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ABSTRACT

This study aims to predict electricity prices in the Colombian electricity market. To achieve this goal, conventional time series econometrics analysis 
and one alternative technique based on artificial intelligence algorithms have been implemented. We use autoregressive-moving-average models 
(ARMAX) and non-linear autoregressive neural networks (NARX). After estimating a hybrid model that combines ARMAX and ARNX models, 
including exogenous inputs, we forecasted an electricity price time series in a horizon of 12 months ahead (May, 2017). Results show that NARX 
model’s performance is not significantly better than ARMAX’s. After applying a Diebold-Mariano test for forecasting accuracy, the null hypothesis 
is not rejected. This suggests no significant difference in predictive accuracy between the competing methodologies.

Keywords: Stochastic Process, Autoregressive-moving-average, NARX, Random Walk, Predictive Accuracy, Electricity Spot Price 
JEL Classifications: C01, C12, C22, C45, C53, L11, L94.

1. INTRODUCTION

Price formation of electricity in short-run markets, as the 
Colombian one, is a complex process that poses huge challenges 
for modelling and forecasting. Such complexity is given by the type 
of good dealt with in this market. This good’s particular features 
include: (i) Electricity is a commodity that cannot be stored, (ii) it 
is traded in real time; (iii) electricity demand varies day by day; 
(iv) it has an enormous hydrological linked component; (v) the 
fixed costs are substantially greater with respect to the variables; 
(vi) it displays high volatility in spot prices; and (vii) lack of 
regulations compels producers to declare its real variable costs, 
which encourages agents to introduce information asymmetries 
and eventually abuse from market power. This situation generates 
speculative behaviors among agents of interest, which could have 
a strong incidence over electricity prices (Mustapha, 2012).

In this context, understanding and forecasting the electricity 
prices are fundamental processes for every agent involved in 
the production and supply chains, especially for producers and 
traders. In fact, analyzing the evolution of the electricity price 

is essential to design long-run contracts, also called forwards 
contracts. These contracts are bilateral agreements between agents, 
covering the risk induced by electricity price volatility in the 
trade pool. Over 80% of electricity in Colombia is traded using 
forwards instruments. Furthermore, understanding electricity price 
formation is crucial for investors, as prices provide the necessary 
information (market signaling) to expand the installed capacity 
of the system in the future. In general terms electricity price 
formation and its forecasting could help power generation firms, 
as well as consumers, in planning their strategies for maximizing 
profits and utilities based on mid and short-term perspectives 
(Murthy et al., 2014). In the long-run term aggregated demand is 
a very important variable for explaining electricity prices behavior 
(Smolen and Dudic, 2017). Then, electricity prices influence 
aggregated demand, which is also an important predictor of 
economic performance.

A review of international journals on electricity markets and 
forecasting methods shows a trend where modeling and forecasting 
electricity price is done using methodologies based on algorithms, 
as well as parametric and semi-parametric models. Harvey (1990), 
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Nogales et al. (2002), Contreras et al. (2003), Zou and Yang 
(2004), Weron (2006), Karakatsani and Bunn (2008), Shafie-Khan 
et al. (2011), Andalib and Atry (2009) and Nan et al. (2014) have 
reported on the use non-linear autoregressive neural networks 
with exogenous variables (NARX) to forecast electricity prices, 
which relates to the main concern of this paper. However, modeling 
and forecasting electricity prices based on artificial intelligence 
is uncommon in the field (Weron, 2014). The NARX method 
seems to be attractive though, given its capacity to capture non-
linear relationships while lacking from assumptions about the 
data generation process, even considering that NARX models 
are fully parametric.

Two methodologically interesting studies are those by Cadenas 
et al. (2016) and Santana (2006). In the first study, wind speed 
forecasting was carried out using ARIMA and NARX models. 
Then, predictive accuracy of the models was compared by 
computing the mean squared error. It was found that the NARX 
models had better performance in accuracy than the ARIMA 
models. In the second one, the usefulness of neural network 
methods were evaluated in predicting Colombian inflation, 
and compared the results yielded with forecasting as provided 
by seasonal autoregressive integrated moving average model 
(SARIMA). It was found that neural networks forecasts exhibit 
higher performance accuracy than SARIMA specification.

In recent years, there has been a growing interest in assessing 
predictive accuracy among competing forecasting methods under 
general loss functions and possibly non-normal errors, Diebold 
and Mariano (2002), Swanson and White (1995), White (2000), 
Corradi et al. (2001), Cuaresma et al. (2004). The proposed 
approaches can also provide useful groundwork for model 
comparison. Thus, in this paper we present a methodology for 
predictive accuracy closer to Diebold and Mariano (2002). In 
the Colombian case, the literature on modeling and forecasting 
electricity prices offers a similar panorama to the international 
one. A search for working and published papers from Colombian 
academic institutions and scientific journals offers a poor picture 
of the field, even though the Colombian electricity market is one 
of the most cited in worldwide research studies (e.g., economic 
regulation of electricity industry), particularly after the sector’s 
deep reform in 1994.

For domestic contexts, there are few papers related to forecasting 
electricity prices using standard methods from the VARMA family 
(e.g., Lira et al. (2009), Sierra and Castaño (2010), Barrientos 
et al. (2012) and Barrientos and Martinez (2015)). Our research 
is aligned with one study by Agudelo (2015), who used NARX 
to forecast electricity spot prices. To the best of our knowledge, 
none of the studies reviewed seems to consider more than 
one methodology for modeling electricity pricing or carry out 
comparative procedures on predictive accuracy for forecasting.

One singular feature of the previously mentioned works is that 
the procedures were based on the assumption of non-stationarity 
of the data generating process or stationarity established by an 
Augmented Dicky-Fuller (ADF) test (Dickey, 1979). One issue 
found in this testing procedure is related to the time series level 

shifts. These shifts usually cheat the ADF test, so that the testing 
procedure does not reject the null hypothesis of the unit-root 
process, which is a strong conclusion for monthly electricity time 
series. Then, regime jumps or level shifts could be a common 
feature of the electricity prices, as it is in the Colombian case. One 
of the first papers in modeling and forecasting time series with 
this feature is that of Huisman (2003). However, in our case, to 
overcome this issue, we perform a stationary testing procedure 
based on Cavaliere and Giorgiev (2007), which tests a hypothesis 
for time series with multiple level shifts.

The development of our work can be summarized as follows: 
(i) We carried out an exhaustive analysis of the dynamic properties 
of the involved time series. Specifically, we show that regardless 
of the multiples level shifts exhibited by the monthly electricity 
price series, this series does not follow a unit root process. This 
conclusion results from the application of the Cavaliere test. (ii) We 
modeled and forecasted the electricity price by estimating NARX 
and ARMAX specifications with exogenous variables such as 
water-rivers supply, declared reserves, and demanded electricity. 
These variables can be considered as market fundamentals of 
electricity price formation in Colombia. (iii) In order to forecast 
the monthly electricity price series, not only do we use NARX and 
ARMA but we also implement a hybrid model combining these 
two methods, in the spirit of Shafie-Khan et al. (2011). In each case, 
we estimate the forecast’s root mean-squared error. (iv) Finally, 
we use the Diebold and Mariano (2002) procedure in order to test 
the predictive accuracy of the competing econometric models.

This paper is structured as follows: Section 2 focuses on the 
empirical strategy. In Section 3, we describe the statistical 
models to estimate and test the procedures. Section 4 describes 
the empirical results. Finally, we present the main conclusions.

2. EMPIRICAL STRATEGY

2.1. Statistical Information
All variables are given in logarithmic form and the electricity price 
is given in monthly frequency from 01/2001 up to 05/2016. The 
set of variables used in this study are the following: (i) Energy 
prices, which correspond to the average monthly spot price, COL/
kWh; (ii) hydro reserves (kWh), which is defined as the useful 
dam volume (water supply availability); (iii) water supplies (kWh), 
which indicate the physical conditions of river’s water supply to 
dams; the demand (kWh) of the National Interconnected System 
(which stands in Spanish for Sistema Interconectado Nacional -); 
(iv) declared availability (kWh), which corresponds to the market 
supply, and it can be defined as the maximum net-power that one 
plant could supply to the NIS in a determined period of time and, 
finally, the ENSO, which takes positive (El Niño) and negative 
(La Niña) values. The data set used in this paper is provided by 
XM Company, which operates the Colombian electricity market. 
ENSO data is taken from the National Oceanic and Atmospheric 
Administration.

The Graphic 1 shows the evolution of energy price and the 
exogenous variables. It is clear that the electricity price presents 
level shifts as well as atypical values, especially for El Niño in 
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the 2015–2016 period. Electricity demand and water-river supply 
series present seasonality. Then, we carried out a procedure to 
remove the seasonal component by estimating SARIMA models.

2.2. Stationary Testing
The stationary testing is based on the following empirical model:

p
t 0 1 t-1 t-i ti=1

y = + t+ y + y +∆ β β γ δ∆ ε∑  (1)

In order to find the value for lag , we estimate all the models from 
p =0 (no lag) up to p = 12( T/100)0.25 (up to the maximum value 
(equation)), where is the sample size. Next, we choose the best model 
using standard criteria such as Akaike (AIC) or Bayesian (BIC). 
Then, under null hypotheses of no-correlation and homoscedasticity, 
we perform the ADF test for energy price, which indicates that we 
cannot reject the null hypotheses of the unit-root process, Table 1.

Then, if we take into account the level shifts in electricity price, 
the ADF test is no longer useful. In order to overcome the level 
shifts issue, we carry out a stationary testing procedure following 
Cavaliere (2007). This procedure is based on the following 
empirical specification:

Xt=φ’Zt+Yt+μt (2)

Yt=αYt-1+ut (3)

u = u µt i t-1 tt-1

p
γ +∑  (4)

Where Xt is an observable variable, is a non-observable 
autoregressive process, Yt conformable with Zt and ut is the 
non-observable level shifts component. The specification (2)-(4) 
assumes that every root of the underlying polynomial is >1 in 
absolute value, and the error term is a white noise. The expression 
for ut is given by,

µ δ θt s ss=1

t
=∑  (5)

and we assume that δs is completely known (Table 2), then we 
estimates equation (5), so that we get:

t

t s t
s 1

ˆ X
=

µ = δ ∆∑
 (6)

Finally, the Equation (6) is used to obtain the de-jumped series, 
which we use for our testing procedure:

X Xt t t
δ = −u  (7)

Specifically, we perform ADF test for de-jumped series, assuming 
φ = 0 and p is known. De-jumped time series for electricity price 
is given in Figure 1.

Tables 3-7 show that time series involved in this paper are 
stationary with level shifts. It is worth noting that electricity 
demand and rivers’ water contribution, clearly show a seasonality 
behavior, however once we control for such seasonality we found 
that these series are stationary with level shifts. The rivers’ water 
contribution shows regular peaks and valleys, which are taken like 
extreme, but known, values.

3. METHODOLOGY

3.1. Autoregressive Moving Average Process with 
Exogenous Variables
The first model considered in this paper has been ARMA with 
exogenous variables, or ARMAX. In this model, the current value 
of the dependent variable yt depends on p lags of yt and k lags of the 
exogenous variable in the matrix xt. A proper ARMAX estimation 
requires that the entire variables set be weakly stationary and 
ergodic. As we reported in section 2, the Cavaliere and Giorgiev 
testing procedure allows us to conclude that all variables are 
stationary with level shifts. Therefore, the model to be estimated 
is given by either of the following equations,

φ θ β εp t q t

i=1

k

i it tB y = B z B x +( ) ( ) + ( )∑  (8)
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Table 1: Augmented Dickey-Fuller stationarity test for 
electricity price
n=169 interpolated Dickey-Fuller
Test 
Statistic -2.2

1% critical 
value−4.02

5% critical 
value−3.45

10% 
critical 

value−3.2
Critical value (MacK innon) Z (t)=0.471
Estimated model

Coefficient Standard 
error

t

Trend 0.002* 0.001 2.505
Ll price −0.191* 0.086 −2.238
Constant 0.696* 0.32 2.172
Regression Controls for 13 lags of the differenced ln p. *P<0.05 **P<0.01 ***P<0.001. 
Source: Author ‘s elaboration

Figure 1: De-jumped time series for electricity price
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Where εt∼n(0,σ2), βi(B)= β0+β1B+βiB
i, βi(B)=β0+β1B+βiBi, ϕP(B) 

= 1 - ϕ 1 B - … - ϕ p B p  a n d  θ q ( B ) 
=1+θ1B+...+θqB

q.

The usual assumption on polynomials must be fulfilled, which means 
that all root should be inside the unit circle. Maximum Likelihood 
estimation (MLE) is carried out to estimate all parameters of 
interest. To forecast, we perform a standard recursive process. The 
first forecasted data obtained from the observable data set is used 
to forecast the value of the next period, and so on. Given that the 
model contains exogenous variables, the forecasting values of yt 
should be conditional to the futures values of xt. As suggested by 
Harvey (1990), the one-step ahead forecast of yt can be expressed as:

p qk

T l|T i T l i|T i T l i T l i|T
i 1 i 1 i 1

ˆ ˆ ˆˆ ˆ ˆ ˆy    y x z+ + − + + −
= = =

= φ + β + θ∑ ∑ ∑
 (9)

3.2. Artificial Neural Networks (ANN)
ANN are a computational tool that permits to find relationships 
or patterns between variables, interpolate data, predict and model 
no-linear behavior between variables (Kohonen et al. (1996) and 
Meireles (2003). One of the most common ANN architectures is 
the multilayer feedforward network, in which inputs and outputs 
are interconnected by weights, while transfer functions connect 
to each layer (hidden and output layers) formed by neurons. The 
first hidden layer receives the information from the outside and 
the output layer delivers the response of the network.

Another architecture that considers lags of the output variable is the 
nonlinear autoregressive networks with exogenous inputs (NARX). 
Due to the close loop in time-series models, this architecture permits 
to mix the advantages of autoregressive models (recurrent) with 
the capacity of ANN to predict the output variable (yt) as a result 
of exogenous variables (xt) and lags of yt in a specific time t. When 
considering one hidden layer, and the output transfer function is 
a linear function, the relationship between the NARX model’s 
variables can be shown in Equation (11), in which yt is the predicted 
result; xt is a set of exogenous variables as well as their respective 
lags; H is the number of neurons by layer; Alfa and Beta are the 
weight and bias of the ANN; G is the neural transfer function; et is 
the error, and sigma is the standard deviation of the error.

Table 2: Climatic events affecting the electricity energy prices
Date Obs. Event Avg.
June-10 114–124 La Niña 4.52
May-11 125–133 A transition from La Niña to neutral ENSO conditions was made. However, atmospheric conditions 

continue to remain La Niña atmospheric conditions continue to remain La Niña
4.21

February-12 134–139 La niña weakens 4.31
August-12 140–155 Transition to El Niño conditions. Conditions exist at the boundary between 

ENSO neutral and weak El Niño.
5.17

December-13 156–159 neutral ENSO 5.11
Abril-14 160–162 There is a continuous evolution towards 

El Niño
5.9

July- 14 163–172 Decreases El Niño odds - neutral ENSO 5.21
May-15 173–176 El Niño 5.33
Source: Author’s elaboration

Table 3: Augmented Dickey-Fuller test for de-jumped 
electricity price

n=184 interpolated Dickey-Fuller
Test statistic 
−7.64

1% critical 
value 
−3.48

5% critical 
value 
−2.8

10% critical 
value 
−2.5

P-value for critical value (MacKinnon) Z (t)=0.000
Estimated model

Coefficient Standard 
error

t

L1 Dejumped −0.52*** 0.068 −7.6
Constant 2.24*** 0.29 7.6
Regression controls for 13 lags of the differenced ln P. * P<0.05 **P<0.01 ***P<0.001. 
Source: Author’s elaboration

Table 4: Augmented Dickey-Fuller test for electricity 
demand

n=184 interpolated Dickey-Fuller
Test statistic 
−2.39

1% critical 
value 
−3.2

5% critical 
value 
−2.11

10% critical 
value 
−1.98

P-value for critical value (MacKinnon) Z (t)=0.000
Estimated model

Coefficient Standard 
error

t

L1 Dejumped −0.062*** 0.025 −2.3
Constant 1.3*** 0.56 2.4
Regression controls for 13 lags of the differenced ln P. * P<0.05** P<0.01 ***P<0.001. 
Source: Author ‘s elaboration

Table 5: Augmented Dickey-Fuller test for declared 
availabity

n=184 interpolated Dickey-Fuller
Test statistic 
−2.99

1% critical 
value 
−3.1

5% critical 
value 
−2.71

10% critical 
value 
−2.42

P-value for critical value (MacKinnon) Z (t)=0.061
Estimated model

Coefficient Standard error t
L1 Dejumped −0.10*** 0.035 −2.9
Constant 2.3*** 0.8 2.9
Regression controls for 13 lags of the differenced lnp. *P<0.05 **P<0.01 *** P<0.001. 
Source: Author’s elaboration



Marín, et al.: Forecasting Electricity Price in Colombia: A Comparison Between Neural Network, ARMA Process and Hybrid Models

International Journal of Energy Economics and Policy | Vol 8 • Issue 3 • 2018 101

( ) ( ) ( )1I H Ii i
t * i t h y *,h i,h t ti=1 h=1 i

-

=1
y = + x + G 2 + x +eβ ϕ β σ α α∑ ∑ ∑  

 (10)

The ANN model can be completed when the architecture, the 
layer number, neurons weights, and bias are defined (Haykin and 
Network, 2004). In this paper, the NARX structure with one hidden 
layer and the sigmoidal function (Equation 11), as transfer function, 
is selected. Other parameters such as weights and bias are obtained, 
thus maximizing the logarithm of likelihood error function, or by 
simply minimizing the average square error between the output of 
the model and the target when the number of neurons is defined. 
In this way, the last parameters can be obtained using numerical 
methods, for instance Levenberg-Marquardt back propagation, or 
the BFGS method by means of a Hessian Matrix (Broyden, 1970).

G z =
1

1+e
i -z

( )  (11)

To avoid over-fitting of the ANN model, we use regularization 
to solve ill-conditioned inverse problems (Hinton, 1990). 
This methodology aims to spot trade-off between training 
data reliability and the model’s output (yt), thus minimizing 
total risk (R), as suggested by Velasquez et al. (2013). In the 
supervised learning process, risk can be linked to the model’s 
performance, as measured by the squared error Equation 
12, in which the term ξc(W) is the penalty or regularization 
strategy connected to weights (wp,h) of the layer p and neuron 
q (Equation 13), and z is λ is the factor that affects the training 
process, or regularization.

( ) ( ) ( )T 2
t t ci=1

R W = y -y +ˆ Wλξ∑  (12)

ξc p,h
2 2

p,hp=1

p

h=1

h
W =||w = w( ) ∑∑||  (13)

3.3. Diebold and Mariano Test
Accuracy tests are usually run to forecast two same variables, yt, 
from two different models. Let i

(t+h|t)ŷ  for i = 1,2, two forecasting 

procedures from the same data-generating process. Then, 
forecasting errors are given by i i

t+h|t t+h t+h|t=y -yˆ ˆε  for i = 1,2. At this 

point, it is important to keep in mind that forecasting electricity 
prices can be used to guide public policies on expanding electricity 
systems, investments decisions on electric plants, design bilateral 
agreements, among other economic decision-making purposes. 
Then, the expected loss associated with every single forecast error 
is induced by the decision-making problems faced by policy 
makers and agents in the market. Therefore, it is clear that the 
expected loss is a general function of i

t h|tˆ +ε .

It is assumed that the forecasting procedure is performed for h 
periods ahead, in which = t0,…, T The results are two forecasting 
series of simple size T, two forecasting errors, and two loss 
functions denoted by ( ) ( )i i

t+h t+h|t t+h|tˆL y , y =Lˆ ε  for i=1,2. If the 

forecasting methods yield similar results, their loss function should 
be very close to each other. Forecasting accuracy can be evaluated 
by comparing the expected value of the differences of these two 
functions, as proposed by Diebold and Mariano (2002). This 
testing procedure is based on the following hypotheses:

1 2
0 t h|t t h|tˆ ˆH : E L( )  E L( )+ +   ε = ε     (14)

versus

1 2
1 t h|t t h|tˆ ˆH : E L( )  E L( )+ +   ε ≠ ε     (15)

Or, in terms of a sample path of a loss-differential series dt t=1
T{ } , 

these hypotheses are given by H0: E[dt] = 0 against H0: E[dt] ≠ 0, 

where ( ) ( )1 2
t t+h|t t+h|tˆ ˆd =L -Lε ε . Diebold and Mariano (2002) show 

that a consistent estimator of E[dt] is given by d
T

dtt=1

T
= ∑1  and 

its limit distribution is given by T d- N 0,2 f (0)0µ π( ) → ( ) . As 

expected, under H0 true, the statistical test 
0

dS=
2 f (0)

T
π

 

converges to N (0,1) as T→ ∞. Then, high values of  S are evidence 
against H0.

4. EMPIRICAL RESULTS

4.1. Forecasting Exogenous Variables
In this section, we present the complete forecasting matrix, which 
is required for energy price forecasting. The seasonality unit-root 
test is performed for every subset of the exogenous variables. 
This testing hypothesis could be found in Osborn et al. (1988), 

Table 6: Augmented Dickey-Fuller test for water 
contribution
n=184 interpolated 
Dickey-Fuller
Test statistic 
−2.92

1% critical 
value 
−3.3

5% critical 
value 
−2.8

10% critical 
value 
−2.5

P-value for critical value (MacKinnon) Z (t)=0.056
Estimated model

Coefficient Standard 
error

t

L1 Dejumped −0.066*** 0.026 −2.5
Constant 1.47*** 0.58 2.5
Regression controls for 13 lags of the differenced lnp. * P<0.05 **P<0.01 ***P<0.001. 
Source: Author’s elaboration

Table 7: Augmented Dickey-Fuller test for water rerserves
n=184 interpolated Dickey-Fuller
Test statistic 
−3.77

1% critical 
value 
−3.48

5% critical 
value 
−2.88

10% critical 
value 
−2.57

P-value for critical value (MacKinnon) Z (t)=0.0032
Estimated model

Coefficient Standard 
error

t

L1 Dejumped −0.147*** 0.039 −3.77
Constant 3.40*** 0.9 3.77
Regression Controls for 13 lags of the differenced lnp. *P<0.05 **P<0.01 ***P<0.001. 
Source: Author’s elaboration
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and is called OCSB test. The results of this testing procedure are 
displayed in Figure 2. All estimated models have 80% and 95% 
bootstrap confidence-bands.

4.2. Estimation Models
The MLE of the ARMAX model’s parameters are shown in 
Table 8. All the estimated parameters are statistically significant 
as, reported by the p-value. The Ljung-Box statistical test for 
12 and 18 lags, with corresponding P-values 0.87 and 0.90, 
shows no correlation within the residuals of the ARMAX model. 
Moreover, McCleod-Li heteroscedasticity test could not reject 
the null hypothesis of constant variance of the residuals (Mcleod 
and Li, 1983).

The NARX model estimation was carried out including 8 lags of 
the electricity price, one hidden cover with ten neurons, while the 
exogenous entries are the same as those included in the ARMAX 
estimation. Every column in the matrix xt was normalized by 
dividing each element by the max{xt}, and the initial weights were 
randomly chosen in the set [−0.5, 0.5]. The activation function 
used is a sigmoidal specification for the staring cover and the 
linear function for the cover out. The Ljung-Box statistical test 
for 18 and 24 lags, with corresponding P-values 0.54 and 0.60, 
shows no correlation among the residuals of the NARX model.

In order to get the final forecasting price, one hundred simulations 
of the NARX were made using an average on the entire set of 
values. Minimization of the loss function was made using the 
BFGS algorithm. Finally, the weight-decomposition parameter 

was fixed at 0.45. The hybrid model was constructed by means 
of weighing the results obtained with ARMAX and NARX using 
a 0.5 weight for each model.

4.3. Validation of the Models and Diebold and 
Mariano Accuracy Test
Selecting a sample to validate the forecasting was made by sorting 
the sample and splitting it into two subsets. The first subset was 
used for estimation (ARMAX model) or training (NARX), and the 
second observable data subset was compared with the forecasting 
made with the first data set. The validation has been made for two 
different sub-samples: The first period goes from 08/2014 and 
06/2015, in which electricity prices stability can be observed; the 
second period goes from 08/2014 up to 05/2016, in which several 
atypical values are related to El Niño phenomenon, between 
09/2015 and 05/2016.

Table 9 shows the estimated root mean squared error (RMSE) 
for the tree models. It is worth noting that this RMSE is a 
measurement of the differences between the forecasting yielded 
by the models and the data observed. In fact, the RMSE is 
a measure of accuracy that permits to compare forecasting 
errors of different models for a particular data set. Let us note 
that, in the first sub-sample, the ARMAX model exhibits the 
smallest RMSE. This means that such specification provides 
best forecasting values. However, when atypical values are 
considered in the second sub-sample, the NARX model displays 
better performance. Even though it seems difficult to capture 
and forecast level shifts and atypical values, the NARX model 

Figure 2: Exogenous variables forecast
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manages to capture much better the electricity prices evolution, 
providing more accurate forecasting values. Figures 3 and 4 
compare observable data (black line) and forecasted data (red 
and blue lines), along with 95\% bootstrap confidence-bands 
(orange and yellow lines).

Table 10 shows the results related to the implementation of the 
Diebold and Mariano test for the two validation periods. In both 
cases, we cannot reject the null hypothesis where the difference 
between the loss functions be zero. Then, the forecasting of 
ARMAX or NARX models are statistically equal. This result is 
interesting because, in fact, the expected result is a scenario where 
NARX shows better performance than ARMAX (e.g., Cadenas 
et al. (2016) and Velasquez et al., 2013).

4.4. Forecasting Electricity Price
This section shows the performance of our forecasting up to 
05/2017. We would like to highlight that we did not use monthly 
data from 06/2016 up to 05/2017. Figure 5 shows an increasingly 
persistent rising trend of the electricity price. Although it does not 
predict any atypical value in the near future, the results seem to 
predict some level shifts. According to Figure 6, it is clear that the 
implemented procedure provides a rather accurate pattern when 
the forecasting values are compared with the observed data, even 
though it does not reproduce the actual magnitude of the observed 
electricity prices.

Finally, Table 11 shows that ARMAX, NARX, and Hybrid models 
behave similarly as shown by the RMSE, which does not constitute 
a proper tool for model selection. At the beginning we could think 
that NARX is not well trained. However, when its performance 
about forecasting is evaluated by computing the mean absolute 
error (MAE), which operates in L1-norm, we find that NARX has 
a smaller forecasting error than the ARIMAX and Hibryd models. 
Since any loss function computed in L2-norm squares the error, 
then usually NARX model will show a much larger forecasting 
error than the loss function in L1-norm, so the NARX will be 
much more sensitive than the ARIMAX.

5. CONCLUSIONS

The results stemming from empirical analyses show that the 
monthly electricity price series displays no stochastic and non-
predictable behaviors. In other words, the price series is stationary 
with level shifts. The Diebold and Mariano test suggests that 
both procedures yield rather similar forecasting values among 
competitive models. However, NARX performs slightly better than 
ARMAX, particularly when atypical values are take into account. 
Based on these facts, the estimation methodologies reported in 
this paper, training and forecasting, performed adequately for our 
sample, while the performance of the model implemented for the 
06/2016 period yielded less precise forecasting of electricity price. 
However, it is worth noting the fact that although our procedure 
seems not to accurately forecast electricity prices level, it can 
reproduce future price patterns with high precision.

Finally, concerning forecasting values, the procedure implemented 
in this paper suggests that electricity prices will display an 
increasing trend. In fact, our forecasting procedure shows that 

Table 8: ARMAX model estimation
Dependent variable: Electricity price logarithm
Method: Maximum likelihood observations: 185
Variable Coefficient Standard 

error
t P-value

AR( l) 0.594 0.062 9.563 0.000***
AR (8) −0.131 0.064 −2.042 0.041**
Constant −36.429 5.381 −6.769 0.000***
Demand 3.388 0.301 11.233 0.000***
Demand (1) 1.202 0.215 5.579 0.000***
Declared 
availability

−1.623 0.266 −6.083 0.000***

Wlater 
contributions

−0.552 0.076 −7.176 0.000***

Wlater reserves 0.653 0.275 2.372 0.017**
Water 
reserves (1)

−1.163 0.247 −4.699 0.000***

Child 
phenomenon (1)

0.148 0.027 5.491 0.000***

D98 0.272 0.123 2.206 0.027**
Dl lO −0.370 0.123 −3.010 0.002***
D152 0.401 0.122 3.290 0.001***
D137 −0.448 0.137 −3.253 0.001***
D138 −0.491 0.136 −3.612 0.000***
D161 0.516 0.137 3.766 0.000***
D162 0.223 0.131 1.699 0.090*
D179 0.545 0.143 3.811 0.000***
D180 0.381 0.141 2.691 0.007***
D184 0.399 0.123 3.237 0.001***
D186 −0.546 0.145 −3.747 0.000***
Sigma 0.0199
Log-likelihood 98.07
AIC −154.15
Source: Author’s elaboration

Table 9: Error forecasting in validation
Period Model RMSE

ARMAX 0.121
August 2014-June 2015 NARX 0.143

Hybr id 0.130
ARMAX 0.419

August 2014- May 2016 NARX 0.404
Hybr id 0.410

Source: Author ‘s elaboration
RMSE: Root mean squared error

Table 10: Diebold-Mariano test between the ARMAX 
model and the artificial neuronal network
Period Forecast 

horizon
Statistical P-value

August 2014-June 2015 11 0.875 0.808
August 2014-May 2016 21 0.747 0.772
Source: Author’s elaboration

Table 11: Forecasting error: L2-norm versus L1-norm
Period Model RMSE MAE

ARMAX 0.595 0.482
June 2016–May 2017 NARX 0.594 0.456

Hybrid 0.60 0.489
Source: author’s elaboration. MAE: Mean absolute error
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Figure 3: Validation of the models for sample (August 2014–June 2015)

Figure 4: Validation of the models for Sample (August 2014–May 2016)
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Figure 5: Price forecast through May 2017

Figure 6: Observed versus forecasted electricity price

monthly electricity prices, in the short-run, will display level shifts 
and some form of volatility.
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