characteristics of SCADA related network traffic. 

Experimental findings reveal that LSTM consistently achieves the 

highest performance across multiple attack categories, particularly 

for rare classes like U2R and R2L, due to its superior temporal 

modeling capabilities. CNN effectively capture localized patterns, 

while GNN leverage topological dependencies within the data. 

Compared to earlier studies where deterministic classifiers like 

kNN yielded strong performance, this work highlights that 

deep learning models, especially LSTM and GNN, offer greater 

robustness and accuracy, particularly in the context of imbalanced 
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and noisy SCADA datasets. Therefore, integrating these advanced 

models not only enhances precision and sensitivity but also ensures 

improved generalization and adaptability to real world industrial 

cyber physical systems such as smart grids. 

 

In conclusion; the study indicates key concepts of energy 

management systems as a series of stages that aim to result in 

matured digital transformation and gained sustainability through 

artificial intelligence integrated cybersecurity standards, acts 

and directives. Developing an intrusion detection deep learning 

methodology in energy sector, policymakers should draw upon key 

frameworks such as NIST AI, the EU AI Act, the EU Cybersecurity 

Act, the EU DEFENDER initiative, and the OECD Cyber Act 

for guidance. These frameworks emphasize the importance 

of adopting standards and best practices, ensuring regulatory 

compliance, conducting robust risk assessments, and implementing 

effective risk management strategies. Policies should prioritize 

data privacy and protection, promote collaboration and information 

sharing, and invest in capacity building and training initiatives. 

Continuous monitoring and incident response capabilities are 

crucial, along with the adoption of emerging technologies like 

deep learning to enhance intrusion detection systems, Resilience 

and recovery planning are also essential to minimize the impact 

of cyber incidents on critical energy infrastructure. Overall, a 

culture of continuous improvement and adaptation is necessary 

to address evolving cyber threats and support the ongoing digital 

transformation of the energy sector. 

 

The proposed feature reduction methodology introduces a 

hybrid approach that combines traditional statistical techniques 

with advanced deep learning methods to improve classification 

accuracy and efficiency. While many existing methodologies 

report high accuracy, they often neglect computational efficiency. 

This hybrid approach not only aims for superior accuracy but also 

emphasizes minimizing runtime, making it suitable for real time 

SCADA applications 

 

In addition and summary to the results as regulatory measures; 

for a SCADA intrusion detection deep learning methodology in 

the energy sector, several policy advices can be derived from 

frameworks like NIST, the EU AI Act, the EU Cybersecurity 

Act, the EU DEFENDER initiative, and the OECD Cyber Act. 

To enhance the cybersecurity of SCADA systems, organizations 

should implement several key policy recommendations. First, 

adopting standards and best practices is crucial; aligning with 

Information Delivery Specifications (IDS) ensures structured data 

exchange, while frameworks like ISO/IEC 27001 and PCI DSS 

help establish robust information security management systems 

to protect sensitive data. As demonstrated through the proposed 

hybrid AI based SCADA intrusion detection framework, high 

risk AI systems must adhere to key principles of transparency, 

reliability, and resilience, as mandated by the EU AI Act and the 

NIST Cybersecurity Framework. By integrating explainable AI 

components (e.g., SHAP values), robust deep learning models and 

risk aware validation techniques, the systems can operate these 

regulatory expectations within the technical design. Moreover, 

the alignment with ISO/IEC 27001 for information security and 

ISO/IEC 42001 for AI management systems further reinforces the 

framework’s compliance with cross cutting standards, ensuring 

that the deployed AI solutions are not only technically sound but 

also ethically and legally responsible. Regulatory compliance 

must also be prioritized through regular audits to adhere to 

frameworks such as the EU Cybersecurity Act, which mandates 

the safeguarding of data confidentiality and integrity within the 

energy sector. 

 

Comprehensive risk management strategies should be developed 

to identify vulnerabilities in SCADA systems, incorporating 

regular threat assessments and utilizing deep learning for enhanced 

intrusion detection capabilities. Data protection measures are 

essential; implementing stringent controls to safeguard sensitive 

information and regularly updating cybersecurity policies will 

address emerging risks. Stakeholder cooperation is vital for sharing 

insights on threats and best practices, with initiatives like the 

EU DEFENDER promoting collective cybersecurity resilience. 

Education and training programs should be established to keep 

personnel informed about emerging threats and incident response 

procedures, fostering a culture of cybersecurity awareness. 

Additionally, robust incident response plans must be developed, 

including clear procedures for identifying and mitigating security 

breaches, complemented by regular drills to ensure preparedness. 

Finally, redundancy and contingency planning should be 

implemented to maintain operational continuity after a cyber 

attack, ensuring that backup systems are regularly tested. By 

adopting these comprehensive recommendations, organizations 

can significantly bolster their SCADA systems’ defenses against 

cyber threats while ensuring compliance with relevant regulations. 
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