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ABSTRACT

Government’s active participation in to the energy markets requires us to understand its vertical and horizontal integrated involvement. Coherently, in 
order to diversify their portfolios and reduce their business risks, vertical integration of the major private players in the market is another important 
topic. Under these market conditions market power becomes prominent. Our paper utilizes ARX models to analyze market power and portfolio 
diversification impact on electricity prices. In the aggregate models since we used high frequency time series data for all bidding hours of day ahead 
market, autoregressive structure within the system marginal prices vitiated the effect of power production type. Accordingly, we benefited different 
hours of the day as separate time series where a baseload (hour 24) and a peak hour (hour 11) were selected. The contribution of our paper to the 
policy debate is to highlight that such issues exist in the first place and that market power remains an important concern in Turkish electricity market.

Keywords: Electricity Prices, Renewable Energy, Time Series, Market Power, Vertical Integration 
JEL Classifications: Q2, Q4, Q41

1. INTRODUCTION

Turkish energy sector has been in a liberalization process since 
1993. In this liberalization process big conglomerates invested 
and established vertically integrated business structures while 
government held its position as both a vertically and horizontally 
integrated market player who still has the market power both 
in electricity generation, wholesale and retail. In energy sector, 
strategic targets for Turkey are to maintain the security of energy 
supply as well as to increase competition for the benefit of the 
customers and reducing the costs within all steps of the value chain.

Coherent with global benchmarks renewable energy investments 
expanded rapidly which provided diversity in the energy 
production portfolio of Turkey. YEKDEM1 mechanism is one 
of the most encouraging factors for both strategic and financial 
investors. Renewable projects can easily secure financing due 
to hard currency feed-in tariff and available funding. However, 

1 YEKDEM is a support mechanism for electricity manufacturers from 
renewable energy resources, which has been regulated in the Regulation on 
Documentation and Support of Electricity Manufacturing from Renewable 
Energy Resources (“Regulation”) which has entered into force in 2013.

renewable producers who sell in the market help market clearing 
price (MCP) to settle at a lower rate in the merit order, has an 
important impact on electricity prices.

Electricity prices have different stochastic properties to those of 
standard financial products and even other commodities mainly 
because of its non-storable nature. Electricity prices contain strong 
seasonality, very short-lived spikes and mean-reverting behavior. 
Models studies to describe and forecast the dynamics of electricity 
quantity has been continued since many years before deregulation 
process began in other countries. Electricity market models 
require energy prices for balancing, spot and short-term forward 
transactions. Short term load forecasting plays an important role 
in power system operation and planning. The obtained electricity 
price forecast models will in turn help develop bidding strategies 
and negotiation skills in order to maximize profits in an extremely 
volatile market.

In this study we try to understand the relationship between 
electricity prices and production type of electricity as an 
application study of merit order based on regression models. Our 
contribution to the growing literature on Turkish electricity market 
is applying models incorporating newly established EXIST high 
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frequency data. To our knowledge, our paper is one of the first 
attempts which incorporates hourly EXIST data in applied models 
for electricity prices.

The paper is organized as follows: In the sub-parts of Section 1, 
market fundamentals of Turkish electricity market is summarized. 
Section 2 includes the literature review on previous research on 
electricity price modeling and market power. Section 3 presents 
the data used and we discussed our empirical results in Section 4. 
Finally section 5 provides conclusion remarks and further study 
areas within this topic. Our analysis are based on basic ARx models 
so we included brief information about the methodology only in 
the appendix part.

1.1. Power Generation Market in Turkey
Privatization of utilities in Turkey has proved to be a complex 
issue, often involving three separate stages, one of which is 
obviously a shift in ownership from the public to private hands. 
The second is the restructuring of the companies, while the third 
one is a change in the way the sector operates, usually involving 
an adoption of competitive procedures.

Turkish electricity sector was dominated by the state-owned 
vertically integrated company Turkiye Elektrik Kurumu (“TEK”) 
until the early 1990s. In 1993, as a result of market liberalization and 
privatization approach, TEK was separated into TEAS (generation, 
transmission and wholesale) and TEDAS (distribution). Then, with 
the enactment of the Electricity Market Law in 2001, TEAS was 
further unbundled into EUAS (generation), TETAS (wholesale) 
and TEIAS (transmission), each being organized as a separate 
legal entity.

As exhibites in Figure 1, the privatization process in the electricity 
distribution sector was initiated in 2009 and completed in a total 
of 12 regions by early 2013. As of 2017 there are 21 regions in 
the market but accordingly, vertically integrated energy groups 
exist in the market as major players.

It is stated in the strategy paper that during the transition period 
2006-2010, distribution companies were to procure 85% of the 
regional energy demand consumed by non-eligible customers 
from TETAS and the portfolio generation companies carved out 
of EUAS.

TETAS was created to conduct wholesale operations and take 
over the existing energy sale and purchase agreements from 

TEAS and TEDAS. TETAS was also held responsible for 
managing the stranded costs associated with the build operate 
(“BO”), build operate transfer (“BOT”) and TOR generation 
contracts.

EUAS was envisaged to take over the ownership and the 
operation of the State thermal power plants from TEAS and the 
hydroelectric power plants from the Devlet Su Isleri (“State Water 
Works”). EUAS was also empowered to build, lease and operate 
new generation facilities, if deemed necessary, in accordance 
with the EMRA approved generation capacity projections and 
taking into consideration the generation investments by the 
private sector.

As stated by the Privatization Administration of the Prime 
Ministry, the primary outcomes desired with the privatization in 
the sector can be summarized with the following properties:
• Lowering costs through effective and efficient operation of 

electricity distribution assets.
• Decreasinglossandtheftratios,byreducingtechnicallossesindi

stributionandpreventingillegaluse,andhence.
• Reducing consumer prices by reflecting all the gains obtained 

on to consumers.

Regulations are the main market shapers in Turkey like other 
energy regulators in other countries. Most of the companies 
are obliged to In Turkey, more than 67% of the electricity is 
generated from fossil fuels. Suppliers who use the networks 
are obliged to input the same amount of electricity as their 
customers take out and are charged by the network operator 
for any imbalances. The network operator also maintains 
some generating reserves with which to ensure that the 
network can remain in balance. The result is that the power 
generation companies have restrictions on their productivity 
and have to comply with grid operator requests ultimately 
affecting overall profitability whilst creating a difficult 
trading environment.

Securing the supply of a particular resource, such as natural gas, 
can become crucial. Supply from countries with large natural 
resources increases their supplier power. These situations can 
also become politically problematic where the supplier is a state 
owned facility.

For example, with the announcement made by EPİAŞ on 
November 22, 2016, the restriction on the amount of natural 
gas provided by BOTAŞ to TETAŞ and EÜAŞ natural gas 
power plants was increased to around 50% as a result of further 
increase in consumption on 14 December 2016. According to 
sector sources, BOTAŞ increased the amount of cuts applied to 
natural gas plants to 75% on 21 December 2016 and to 90% on 
22 December 2016. Continuation of the shortfall to natural gas 
power plants carried average electricity prices to record levels 
in the day-ahead market (DAM) between December 15 and 
December 21.

In this context:
• Power plants are ordered according to their short-term 

Figure 1: The restructuring process in the Turkish electricity market
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marginal costs to form the merit order2 (Figure 2).
• Marginal plant determines the price. All power plants to left 

of demand dispatch and ones to right do not dispatch.
• Competition between different types of plants3 and within the 

same group of plants determine pricing strategy.
• Above 90% of the time electricity prices are determined by 

plants whose fuel costs are in USD (CCGT and imp.coal).
• Since CCGTs are the marginal plants 85% of the time natural gas 

prices are the most important determinant of electricity prices.

Renewable energy has become a priority for Turkish policymakers 
over the past few years as they realized the role that this energy 
source can play in expanding power generation and diversifying 
the energy supply mix. Turkey’s reliance on imported natural 
gas for power generation has given rise to concerns over both 
supply security and the country’s increasing current account 
deficit. However further analysis and more developed forecast 
models should be studied in order to not to experience negative 
electricity prices in the market as it happened in Germany with 
the tremendous renewable energy production increase.

Accordingly, the degree of rivalry in this industry depends first 
of all on industry structure, which is usually decided at a national 
or state level. Some countries’ electricity industries are fully 

2 The merit order is a way of ranking available sources of energy, especially 
electrical generation, based on ascending order of price (which may reflect 
the order of their short-run marginal costs of production) together with 
amount of energy that will be generated. In a centralized management, the 
ranking is so that those with the lowest marginal costs are the first ones to 
be brought online to meet demand, and the plants with the highest marginal 
costs are the last to be brought on line. Dispatching generation in this way 
minimizes the cost of production of electricity. Sometimes generating units 
must be started out of merit order, due to transmission congestion, system 
reliability or other reasons.

3 Increasing the supply of renewable energy tends to lower the average price 
per unit of electricity because wind energy and solar energy have very low 
marginal costs: They do not have to pay for fuel, and the sole contributors 
to their marginal cost is operational and maintenance. With cost often 
reduced by feed-in-tariff revenue, their electricity is as a result, less costly 
on the spot market than that from coal or natural gas, and transmission 
companies buy from them first. Moreover, solar energy is typically most 
abundant in the middle of the day, coinciding closely with peak demand in 
warm climates, so that it is in the best position to displace coal and natural 
gas electricity when those sources are charging the highest premium. Solar 
and wind electricity therefore substantially reduce the amount of highly 
priced peak electricity that transmission companies need to buy, reducing 
the overall cost.

liberalized, with complete unbundling of generation, transmission, 
distribution, and retail operations, the ability of all end-users 
to switch suppliers, and so on. Others have a much less liberal 
structure, with features such as suppliers operating as monopolies 
within particular geographical regions.

1.2. DAM in Turkey
DAM, which became effective on 1st December 2012, is the 
organized wholesale spot electricity market established for 
purchase and sale of electricity to be delivered in the day ahead 
on the basis of settlement period (1 hour) and that is operated by 
the market operator. It provides the opportunity to the market 
participants for balancing their production, consumption and 
bilateral contract obligations.

An important aspect of DAM brought to electricity market is 
chance of demand side to adjust its consumption based on price 
levels. Coherently, demand side began to actively participate to 
market thus has the chance of hedging itself against price volatility. 
Participation to DAM is not mandatory. Moreover, DAM enabled 
financial settlement in daily basis and performance of daily 
clearing of payables/receivables due to commercial transactions 
at next day after commercial transactions date. This situation 
allowed market participants to receive revenues generated by sales 
of generated electricity on daily basis rather than monthly basis 
which provides them liquidity.

1.3. Balancing Power Market (BPM) in Turkey
BPM is designed as a mechanism to maintain the physical supply 
and demand equilibrium through a transparent market application. 
The need for essentially arises from market participants’ inability 
to comply with their accepted bids/offers in the DAM.

Offers and bids submitted by the market participants on BPM are 
ranked by System Operator according to their prices. In case there is 
energy deficit in the system, maximum accepted hourly offer price 
applied to up-regulated balancing entities to correct this deficit in 
the system is accepted as the system marginal price (SMP). On the 
other hand, if there is energy surplus in the system, the minimum 
accepted bid price applied to down-regulated balancing entities to 
correct the energy surplus in the system is accepted as the SMP.

Figure 3 shows the relation of DAM and BPM prices, where there 
is energy deficit in the system and up-regulation instructions are 
given to the market participants. Price calculated in BPM is higher 
than price calculated in DAM. BPM price is used for settlement 
of imbalances and this relationship incentives market participants 
for trading into a balance on the DAM to avoid imbalanced price.

1.3.1. General offering principles of DAM in Turkey
Participants can submit hourly and daily for a particular period of 
hour/hours and/or flexible offers to DAM.

• Offers are composed of quantity and price information that 
can change for different hours:
• Submitted offer prices have centesimal sensitivity.
• Offers can be made in terms of Turkish Lira, US Dollar, 

and Euro currencies.
• Offer prices submitted other than Turkish Lira are 

Figure 2: Merit order scheme

Source: Garanti Bank 2015 Electricity Market Report
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assessed by converting these prices into Turkish Lira by 
using daily CBRT bid rate.

• Offer quantities are submitted in terms of Lot as an integer 
number. 1 Lot is equivalent to 0.1 MWh.

• Offers can be submitted as both buying and selling offers. 
Depending on the sign in front of the quantity, the offer is 
either buying or selling offer. (For instance 100 Lot indicates 
a buying offer whereas-100 Lot indicates a selling offer).

• Minimum and maximum price limits are determined by the 
market operator between 0 TL and 2000 TL respectively. 
Depending on changing market circumstances, the market 
operator updates minimum and maximum price limits and 
announce them via Market Management System to market 
participants.

• Minimum and maximum offer quantities are determined by 
the market operator as 0 Lot and 100.000 Lot respectively.

• Offers submitted for same delivery date are recorded to the 
system as a new version in case they are updates.
• Latest version of an offer is considered during matching.
• Older version of offers can be viewed via version filter.

2. LITERATURE REVIEW

Although industry concentration and individual firm market share 
are often correlated market power, this is not always the case. There 
are many factors beyond the number and size of firms in a market 
that impact the degree of a competition within an industry such as 
the incentive of producers, the price-responsiveness of demand 
(elasticity) and the potential for expansion of output by competitors 
and potential competitors. Concentration measures indicate the 
current distribution of sales or capacity, but can not tell us what 
will happen to prices when one firm reduces its output. This is a 
crucial questions in the electricity industry where the product is not 
storable and short-run demand is relatively inelastic. In this context 
analyzing the strategic behaviors of the firms becomes important.

Stoft (2002) also argues against applying the Herfindahl-Hirschman 
index to the electricity industry because it ignores some key factors 
that are crucial in this context: (1) demand elasticity, (2) style of 
competition, (3) forward contracting, (4) vertical integration of 
firms, (5) geographical structure. Furthermore, Borenstein et al. 
(2002) and Fabra and Toro (2005) conclude that given the non-

storability of electricity, market power can exhibit huge inter-
temporal variations.

Nevertheless, the Cournot-Nash approach is to assume that 
strategic firms employ quantity strategies: Each strategic firms 
chooses its quantity to produce taking as given the output being 
produced by all other strategic firms, not all the firms are likely 
to behave strategically. Very small firms are more likely to 
simply take the market price as given and produce all output for 
which its incremental cost is less than the market price. Thus, 
Borenstein et al. (1999) modeled only the large firms as Cournot 
competitors where very small firms were modeled as price 
takers, both in their own behavior and in how they were viewed 
by strategic players in the market. Furthermore, Andersson and 
Bergman (1995) and Oren (1997) utilized Cournot model to 
analyze electricity markets.

One game-theoretic concept that has been prominently applied 
to electricity markets is the modeling of equilibria when bidders 
specify cost/quantity supply functions. The strategies of the 
firms are actual price quantity bid functions, rather than the 
inflexible quantity bid given by the Cournot model. However in 
some markets, trades do not occur exclusively through a supply-
function bid process. Bilateral trading of specified quantities is 
common in many restructured markets around the world. In many 
of these markets firms bid not only energy prices, but also startup 
costs, ramping rates, and other supply characteristics. The supply 
function approach also does not lend itself well to markets where 
there is a competitive fringe whose capacity may be limited due 
to either generation or transmission constraints.

Nevertheless, the potential to exercise market power is often present 
from the supply side. Initiatives to mitigate market power and pursue 
market efficiency are indeed among the most delicate and debated 
issues concerning the deregulation process in many countries. This 
issue is particularly interesting because the exploitation of market 
power can significantly erode the consumer benefits that would be 
expected to result from the transition from regulated to competitive 
markets for electricity generation (Fezzi, 2015). In this context, the 
centralized price mechanism and capacity-constrained suppliers in 
electricity markets (at least during peak periods) support the use 
of Cournot model for a base case analysis.

Moreover, government’s active participation to the energy markets 
requires us to understand its vertical and horizontal integrated 
involvement. Private companies operating in the energy market 
are also vertically integrated in order to diversify their portfolios 
and reduce their business risks.

Bosco et al. (2016) focus on the degree of vertical integration 
effects of bidding strategy of monopolistic players in Italian 
energy markets. In this paper they addressed the question of how 
the supply conduct of a vertically integrated power generator can 
be coordinated in a wholesale market with the buying activity of 
a downstream retailer. Their model shows the relationship of a 
vertically integrated energy group composed of a holding company, 
production and retailer companies along with Principal-Agent 
model. In the absence of an incentive, the generation branch would 
behave in an opportunistic manner raising equilibrium prices in 

Figure 3: Price relationship between day-ahead market and balancing 
power market
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the market to its own advantage which will reduce profits of the 
retailer branch which buys electricity in the wholesale market and 
sells it to customers to fixed prices. The crucial point here is that 
the holding that parents generator and retailer companies should 
be pivotal one who has the power to make the market.

Aid et al. (2011) claim that vertical integration restores the 
symmetry between producers’ and retailers’ exposure to demand 
risk. Their analysis predict that there is a negative relationship 
between the development of forward markets and firm’s incentives 
to merge with vertically related segments. Other things equal their 
expectation is that vertical integration to be higher in industries that 
are more subject to uncertainty and where other risk management 
mechanisms are less readily available. In addition to that Aid et al. 
(2011) also state that with or without developed forward markets, 
they expect vertical integration to be more widespread in industries 
that are subject to greater risk aversion especially through greater 
regulatory pressure and higher bankruptcy costs.

3. ECONOMETRIC DATA DESCRIPTION

After establishment of Energy Exchange Istanbul (EXIST) the 
day a head electricity settlement data is not provided by Market 
Financial Settlement Center (PMUM4). Moreover the publicly 
available data on EXIST transparency platform is not sufficient for 
such a vertical integration and degree of market power study since 
we cannot see the generator company and region information from 
these data series. Therefore we worked on an aggregated model 
to analyze the SMP in electricity market with publicly available 
hourly data on EXIST.

We can emphasize the factors that affect spot prices based on 
two approaches such as production approach and consumption 
approach.

3.1. Production Approach
• Installed capacity
• Power plant type (natural gas, fuel-oil, hydro etc.)
• Power plant efficiency, maintenance and breakdown, 

management policy (private or public company)
• Gas restrictions
• Water flow, drought, wind, snow depth
• Generation by renewables resources (wind, solar, hydro, 

geothermal etc.)
• Generation by BOT model and BO models.

3.2. Consumption Approach
• Macroeconomics growth
• Weather conditions
• Seasonality
• Consumption variance between peak-off and peak hours
• Consumption variance between weekend and weekdays, 

public holidays.

A new commercial instrument has been introduced to electricity 
markets after the Intra Day Market (IDM) was opened on 1st of July 

4  Piyasa Mali Uzlastirma İş Merkezi.

2015 which reduced the imbalance and electricity trade volume 
in spot markets. Moreover new feed in tariff (FIT) regulation for 
renewables became effective at the end of April 2016. In this context 
Model 2 is based on the dataset between 01.07.2016 and 01.09.2016 
in order to analyze the regulation change and IDM opening effect 
on SMP. Most of the data set are stationary. (see Table 7 in the 
appendix part for ADF test results and Table 8 for LM test results).

The dataset definitions which are used in our models are as 
exhibited in Table 1.

4. APPLICATIONS AND FINDINGS

In this study our main intention was to use electricity consumption, 
production and price hourly data provided by EXIST to drive 
models with high frequency data. For this reason we applied 
simple ARX models since we faced high degree of autocorrelation 
in hourly time. Our first goal was not to find an innovative 
econometric model but to apply models via newly established 
EXIST database in order to check the energy policy effects on 
electricity prices.

Consequently we analyzed the data in two aspects; first we tried to 
find the relationship between the SMP and electricity production 
type to see the impact of merit order mechanism on settlement 
prices. Secondly, we used hourly production data of Enerjisa and 
Aksa along with EUAS and TETAS who affect the price levels 
significantly by their level of production in the merit order. Enerjisa 
and Aksa are among the biggest private companies who operate 
in energy market with their well-diversified portfolios.

4.1. Aggregate Models
Briefly, two I(1) variables could exhibit significant correlation, 
without an underlying relationship however the regression must 
make economic “sense.” This is called spurious regression 
problem. To avoid this problem we checked whether the variables 
are stationary or not in our dataset via Augmented Dickey-Fuller 
(ADF) tests. We also included a @trend variable in Model 1 and 
Model 2 (exhibited in Table 2) to eliminate spurious relationships 
between independent variables.

Model 1 and Model 2 are based on same independent variables 
with two different times zones, 18.12.2015-01.09.2016 and 
01.07.2016-01.09.2016 respectively. In this context econometric 
model equation for Model 1 and Model 2 is as mentioned below:

log( ) log( ) log( )

log( ) l

SMP brentusd blocksales

wind

= + +
+
β β β
β

1 2 3

4 oog( ) log( )

log( lg ) log(

lignite geothermal

natura as dam

+ +
+

β
β β

5

6 7 mmed pibid

fuel oil LNG mc

) log ( )

log( _ ) log( ) log (

+
+ + +

β
β β β

8

9 10 11

 

 pp

systemproxy trend

) +
+β β12 13 

When we compare Model 1 and Model 2 primarily we can 
clearly see that Model 2 has a greater power to explain SMP 
changes with a R2 of 0.7413 which means that we can explain 
74% of SMP changes with Model 2 while we can explain only 
62% of SMP changes with Model 1. Since @trend variable is 
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not statistically significant in Model 2 we can conclude that 
Model 2 does not include a significant trend impact as Model 1 
do. Although comparing models based on R2 values is a poor 
econometric approach, it is a good signal to conclude that after new 
tariff regulation and IDM establishment efficiency of the model 
increases. This is important to check the impact of energy policies.

Singularly wind, lignite, natural gas, fuel oil, LNG, geothermal 
generation amount variables lose their strength in order to explain 
SMP changes individually in Model 2 however F-statistics is 
quite significant which makes us suspicious for multicollinearity 
between variables. Since generation power plants are expected to 

behave and produce in the same way due to demand trend in the 
market, existence of multicollinearity is not an unexpected result.

In this situation the coefficient estimates of the multiple regression 
may change erratically in response to small changes in the model 
or the data but it does not reduce the predictive power or reliability 
of the model as a whole, at least within the sample data set; it only 
affects calculations regarding individual predictors. That is, a 
multiple regression model with correlated predictors can indicate 
how well the entire bundle of predictors predict the outcome 
variable, but it may not give valid results about any individual 
predictor, or about which predictors are redundant with respect to 
others. Even extreme multicollinearity (so long as it is not perfect) 
does not violate OLS assumptions. OLS estimates are still unbiased.

In Model 2, although significant varices are observed between 
average SMP and MCP, MCP is more active to explain SMP 
changes between 01.07.2016 and 01.09.2016 which suggests that 
IDM works efficiently. After the energy generation by renewable 
resources increased in the system, balancing demand and supply 
became harder but new FIT regulation and establishment of IDM 
seem to reduce this instability based on the results in Model 2.

Due to Model 1 when generation by wind, geothermal and dammed 
hydro power plants increase 1%, SMP is expected to increase 
0.23%, 0.71% and 0.85% respectively. Although a substantial 
amount of electricity is generated from hydro, wind and other 
renewable sources, the dominant production process is still fossil 
fuels such as gas and coal.

In Table 3 we tried to model SMP changes with a more compact 
model. Similarly OLS estimations in Model 3 and Model 4 are 
based on same independent variables with two different times 

Table 1: Model dataset descriptions
# Variable Description Frequency
1 log(brent usd) Logarithm of daily brent oil prices Daily
2 log(blocksales) Logarithm of block matched sales amount Hourly
3 log(wind) Logarithm of injection quantity by wind Hourly
4 log(lignite) Logarithm of injection quantity by lignite Hourly
5 log(geothermal) Logarithm of injection quantity by geothermal Hourly
6 log(natural gas) Logarithm of injection quantity by natural gas Hourly
7 log(dammed) Logarithm of injection quantity by dammed hydro Hourly
8 log(pibid) Logarithm of hourly aggregate price independent bid quantity at 2000 TL/MWh Hourly
9 log(fuel_oil) Logarithm of injection quantity by fuel oil Hourly
10 log(biomass) Logarithm of injection quantity by biomasss Hourly
11 log(LNG) Logarithm of injection quantity by LNG Hourly
12 log(mcp) Logarithm of market clearing price is the hourly energy price that is determined with respect to 

oders that are cleared according to total supply and demand
Hourly

13 log(smp) Logarithm of price that corresponds to the net regulation quantity of the balancing power market Hourly
14 log(usdtry) Logarithm of Dolar against Turkish Lira FX closing rates Daily
15 log(mcp) Logarithm of market clearing price is the hourly energy price that is determined with respect to 

oders that are cleared according to total supply and demand
Hourly

16 log(tetas) Logarithm of TETAS final daily production program Hourly
17 log(consumption) Logarithm of total hourly real-time consumption Hourly
18 log(aksa) Logarithm of Aksa final daily production program Hourly
19 log(enerjisa) Logarithm of Enerjisa final daily production program Hourly
20 log(renewables) Logarithm of wind, geothermal, biomass, river and dammed injection quantity sum Hourly
21 systemproxy Proxy variable which gets the value “1” for energy excess and “0” for energy deficit in the system
22 daypeak Proxy variable which gets the value “1” for hours between 07:00 and 21:00 and “0” for other hours
23 @trend Trend variable

Table 2: Model 1 and Model 2 for system marginal price 
estimations
Variables Model 1 Model 2

Est. S.E. t-statistics Est. S.E. t-statistics
log(brent usd) −0.80 0.24 −3.37 0.84 0.33 2.55
log(blocksales) 0.23 0.05 4.74 0.10 0.04 2.29
log(wind) 0.24 0.03 6.90 0.01 0.03 0.30
log(lignite) −0.61 0.21 −2.90 −0.13 0.17 −0.77
log(geothermal) 0.71 0.25 2.90 0.13 0.19 0.66
log(natural gas) 2.13 0.16 1.34 0.00 0.16 −0.02
log(dammed) 0.86 0.11 7.95 0.23 0.09 2.66
log(pibid) −2.18 0.24 −9.08 −0.30 0.20 −1.48
log(fuel_oil) 0.32 0.10 3.10 0.01 0.07 0.11
log(biomass) −1.26 0.29 −4.31 −0.31 0.19 −1.59
log(LNG) 0.14 0.03 4.08 0.00 0.02 0.21
log(mcp) 0.72 0.02 3.07 0.75 0.02 3.77
systemproxy −0.87 0.04 −2.12 −0.69 0.03 −2.42
@trend 0.00 0.00 −1.93 0.00 0.00 −0.05
R2 0.62 0.74
Durbin-Watson 0.99 1.21
df 6187 1483
S.E.: Standard error
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zones, 18.12.2015-01.09.2016 and 01.07.2016-01.09.2016 
respectively. In this context econometric model equation, for 
Model 3 and Model 4 are as mentioned below:

log( ) log( )

log(

SMF mcp systemproxy daypeak
consumpt
= + +

+
  


1 2 3

4 iion u) +

Daypeak proxy variable gets the value “1” for hours between 07:00 
and 21:00 and “0” for other hours. Based on Durbin-Watson (DW) 
statistics and R2 values we do not suspect for multicollinearity in 
Model 3 and Model 4.

If we compare Model 1 and Model 2 with Model 3 and Model 
4 we can see that production based approach model is more 
efficient than consumption approach models due to higher R2 

values. However since R2 is not a sufficient decision point to 
compare regression models the important take away from Models 
1-4 are the relationship of variables and their consistency with 
energy policies.

Electricity markets can be characterized by dynamic relations. 
If the supply function shifts upwards (and hence, the clearing 
price increases), the reduction of the quantity cleared on the 
market can be instantaneous or take place with some delay, 
because demand can require time to adjust to the shock. On the 
other hand, the effect of an impulse can be completely absorbed 
only after many lags (Fezzi, 2015). If the supply function shifts 
upwards (where the clearing price increases), the reduction of 
the quantity cleared on the market can take place with some 
delay since the demand can require time to adjust to the shock. 
Even when demand is completely inelastic to price, the quantity 
traded on the market responds to past equilibrium in the supply 
function. This asymmetric effect is due to the fact that demand 
reacts if prices are higher than the equilibrium but does not 
show any significant feedback if price is lower. Zhang (2015) 
suggest that when there is a positive relationship between 
electricity price elasticity (in absolute terms) and households’ 
income, a uniform increase in the price of electricity can be 
quite regressive.

It is very common to see reported in applied econometric literature 
time series regression equations with an apparently high degree 
of fit, as measured by the coefficient of multiple correlation R2 or 
the corrected coefficient R2, but with an extremely low value for 
the DW statistic. The effects of economic and other variables are 
rarely instantaneous, it takes some time for consumers, producers, 

and other economic agents to respond. Because of the equilibrium 
effect is felt only after the passage of some time, econometric 
models using time series data are often formulated with lags in 
behavior (dynamic model). Lags in behavior might also take the 
form of the lags in the dependent variable.

Weron and Misiorek (2005) used ARMA and ARMAX models 
which are tested on a time series of California power market 
system prices and loads for forecasting electricity prices. They 
obtained best results with pure ARX models which included AR(i) 
processes and exogenous variables.

For this reason Model 5 (exhibited in Table 4) specifies that the SMP 
depends linearly on its own previous values and on a stochastic 
term (an imperfectly predictable term); Model 5 is based on same 
independent variables between 18.12.2015 and 01.09.2016.

In this context equation for Model 5 is as mentioned below:

log( ) log( ) log( )

log( ) l

SMP brentusd wind

geothermal

= + +
+

β β
β β
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3 4 oog( lg )
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The serial correlation LM test results for this equation with 2 lags 
in the test equation strongly reject the null of no serial correlation 
for Model 1 while for Model 5 test equation cannot reject the null 
of no serial correlation. Another fundamental aspect to consider 
when analyzing electricity market outcomes is the existence of 
excess capacity on the system, i.e., the amount of power plants 
willing to produce (and bidding into the market) in a specific hour 
or day. This is often indicated with the term “margin” and can vary 
a lot during the year, according to the maintenance schedule of 
power plants but also to the strategic interaction of the suppliers 
(Borenstein et al. 1999 and Borenstein et al. 2002). 

In Models 1-5 we can see that systemproxy variable is always 
significant and has a negative effect on SMP. The phenomenon 
might be explained by the fact that the electricity prices are an 
outcome of the bids which are submitted without knowledge of 
the future actual system load.

As a result in the aggregate models since we use high frequency 
data for all bidding hours of DAM, the effect electricity production 
type on SMP is vitiated. Following this consideration Model 6 
and Model 7 were implemented considering market outcomes of 
different hours as separate time series where a baseload (hour 24) 
and a peak hour (hour 11) were selected.

Fezzi (2015) identified peak hour as hour 19 due to Pennsylvania, 
New Jersey and Maryland (PJM) market data however based 
on our analysis for EXIST which is exhibited in Figure 4, we 
decided to use hour 11 as our peak hour since both average 
electricity prices (MCP and SMP) and average consumption 
series intersect each other in this time period of the day hours at 
their highest levels.

Table 3: Model 3 and Model 4 for system marginal price 
estimations
Variables Model 3 Model 4

Est. S.E. t-statistics Est. S.E. t-statistics
log(mcp) 0.82 0.01 5.79 0.62 0.02 3.18
systemproxy −0.98 0.02 −4.13 −0.86 0.03 −2.56
daypeak 0.13 0.03 4.94 0.08 0.03 2.29
log(consumption) 0.11 0.01 1.59 0.20 0.01 2.09
R2 0.55 0.60
Durbin-Watson 0.85 0.89
df 5910 1491
S.E.: Standard error
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In this context econometric model equation for Model 6 and 
Model 7 are as mentioned below:

log( ) log( ) ( ( ))/SMP blocksales d brentusd
syst

HR HR11 24 1 2

3

= +
+

 
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Differing from Models 1-5, in models 6 and 75 we summed up 
all renewable based production amounts in “renewable” variable. 

5  For model 6 and 7, we also tested alternatives with a weighted renewable 
production index (renweg) variable instead of totbal renewable production 
(renewable). Index was calculated as. 

production by wind
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wind producti× oon production by dammed
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In section 8.4, Table 9 exhibits that alternative model results are not 
significantly different. Our expectation was to be able to find a better 
explanatory variable with Index terms compared to single production amount 
variables. However due to the test results we have concluded that Index 
terms do not contribute significantly better to the model efficiency. You can 
compare the results of Tables 5 and 9 to compare both models more detailed.

We also incorporated imported coal (impcoal) and natural gas 
(ng) based productions and first difference of brent oil prices 
(d(brentusd)) as well. Furthermore, we included blocksales as 
explanatory variable in to the model considering the market 
power approach.

Block offers contain information regarding to price, quantity and 
time period encompassed and they are determined as consecutive 
and whole hours. If the block offers are under the average 
price of the encompassed time period, then the block offers are 
accepted or if block offers are higher than the average prices of 
the encompassed time period are accepted.

This market mechanism may have a pressure on the peak time 
electricity prices in favor of consumers. Block offers can be 
accepted only if they maximize total surplus in case supply and 
demand do not intersect and several offers are linked with each 
other. Coherently we observe that block sales has a significant 
negative effect on SMP at peak times while it is not a significant 
explanatory variable for base load.

These results bring additional support to the modeling philosophy 
that the estimation of separate models for each hour of the day can 
be a more efficient way to predict the exogenous variable effect 
on the electricity prices.

4.2. Company Models
Depending on the regulatory regime, power generation 
companies may have the ability to move forward into their 
buyers’ industry through entry into the power retail industry, 
selling electricity to end-users. While it is not often possible for 
generation companies to literally sell their own power direct to 
end-users (this depends on issues such as the electricity industry 
structure, which is also usually controlled by the regulatory 
system), presence in the retail industry means that power 
generators have an additional revenue stream that can defend 
their margins against volatile prices for wholesale power and 
their own inputs, such as coal or gas. Some industries do have 
large energy supply companies with strong buyer power over 
other power generation companies.

Vertical integration of generation, supply and network activities, 
which reduces the incentives to trade and for new companies 
to enter the industry, has remained a dominant feature in the 

Figure 4: Electricity price and consumption trendsTable 4: Model 5 for system marginal price estimations
Variables Model 5

Est. S.E. t-statistics
log(brent usd) −0.52 0.18 −2.93
log(wind) 0.11 0.04 2.92
log(geothermal) −0.44 0.14 −3.07
log(natural gas) 2.06 0.14 14.61
log(dammed) 1.31 0.08 16.69
log(pibid) −2.79 0.19 −14.69
log(fuel_oil) 0.14 0.08 1.73
log(mcp) 0.76 0.01 54.43
systemproxy −0.55 0.03 −20.77
AR (1) 0.56 0.02 35.66
AR (2) 0.04 0.02 2.14
AR (3) 0.07 0.02 3.87
AR (4) 0.05 0.02 2.68
AR (5) −0.03 0.01 −2.06
R2 0.71
Durbin-Watson 1.77
df 5442
S.E.: Standard error

Table 5: Model 6 and Model 7 for HR11 and HR24
Variables Model 6 Model 7

Est. S.E. t-statistics Est. S.E. t-statistics
c −2.20 1.97 −1.11 0.38 7.27 0.05
log(blocksales) −0.12 0.05 −2.19 0.11 0.14 0.84
log(d(brentusd)) 0 0.02 0.22 −0.01 0.07 −0.12
systemproxy −0.51 0.04 −14.13 −0.69 0.14 −5.05
log(impcoal) −0.06 0.15 −0.42 −0.63 0.53 −1.20
log(ng) 0.1 0.14 0.73 0.2 0.37 0.53
log(ptf) 0.76 0.12 6.17 0.78 0.11 7.04
log(renewable) 0.44 0.15 2.84 0.39 0.44 0.88
R2 0.83 0.66
Durbin-Watson 2 2.12
df 246 246
S.E.: Standard error
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electricity industry in many countries. However, moderate growth 
in recent years, coupled with a forecast for slightly faster growth 
through to 2018, makes the industry still attractive to new entrants.

For example in addition to four main business lines being 
electricity generation, distribution, trading and sales, Enerjisa also 
manages a portfolio in natural gas. Although all these activities 
have different dynamics Enerjisa tries to leverage its business 
in an integrated way based on an efficient and flexible portfolio 
strategy focused on operational excellence.

Accordingly, Kazancı Group, parent company of Aksa Energy, 
companies operate in all areas and carry out their operations 
in synergy with each and every link of the energy value chain, 
from production to distribution. The production portfolio of Aksa 
Energy includes 16 power plants which produce electricity using 
natural gas, lignite, wind, hydroelectricity, fuel-oil.

Model 8 and Model 9 (exhibited in Table 6) are based on same 
independent variables with two different times zones, 18.12.2015-
01.09.2016 and 01.07.2016-01.09.2016 respectively. Model 
equation for Model 8 is as mentioned below:
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log(
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+
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β
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And for Model 9 equation is as below:
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Electricity production in renewables has a positive effect on 
Enerjisa production planning while it has a negative effect on Aksa. 
The main reason of this fact is that Enerjisa production portfolio 
consists of approximately 30% renewables while most of the 
Aksa production is based on natural gas power plants. Moreover, 
production of TETAS have a positive impact on Enerjisa and 
Aksa production since they have a decreasing effect on MCP and 
reduces the equilibrium prices in the merit order.

TETAŞ and EUAŞ produce approximately 40% of the whole market 
which makes it in fact an oligopoly market. An oligopoly is a market 
structure in which a few firms dominate. When a market is shared 
between a few firms, it is said to be highly concentrated. Although 
only a few firms dominate, it is possible that many small firms may 
also operate in the market. In this case it is clear that TETAŞ and 
EUAŞ have the market power with their huge production capacity 
and they can force the market in to a Cournot6 equilibrium.

A typical oligopoly market strategy is based on interdependency. 
Because firms cannot act independently, they must anticipate the 
likely response of a rival to any given change in their price, or 
their non-price activity. In other words, they need to plan, and 
work out a range of possible options based on how they think 
rivals might react.

• Oligopolists have to make critical strategic decisions, such as:
• Whether to compete with rivals, or collude with them.
• Whether to raise or lower price, or keep price constant.

Whether to be the first firm to implement a new strategy, or whether 
to wait and see what rivals do. The advantages of “going first” or 
“going second” are respectively called 1st and 2nd-mover advantage. 
Sometimes it pays to go first because a firm can generate head-
start profits. Second mover advantage occurs when it pays to wait 
and see what new strategies are launched by rivals, and then try 
to improve on them or find ways to undermine them.

However this is not the case in electricity markets. TETAŞ and 
EUAŞ make their production plans due to the collimation of 
government in line with Petroleum Pipeline Company’s (BOTAŞ) 
current portfolio position. There are BO-BOT power plants with 
purchase guarantee from BOTAŞ until the end of 2018. There are 
no volume or price risk since the government has guaranteed the 
production of BO-BOT PPs. Approximately 1/3 of BOTAŞ’ gas is 
consumed in BO-BOT plants. BOTAŞ has been trying to offset its 
losses elsewhere by selling expensive gas to these plants. As a result 

6 Cournot competition is an economic model used to describe an industry structure 
in which companies compete on the amount of output they will produce, which 
they decide on independently of each other and at the same time. It is named 
after Antoine Augustin Cournot (1801-1877) who was inspired by observing 
competition in a spring water duopoly. It has the following features.

Table 6: Model 8 and Model 9 for Enerjisa and Aksa final daily production program
Variables Model 8 Model 9

Est. S.E. t-statistics Est. S.E. t-statistics
c −15.89 2.87 −5.54 −58.20 3.77 −1.54
log(usdtry) −7.42 2.41 −3.08 −7.46 3.22 −2.31
log(mcp) −0.02 0.01 −3.60 −0.11 0.01 −1.32
log(tetas) 0.50 0.05 9.26 0.23 0.07 3.21
log(consumption) 2.11 0.15 14.02 6.93 0.18 3.76
log(aksa) 0.10 0.01 10.10 - - -
log(enerjisa) - - - 0.18 0.02 10.10
log(renewables) 0.42 0.06 6.69 −0.42 0.08 −4.99
@trend 0.00 0.00 3.27 0.00 0.00 4.39
AR (1) 0.90 0.01 152.97 0.89 0.01 151.25
R2 0.89 0.90
Durbin-Watson 1.98 2.06
df 5704 5704
S.E.: Standard error



Özdurak and Ulusoy: Impact of Vertical Integration on Electricity Prices in Turkey

International Journal of Energy Economics and Policy | Vol 7 • Issue 3 • 2017 265

regardless of the demand functions dynamics BO-BOT operators 
produce electricity which reduce the MCP in the merit order.

5. CONCLUSION

This study focuses on the relationship between electricity prices 
and production type of electricity as an application study of 
merit order based on regression models. Our contribution to the 
growing literature on Turkish electricity market is applying models 
incorporating newly established EXIST high frequency data. To our 
knowledge, our paper is one of the first attempts which incorporates 
hourly EXIST data in applied models for electricity prices.

The main difficulty we faced in the study is the limitations to high 
frequency in EXIST. We tried to show the impact of renewable 
energy generation increase in the market to both electricity prices 
and private company production strategies where we chose 
Enerjisa and Aksa companies as benchmark companies.

Another avenue for future research may be to examine bidding 
strategies of private companies if sales and consumption data by 
company and industry are provided publicly by EXIST in the 
transparency platform. Hortaçsu and Puller (2008) suggest some 
amount of caution when analyzing and predicting the behavior 
of smaller players in newly restructured markets. Smaller firms 
submit bids that differ substantially from the benchmarks we 
construct for optimal bidding. This finding is not inconsistent with 
rational economic behavior by these bidders.
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APPENDIX

Linear Projection and Ordinary Least Squares 
Regression
In statistics, ordinary least squares (OLS) or linear least squares is a 
method for estimating the unknown parameters in a linear regression 
model, with the goal of minimizing the sum of the squares of the 
differences between the observed responses in the given dataset and 
those predicted by a linear function of a set of explanatory variables 
(visually this is seen as the sum of the vertical distances between each 
data point in the set and the corresponding point on the regression 
line - the smaller the differences, the better the model fits the data). 
The resulting estimator can be expressed by a simple formula, 
especially in the case of a single regressor on the right-hand side.

A linear regression model relates an observation on yt41 to xt;

yt+1=β’Xt+ut (3.1.1)

Given an sample of T observations on y and x, the sample sum of 
squared residuals is defined as:
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The value of β that minimizes (3.1.2) denoted by b, is the OLS 
estimate of β. The formula for b turns out to be:
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Which equivalently can be written:
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In the OLS models natural logs for variables are used on both sides 
of the models. Such specification is called a log-log model. This 
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model is handy when the relationship is nonlinear in parameters, 
because the log transformation generates the desired linearity in 
parameters (you may recall that linearity in parameters is one of 
the OLS assumptions).

In principle, any log transformation (natural or not) can be used 
to transform a model that’s nonlinear in parameters into a linear 
one. All log transformations generate similar results, but the 
convention in applied econometric work is to use the natural log. 
The practical advantage of the natural log is that the interpretation 
of the regression coefficients is straightforward.

Autoregressive Process
Let’s say we are studying a variable whose value at date t is denoted 
by yt. Suppose we are given a dynamic equation relating the value 
y takes on at date t to another variable wt and to the value y took 
on in the previous period:

1t t ty y w −= +  (3.2.1)

Equation (3.2.1) is a linear first order difference equation. A difference 
equation is an expression relating a variable yt  to its previous values. 
Equation (3.2.1) can also be rewritten using a lag operator as:

y Ly wt t t= +  (3.2.2)

This equation, in turn, can be rearranged using standard algebra;

( )1− =L y wt t  (3.2.3)

The basic building block for all the processes considered in this 
part is a sequence;

{ }t t

 = −  whose elements have mean zero and variance σ2.

E(εt)=0 (3.2.4)

E tε σ2 2( ) =  (3.2.5)

and for which the ε’s are uncorrelated across time.

E(εtετ)=0 for t≠τ� (3.2.6)

A process satisfying (3.2.4) through (3.2.6) is described as white 
noise process.

In this context, a first order autoresgression, denoted AR(1), 
satisfies the following difference equation:

yt=c+θyt−1+ϵt (3.2.7)

Again, {εt} is a white noise sequence satisfying (3.2.4) through 
(3.2.6). Notice that (3.2.7) takes the form of the first order 
difference equation (3.2.2) or (3.2.3) in which the input variable 
wt is given by wt=C+εt. We know from the analysis of first order 
difference equation that if |θ|≥1, the consequences of the ε’s for 
Y accumulate rather than die out over time. It is thus perhaps 
not surprising that when |θ|≥1, there does not exist a covariance 

stationary process for Yt, with finite variance that satisfies (3.2.7). 
In the case when θ < 1 , there is a covariance stationary process 
for Yt satisfying (3.2.7).

Unit Root Test
The common procedure in economics is to test for the presence of 
a unit root to detect non-stationary behavior in a time series. This 
thesis uses the conventional ADF for unit root tests.

In the terminology of time series analysis, if a time series is stationary, 
it is said to be integrated of order zero, or I(0) for short. If a time 
series needs one difference operation to achieve stationarity, it is 
an I(1) series; and a time series is I(n) if it is to be differenced for n 
times to achieve stationarity. An I(0) time series has no roots on or 
inside the unit circle but an I(1) or higher order integrated time series 
contains roots on or inside the unit circle. So, examining stationarity is 
equivalent to testing for the existence of unit roots in the time series.

A pure random walk, with or without a drift, is the simplest non-
stationary time series:

y y Nt t t t= + +−µ ε ε σε1

2
0, ~ ( , )  (8.1.1)

Where μ is a constant or drift, which can be zero, in the random 
walk. It is non-stationary as Var y t as tt( ) = → ∞ → ∞σε

2 . It does 
not have a definite mean either. The difference of a pure random 
walk is the Gaussian white noise, or the white noise for short:

∆y Nt t t= +µ ε ε σε, ~ ( , )0
2

 (8.1.2)

The variance of Δyt is σε
2  and the mean is μ. The presence of a unit 

root can be illustrated as follows, using a first-order autoregressive 
process:

y y Nt t t t= + +−µ ρ ε ε σε1
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Equation (8.1.3) can be extended recursively, yielding:
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Where L is the lag operator. The variance of yt can be easily 
worked out:

Var yt
n
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−
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 (8.1.5)

It is clear that there is no finite variance for yt if ρ≥1. The variance 
is σ ρε

2
1/ ( )− when ρ<1.

Alternatively, Equation (3) can be expressed as:
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which has a root r = 1/ρ. Comparing Equations 5 with 6, we can 
see that when yt is non-stationary, it has a root on or inside the 
unit circle, that is, r≥1; while a stationary yt has a root outside 
the unit circle, that is, r<1. It is usually said that there exists a 

unit root under the circumstances where r≥1. Therefore, testing 
for stationarity is equivalent to examining whether there is a unit 
root in the time series. Having gained the above idea, commonly 
used unit root test procedures are introduced and discussed in the 
following.

Dickey and Fuller
The basic Dickey–Fuller (DF) test (Dickey and Fuller 1979, 1981) 
examines whether ρ<1 in Equation (8.1.3), which, after subtracting 
yt−1 from both sides, can be written as:

Δyt=µ+(ρ−1)yt−1+εt=µ+θyt−1+εt (8.1.7)

The null hypothesis is that there is a unit root in yt, or H0: θ=0, 
against the alternative H1: θ<0, or there is no unit root in yt. 
The DF test procedure emerged since under the null hypothesis 
the conventional t-distribution does not apply. So whether θ<0 
or not cannot be confirmed by the conventional t-statistic for 
the θ estimate. Indeed, what the DF procedure gives us is a 
set of critical values developed to deal with the non-standard 
distribution issue, which are derived through simulation. Then, 
the interpretation of the test result is no more than that of a simple 
conventional regression. Equations (8.1.3) and (8.1.7) are the 
simplest case where the residual is white noise. In general, there 
is serial correlation in the residual and Δyt can be represented as 
an autoregressive process:

∆ ∆y y i yt t t i
i

t= + + +− −
=
∑µ θ ϕ ε
ρ

1
1

 (8.1.8)

Corresponding to Equation (8.1.8), DF’s procedure becomes the 
ADF test. We can also include a deterministic trend in Equation 
(8.1.8). Altogether; there are four test specifications with regard to 
the combinations of an intercept and a deterministic trend.

Unit Root Test Results
Table 7: Augmented Dickey-Fuller unit root test
# Variable t-statistics
1 log(brent usd) −1.30
2 log(blocksales) −6.15
3 log(wind) −10.50
4 log(lignite) −4.66
5 log(geothermal) −5.86
6 log(natural gas) −5.82
7 log(dammed) −7.11
8 log(pibid) −5.87
9 log(fuel_oil) −5.23
10 log(biomass) −6.66
11 log(LNG) −9.24
12 log(mcp) −6.52
13 log(smp) −8.49
14 aksa −19.14
15 enerjisa −20.60
16 renewable −12.98

LM Tests for Model 1 and Model 5
Table 8: Breusch-Godfrey serial correlation LM tests
Model 1
F-statistic 771.84 Prob. F(2.5889) 0.0000
Obs*R2 1225.99 Prob. Chi-Square(2) 0.0000
Model 5
F-statistic 3.12 Prob. F(2.5440) 0.044
Obs*R2 6.25 Prob. Chi-Square(2) 0.044

Alternative Renewable Index Model for HR11 and 
HR24
Table 9: Model 6 and Model 7 for HR11 and HR24
Variables Model 6 Model 7

Est. S.E. t-statistics Est. S.E. t-statistics
c 0.79 1.32 0.59 1.79 6.37 0.28
log(blocksales) −0.08 0.05 −1.55 0.08 0.13 0.59
log(d(brentusd)) 0.00 0.02 0.20 −0.01 0.07 −0.11
systemproxy −0.50 0.04 −13.81 −0.66 0.15 −4.46
log(impcoal) −0.07 0.14 −0.52 −0.61 0.53 −1.15
log(ng) −0.05 0.14 −0.35 0.21 0.38 0.54
log(ptf) 0.68 0.12 5.62 0.78 0.11 6.93
log(renweg) 0.32 0.09 3.50 0.26 0.32 0.81
R2 0.84 0.66
Durbin-Watson 2.13 2.09
df 246 246
S.E.: Standard error


