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ABSTRACT

The integration of electric vehicles (EVs) in the power system is a challenging issue for the power system and network operators. The paper uses 
several Unit Commitments (UC) models which incorporate high levels of wind power production, applying different methods to tackle the renewables’ 
uncertainty. The selected power system is IEEE RTS 96. The UC models are further extended to integrate the EVs. Our focus is to assess the EVs 
impact on the total operating cost and the power grid adequacy to handle the extra load, by examining different charging profiles and penetration levels 
of EVs with the different UC models. Simulation results show that an optimized charging strategy is considerably more efficient than the random 
charging strategy, both in the total operating cost and the ability to integrate more EVs. The comparison between the UC models show that the most 
robust UC model leads to higher total operating cost, due to its more conservative methodology to tackle the stochastic nature of wind. There exists 
a non-linear trade-off between power system robustness and the total operating cost, depending on each power system characteristics, affecting also 
the penetration level of EVs.
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1. INTRODUCTION

Electric vehicles (EVs) are a promising technology for drastically 
reducing the environmental burden of road transport, especially 
within the urban areas. In the EU, a percentage of 73% of all oil is 
consumed by the transport sector (CIGRE, 2015). The competition 
among car manufacturers is strong, facilitating the earlier 
penetration of EVs than initial forecasts (Kampman et al., 2011). 
The introduction of a vast number of EVs in modern power 
systems will affect a wide variety of factors in the operation of 
power systems and markets of electricity. First of all, the power 
systems and the distribution networks will be loaded with extra 
power during the peak hours (Grahn, 2013). That will create 
the need for additional power production capacity available, as 
well as for more capacity available both for the transfer and the 
distribution networks (Clement-Nyns et al., 2009). Another crucial 

factor is the stability of the system which will be highly affected 
by both the stochastic production of the renewable sources and the 
stochastic charging of the EVs. Finally, the prices of electricity will 
be affected, depending on the ways that will be decided to produce 
the extra energy that will cover the electrified mobility demand 
(Schill and Gerbaulet, 2015). Last but not least, we should consider 
the impact of the additional power generation on the environment. 
Studies have indicated that if the electricity is produced by “dirty” 
power plants, then the reduction of gas emissions is negligible, 
making thus the electrification of road transports an ineffective 
measure for gas emissions reduction (Kasten et al., 2016). Another 
potential is the use of fleets of electric-drive vehicles for grid 
support (Tomic and Kempton, 2007). A greater penetration of 
renewable sources combined with EVs will lead to a reduction of 
gas emissions from the transport sector (Willett and Jasna, 2005; 
Mariasiu, 2012). Secondly, the investments on production 
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capacity and transfer/distribution capacity could be reduced with 
the introduction of smart charging technologies and Vehicle to 
Grid services. Thirdly, big parking lots could be used as Load 
aggregators who could provide ancillary services for the systems 
during peak hours, something that could further lead to a reduction 
in the usage cost for the vehicle owner (Boumis, 2012).

The integration of EVs in the power system stands a challenging 
issue for the power system and network operators. It is a complex 
issue which requires detailed and robust methodologies to quantify 
their effects on the power system. The aim of a Unit Commitment 
(UC) algorithm is to determine which units will produce energy 
each hour of a day to meet the demand. The UC problem is 
complex, as it incorporates several techno-economic constraints 
related to the production units and the transmission lines. The 
UC problem identifies the power units’ dispatch considering 
their operational and maintenance costs, their ramping capacity, 
their capability to provide ancillary services and other techno-
economic criteria. The UC problem is formulated as a Mixed 
Integer Linear Programming problem, which is adequate to handle 
such complicated problems. The problem is solved in a way that 
the overall fuel cost is minimized in respect with the system’s and 
unit’s constraints.

The integration of EVs in the UC problem is expanding rapidly 
over the last years. Yang et al. (2017) provide a comprehensive 
study of economic UC of power systems integrating various 
renewable generations and plug-in EVs (PEV). The paper 
considers four different cases of UC problems with various weather 
and season scenarios using real power system data are conducted 
and solved, and smart management of charging and discharging 
of PEVs are incorporated into the problem. Test results confirm 
the efficacy of the proposed framework. Tafreshi et al. (2016), 
develop a probabilistic UC model for optimal operation of PEVs 
in microgrid. The microgrid is made up of microturbines, wind 
turbine, boiler, PEVs, thermal storage and battery storage. The 
probabilistic UC optimizes the objective function using Particle 
Swarm Optimization algorithm, comparing it with a simple 
deterministic model. Koltsaklis and Georgiadis (2016) present 
an integrated UC model incorporating EVs as a flexible and 
responsive load. The model is applied in the Greek power system.

Talebizadeh et al. (2014) provide an evaluation of PEVs impact 
on cost-based UC. The paper proposes charging and discharging 
schedule of PEVs with respect to load curve variations. The 
proposed methodology incorporates integrated parking lots into 
the UC problem. The model is applied on the IEEE 10-unit test 
system showing a significant techno-economic saving. Zhang et al. 
(2015) develop a fuzzy chance-constrained program for UC 
problem considering demand response, EV and wind power. The 
paper uses a fuzzy chance-constrained program that takes into 
account the wind power forecasting errors. The numerical study 
shows that the model can promote the utilization of wind power 
evidently, making the power system operation more eco-friendly 
and economical. Wang et al. (2015) present an efficient power 
plant model of EVs for UC of large-scale wind farms. Zhou et al. 
(2016) provide a power system steady-state analysis with large-
scale EV integration. The paper establishes a model framework 

which examines, using United Kingdom power system data, four 
major issues: EV capacity forecasting, optimization of an object 
function, EV station siting/sizing and steady-state stability. The 
proposed model is used to establish criteria for EV station siting 
and sizing and to determine steady-state stability using a real 
model of a small-scale city power system.

Villar et al. (2016) examine the combined penetration of wind 
and solar generation with PEVs. This paper used a UC model for 
the Spanish power system, providing some insight on how the 
penetration of these technologies affects relevant variables such 
as energy and reserve, thermal plants behaviour and systems costs. 
Results show that PEV increase total demand, but its optimal 
charging smooth’s the net demand and the final electricity prices. 
Heydarian-Forushani et al. (2016) focus on the flexible interaction 
of PEV parking lots for efficient wind integration. The paper 
proposes a two-stage stochastic programming market-clearing 
model considering the network constraints to achieve the optimal 
scheduling of conventional units as well as PEVs’ parking lots in 
providing both energy and reserve services. It demonstrates that 
coordinated operation of parking lots can facilitate wind power 
integration. Hanemann et al. (2017) provide insights on the effects 
of EV charging strategies on the German power system. The paper 
finds that curtailment of renewable energy sources is reduced 
independently of the charging strategy, while the charging strategy 
vehicle-to-grid proves to be most beneficial concerning system 
cost and emissions. Haque et al. (2016) present a dispatch model 
integrating wind generators and EVs. The proposed model aims 
to utilize the flexibility of fleets of PEVs to optimally compensate 
for the wind generation uncertainty. Effects of smart charging on 
generation cost, CO2 emissions and total network load are assessed.

Ul-Haq et al. (2018) developed a probabilistic model, concerning 
the EV charging patterns within a residential distribution network. 
The stochastic model provides rigorous estimation of EVs charging 
pattern. Mkahl et al. (2017) examined the charging management 
of EVs fleets and developed an optimum algorithm. The authors 
examine both normal conditions, such as driving without using 
electrical accessories, roads without traffic jams and slops, as well 
as disturbed conditions. Karfopoulos and Hatziargyriou (2017) 
propose a bidirectional EV coordination algorithm for conforming 
to an energy schedule, implementing the Bender Decomposition 
method to define EVs’ optimal response to the aggregator’s pricing 
policy. Baringo and Amaro (2017) develop a stochastic robust 
optimization model to simulate the bidding strategy of an EV 
aggregator, leading to reduced charging costs without affecting 
the driving requirements of EV users. Bharati and Paudyal (2016) 
implement optimal hierarchical framework for EVs integration in 
the distribution grid, which leads to reduced cost of EVs charging 
and reduced power losses in the distribution grid.

The literature review shows that there is a rapidly growing 
research on the integration of EVs in the power systems. There 
are several research papers aiming at the optimum integration of 
EVs, through the adoption or incentivizing of different charging 
methods. There also several papers on examining the impact of 
EVs on the distribution grid, focusing on the technical aspects, 
such as reliability issues and the provision of ancillary services. 



Adraktas and Dagoumas: Integration of Electric Vehicles in the Unit Commitment Problem with Uncertain Renewable Electricity Generation

International Journal of Energy Economics and Policy | Vol 9 • Issue 2 • 2019 317

The consideration of UC models is also extended, as they are 
considered robust approaches to simulate the power systems 
operation. There are several UC models used for examining 
the impact of EVs, in relationship or not of the penetration of 
renewable energy resources. However, UC models examine - in 
most cases - a national power system or a small power system, 
providing insights on the effect of EVs on it. Moreover, there are 
few cases providing a comparison among different UC models, 
towards revealing the required level of detail for robust solutions 
and the impact of uncertainties on key variables. The Energy and 
Environmental Policy laboratory at the University of Piraeus 
has extensive experience in the developing and extending UC 
models, which however mainly concerns the Hellenic power 
system (Dagoumas and Polemis, 2017; Dagoumas et al., 2017; 
Koltsaklis et al., 2017; Dagoumas and Koltsaklis, 2017; Koltsaklis 
and Dagoumas, 2018). Considering that the integration of EVs is 
a challenging issue, the application of a common power system 
such as the IEEE RTS 96 with increased penetration of renewables 
has been selected, as this represents a large but as well a more 
commonly used power system in the international community. 
This has led to application and extension of UC models by the 
Renewables Energy Analysis Lab at the University of Washington 
(REAL, 2017).

The paper contributes to the literature by applying different 
UC models, differentiated by the approach tackling uncertain 
renewable electricity generation, to estimate the impact of 
integrating EVs, by examining different charging profiles and 
penetration levels of EVs in a commonly used power system. 
The highlights of the paper are: (i) Integration of EV in the UC 
problem, (ii) comparison of different UC models on the IEEE 
RTS 96 power system, tackling differently the uncertainty 
of renewable electricity generation, (iii) implementation of 
different charging profiles to evaluate the impact of the EVs’ 
load and (iv) provision of useful insights into the effects of the 
EVs’ load on the total operating cost of a power system and its 
adequacy to handle the excessive load under different charging 
strategies.

The rest of the paper is organized: Sections 2 provide the 
formulation of the models. Section 3 provides the case study where 
the models are applied, while Section 4 provides the results and a 
relevant discussion on them. Finally, section 5 provides the main 
conclusions and highlights of the paper.

2. MATHEMATICAL FORMULATION

The Renewables Energy Analysis Lab at the University of 
Washington has developed five different implementations of the 
Uc problem (Pandzic et al., 2017), where the basic formulation is 
described in Annex I. The application of the UC models concerns 
the IEEE RTS-96 power system, shown in Figure 1. This power 
system includes, apart from thermal production units of various 
fuel (nuclear, coal-fired, diesel, natural gas), renewable energy 
generation units from the wind, which power production is 
uncertain compared to other renewable technologies, such as 
photovoltaics. Specifically, there are 19 wind power plants of 
total wind production capacity of 6900 MW. The wind power 
plants are distributed in the following way: 3900 MW in the West 
subsystem, 2400 MW in the central subsystem and 600 MW in the 
east subsystem. There are also 73 buses, 120 transmission lines, 
96 thermal power units and 51 loads. The whole system can be 
seen in the following layout.

The inclusion of renewable energy sources in a power system 
introduces uncertainty on the real production of those units. The 
uncertainty comes from the stochastic nature of the wind and the 
weather conditions in general. Transmission system operators 
have to forecast the real output from those renewable sources 
to calculate the thermal power needed to meet the electricity 
demand and ensure the system stability. The stochastic wind 
power production is a major parameter in the system instability, 
and the high penetration of renewable production must be 
compensated with the installation of flexible thermal production 
units or hydropower, which can increase and decrease their output 
rapidly. As a matter of fact, the forecasting of the renewable energy 
sources real output is a major problem for the transmission system 

Figure 1: The electrical system IEEE RTS-96
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operators. It affects the stability of the power system and the energy 
market participants as well as the energy markets itself. We did not 
consider other renewable technologies, such as photovoltaics as 
their power output can be forecasted with much higher accuracy, 
so practically the introduction of photovoltaics would lead to an 
upgrade of the net load at each bus, rather than an introduction of 
uncertain renewables production. Photovoltaics, besides the case 
of the sunset effect, which affects the UC problem and enhances the 
need for flexible ramping capacity, it does not inherit uncertainty 
in the dispatch of power units, as the uncertain power output from 
the wind farms is doing.

The models developed by the Renewables Energy Analysis Lab, 
that used for this paper are the following: Deterministic UC 
(DUC), Stochastic UC (SUC), Improved interval UC (IIUC), 
IUC and Robust UC (RUC). Each of those models uses a different 
mathematical procedure to forecast the anticipated renewable 
production. Some of them are more preservative than the others. 
Consequently, it is committing more thermal units, and the stability 
of the system is increased but with a higher total economic cost. 
The UC models require a considerable amount of input data, which 
are described the model developers’ website (REAL, 2017). The 
models’ users have the option to change some options, i.e., to 
modify the penetration of the renewable sources, the variable 
cost, and ramping capabilities of thermal units, the capacities of 
the transmission lines, the wind profile and a penalty factor in the 
case of spilled wind production or unserved loads. In our research, 
we choose to have 30% of energy from wind power units, which 
is much higher than the current state of most power grids and a 
possible future power system of the next decades. Another decision 
is to go with the unfavourable or favourable wind profile. We have 
chosen the unfavourable wind profile, as depicted in Figure 2.

2.1. UC Models
In our analysis we have used the following REAL UC models, 
aiming to compare the different way the uncertainty of wind is 
tackled:
• DUC model
• SUC model
• IUC model

• IIUC model
• RUC model.

Considering the theoretical model differences, a recent work 
(Kirschen, 2014) confirms those results. Figure 3 summarizes 
the differences between the different models. Figure 3 shows that 
more RUC models, being more “conservative” in constraints, 
lead to the commitment of more power from dispatching units. 
We have extented the models to incorporate the EVs as described 
in section 3.

3. EVS

3.1. Number of EVs
In developed countries, such as the US, Germany, Japan, France, 
Italy, the yearly electricity production per capita ranges between 
5000 kWh/cap and 12000 kWh/cap, as shown in Table 1. Thus, 
we derive that an average of about 8500kWh/cap will be used for 
our calculations, which means that we have an average of 1kW/
cap of annual power level. The examined power system consists 
of 10215MW of thermal energy production capacity, which means 
that this power system is the equivalent system for a population 
of 10.215 million people. According to Eurostat (2017) in 2014 
in EU, there were on average around 0.45 cars/capita, as shown 
in Table 2. As a result, in the examined power system, there could 
be 4,596,750 EVs if we had a 100% penetration of Evs.

3.1.1. Battery capacity and charging
There are two categories of EVs; the plugin hybrids and the fully 
EVs. In the first category, the battery capacity used varies from 
4.4 kWh to 17 kWh, for example, Toyota Prius III (plug-in hybrid) 
encapsulates 9 kWh and can be charged with a 3.3 kW charger, 
whereas the Chevrolet Volt engages an 18 kWh battery and can be 
charged with a 3.6 kW charger. The second category is the fully 
EVs where someone finds capacities between 19 and 100 kWh 
(Plugincars, 2017), as shown in Table 3. The current research 
assumes that only fully EVs will be used and thus it is decided 
to proceed with a 35 kWh battery capacity for all the vehicles to 
be able to complete all the daily journeys on one battery charge. 

Figure 2: Load profile and wind production profile

Source: REAL, 2017
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According to the commercially available models, the consumption 
of electricity varies between 0.12 and 0.20 kWh/km. We assume 
0.175 kWh/km as an average value that represents most of the 
models of Table 3. There are different charging options available 
according to the limits of the power lines. This thesis assumes 
that a 3kW charger will be used for vehicles running journeys 
up to 80km and another type of “fast charger” at 6kW maximum 
charging capacity will be used for vehicles running longer journeys 
and should be charged before the next morning in a period of 5-6 h. 
The assumptions concerning the driving patterns are provided in 
Annex III.

3.2. Integration of EVs in the UC Models
Using the above information and a recent work (Madzharov 
et al., 2014) as a base, we develop an algorithm, which will 
integrate all the EVs data into the UC. We assume that because 
the data comes from well-developed countries such as the 
United Kingdom and Sweden should represent a good traveling 
model for European Union countries and other developed 
countries. During night hours (23.00-05.00) we observe a tiny 
percentage of trips, either one-way or two-way. Thus, we assume 
that during these hours no trips are taking place and therefore, we 

distribute these few percentages into the rest time periods. The 
derived allocation of journeys starting hours is in the Table 4.

The main purpose of the algorithm is to charge all the vehicles’ 
batteries into a 24 h horizon day. For example, if a car starts its 
journey at 6.00 it should be charged by then, but if it starts at 
10.00, then it should be charged by 9.00. To this respect, we want 
in a 24 h’ period to charge the electric consumption of the EVs. 
The reason why we did not use strict constraints on the charging 
time is explained by the large number of vehicles that we will 

Table 1: Consumption of electricity in developed countries 
Country Population Electricity consumption (kWh) Electricity consumption/cap (kWh)
EU 513949445 2.771E+12 5446
USA 323995528 3.913E+12 12199
Japan 126702133 9.34E+11 7446
Germany 80722792 5.33E+11 6669
France 66836154 4.31E+11 6513
UK 64430428 3.09E+11 4844
Italy 62007540 2.91E+11 4740
Canada 35362905 5.28E+11 15081
Belgium 11409077 8.1E+10 7171
Greece 10773253 5.3E+10 4969
Sweden 9880604 1.27E+11 12983
Austria 8711770 6.975E+10 8087
Switzerland 8179294 5.8E+10 7162
Denmark 5593785 3.2E+10 5778
Finland 5498211 8.1E+10 14880

Average 8265
Source: CIA, 2017

Table 2: Cars per capita
Country Cars/capita
Belgium 0.496
Bulgaria 0.416
CzechRepublic 0.448
Germany 0.550
Estonia 0.496
Ireland 0.438
Greece 0.468
Spain 0.471
France 0.483
Croatia 0.347
Italy 0.610
Cyprus 0.558
Latvia 0.329
Lithuania 0.410
Hungary 0.315
Malta 0.625
Netherlands 0.473
Austria 0.552
Poland 0.526
Portugal 0.451
Romania 0.246
Slovenia 0.518
Slovakia 0.360
Finland 0.582
Sweden 0.475
UK 0.452
Liechtenstein 0.767
Norway 0.500
Switzerland 0.539
Turkey 0.129
Source: Eurostat, 2017

Figure 3: Committed capacity using differnent UC models and 
different wind profile (favourable for the upper group of lines and 

unfavourable for the lower group of values)

Source: Kirschen, 2014
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use. Consequently, we assume an equal distribution of the 24 h. 
Another critical assumption that will be utilized is that due to the 
size of the electric system, we will equally distribute the number 
of electric cars on each bus bar and we will further assume that 
each EV will always be charged on the same bus bar.

It is important to clarify how the two-way and one-way trips are 
calculated. A trip in the one-way category is made at once for 
example at 40 km. However, an EV in the two-way category 
makes two trips at 20 km each, therefore in total 40 km/day. The 
most important number that should be derived from the previous 
data to perform the desired calculations is the number of EVs that 
start their journeys each hour.

The total number of EVs in the system, at 100% penetration level, 
(EVP100%) is the sum of the number of EVs that make one trip 
(EVone) and the number of EVs that make two trips (EVtwo) per day:

 EVP100% = EVone+EVtwo (1)

The number of trips in the one-way group is equal to the number 
of EVs in that group:

 Tripsone = EVone (2)

The total number of trips in the two-way group is twice the number 
of EVs in that group:

 Tripstwo = 2×EVtwo (3)

The total number of trips is equal to the sum of the one-way and 
two-way group:

 Tripstotal = Tripsone+Tripstwo (4)

In the previous paragraph, we calculated that the one-way trips 
are 5% of the total trips the factor that represents this figure will 
be from now on called f1. Then:

 Tripsone = f1×Tripstotal (5)

By substituting equations (3) and (4) into equation (5):

 Tripstotal = EVone+2×EVtwo (6)

By substituting equations (2) and (7) into equation (6):

 EVone = f1×(EVone+2×EVtwo) (7)

By combining equations (2) and (8), we calculate the number 
of EVs in the two-way group and then by using that result and 
equation (2) we extract the number of EVs in the one-way group. 
Finally, by using these results, we calculate the total trips using 
only the EVP100% and f1.

After Tripstotal is calculated we use the distributions presented in 
Annex III to determine the number of EVs starting each hour and 
how many kilometers each group of EVs runs.

Knowing the number of total trips Tripstotal, the number of trips 
started each hour and the distance that each group of EVs runs; 
we can now derive the number of parked EVs in each cluster 
that is connected to the grid and ready to be charged and their 
battery capacities EVsAvailable(e,t). Also, the energy that is 
consumed by the EVs ConsumedEnergy(e,t) is calculated. 
These parameters are now used in the optimization of the UC 
models.

3.3. UC Model Extension for the Integration of EVs
In the previously described formulation for the UC model, 
we will make a few additions to the model to take into 

Table 4: Percentage of trips starting during each period 
over a 24-h horizon
h One-way (%) Two-way (%)
t1 0.00 0.00
t2 0.00 0.00
t3 0.00 0.00
t4 0.00 0.00
t5 0.00 0.00
t6 0.01 1.50
t7 0.08 5.10
t8 0.17 10.20
t9 0.25 6.50
t10 0.40 4.70
t11 0.59 5.50
t12 0.40 5.70
t13 0.40 6.40
t14 0.40 5.90
t15 0.50 6.70
t16 0.40 7.40
t17 0.40 9.70
t18 0.25 7.30
t19 0.25 5.10
t20 0.17 2.80
t21 0.17 2.20
t22 0.08 1.50
t23 0.08 0.80
t24 0.00 0.00
Sum 5.00 95.00

Table 3: Commercially available electric vehicles and their characteristics
Electric vehicle model Battery capacity (kWh) Charger (kW) Battery range (km) Electricity consumption (kWh/km)
BMW i3 33 7.7 183 0.1799
Chevrolet bolt 60 7.2 383 0.1566
Chevrolet Spark EV 19 3.3 132 0.1440
Volkswagen E Golf 24 7.2 134 0.1797
Ford focus electric 23 6.6 185 0.1243
Nissan leaf 30 6.6 172 0.1742
TeslaModel S 100 10 507 0.1973
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account the extra load coming from the EVs that will be 
charging. The additions that we should make are at two levels: 
Firstly, we should update the excel input file so that the values 
for the new parameters are introduced to the UC model. 
Secondly, we should add the new equations and constraints 
that model the EV load as described before. In this section, 
we describe the formulation added to UC models to integrate 
a flexible load from EVs.

3.3.1. Nomenclature
A. Indices

E = Index of same distance traveling EVs group1-E

B. Parameters
Tripses = Trips started each hour per EV distance group e 

and bus bars
EVsAvailablees = EVs that are available for charging each hour
Consumptione = Energy consumption per EVs group e
BatteryFulle = Total battery capacity of all cars for each 

group e
ChargeLinee = Power of the charger that each group of EVs 

can be charged by (MW)
MaxTransferes = Maximum charging load each hour according 

to the EvsAvailable

C. Variables
EnergyUpes (t) = Additional electricity demand for EVs 

charging in group e in bus s in hour t (MWh)
soces (t) = State of charge of EVs in group e in bus s in period 

t (MWh).

3.3.2. Equations and constraints
Firstly, we have to add in the power balance equation the term 
that represents the EV charging loads. Then the power balance 
equation is:
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ms m

s

( ) ( ( ) ( ))
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∑
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Then, we have to calculate the energy consumption for each bus 
bar for each EV group for each hour.

ConsumedEnergyes (t) = Tripses (t)·Consumptione Ɐt≤T, s≤S, e≤E
 (10)

Finally, we have to calculate the state of charge for each group of 
EVs in each bus s in each period t.
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The MaxTransfer parameter is calculated manually outside the 
model via the equation:

MexTransferes (t) = EVsAvailablees (t)·ChargeLinee (t) Ɐ t≤T, s≤S, 
e≤E (12)

Finally, we introduce three constraints that ensure that the 
calculated values will not exceed the appropriate limits.

The first constraint ensures that the charging energy will not be 
more than the energy needed to top all the batteries.

soc t EnergyUp t BatteryFull t T
s S e E

es es es( ) ( ) ,

,

− + ≤ ∀ ≤
≤ ≤

1

 (13)

The following constraint ensures that each hour the charging 
power will not be more than the maximum output power of the 
chargers used.

 EnergyUpes (t) ≤ MaxTransferes (t) Ɐ t≤T, s≤S, e≤E (14)

The last control is that the whole energy that will be used to charge 
the EVs in each bus bar will be according to the energy that these 
EVs consumed during the day.

The input data that have been for the integration of EVs in the UC 
models are provided in Annex III.

4. RESULTS AND DISCUSSION

4.1. Simulation Assumptions
This section provides the results from applying the extended 
UC models. We have used all above mentioned models, but we 
choose to present results from three of them: The deterministic, 
the stochastic and the interval unit UC models, as the results 
of the robust model are comparable to those of the interval 
model. The paper examines the effect of the excess load using 
the UC models, which implement different level of power 
system robustness. The deterministic model is the easiest to 
be solved and provides a solution which is based on a static 
prediction of the wind power generation. However, that 
prediction relies on statistical data processing of historical 
data. The stochastic model is using 10 different scenarios of the 
wind power production forecast. Each scenario is paired with 
a probability to happen according to its likelihood to occur. 
However, it is not within the scope of this research to analyze 
the mathematical methods used to generate the most typical 
scenarios from the historical data. The interval unit model is 
much more conservative than the other two, because it commits 
units to meet the extreme transitions which are extracted from 
the wind data.

An important issue concerning simulations is the selection of 
the EVs charging profile. Our research is based on the following 
three charging profiles, which were used to evaluate the effects of 
the extra energy demand in the operation of the electric system.
• Optimized charging profile (Profile 1)

In the optimized charge profile, the charging of the EVs is handled 
by the UC algorithm which is responsible for distributing the 
additional energy demand across the 24 h to achieve the least total 
economic cost of the operation of the whole system.
• Random charging profile (Profile 2)
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In the random charge profile, the charging of the EVs is done after 
every trip. That means that if an EV is moving during hour 9, then 
it will start charging right after its trip at hour 10. It can be derived 
by combining the statistics used for the driving patterns. According 
to the driving patterns, all the trips in distance groups up to 6 are 
being completed within an hour from their beginning. Moreover, 
only 2.6% of the trips is 160 km and from that only 5% is made 
at once which means that only 0.13% of the trips last longer than 
an hour but also <2 h. That means that we will consider the same 
rule for all the EVs which mean that if a trip starts at hour 9 then 
its charge will start at hour 10. This profile will test if the energy 
production capacity of the system is adequate to charge a large 
number of EVs during the peak hours.
• Off-peak charging profile (Profile 3)

In the off-peak-charge profile, all the EVs can charge only during 
the off-peak hours, which means that the charging is done during 
hours 1–8 and 21–24. This charging profile was selected to verify 
the operation of the UC algorithm and our global assumption that 
the power system operates better when we do not have big ramps 
in power demand.

5. RESULTS

5.1. Deterministic Model Results
We have run the deterministic model for the three charging 
scenarios, and we present the effect on the electricity demand in 
Annex V. The first and most important result is that the optimized 
charging profile chooses to allocate the extra electricity demand 
during the hours that the average demand is low. This action leads 
to keep the units that would normally be closed, committed to keep 
up with the standard demand during peak hours. The avoidance of 
the startup costs will lead to higher efficiency and better use of non-
flexible units such as the coal-fired units. The second observation 
we make is that, as initially assumed, the optimized charging 
profile has similar results with the off-peak hours charging profile 
and this is why we expect to have similar total operational costs 
between those two charging profiles, as confirmed in Figure 4.

If we consider the worst case, when we have 100% penetration of 
EVs, we can compare the maximum load against the maximum 
total capacity that is available. In this comparison, it is important to 
take into account the renewable energy production, representing a 
considerable amount of 30% of the total daily electric production. 
To test the power system in challenging situations, we have selected 
a non-favorable wind profile which provides much power output 
when the load is low power output when the demand is very high. In 
Figure 5, the light blue line shows the maximum thermal production 
capacity of the power grid. The gray line represents the total load 
when there is a maximum penetration of EVs, compared to the 
orange line showing the demand without EVs. The blue line shows 
the wind power output. Figure 5 shows that for time interval 18 the 
load cannot be fully covered by the thermal production, represented 
by the yellow line, but the wind production is vital towards meeting 
the increased load. At the same hour, we can see that the committed 
thermal capacity is below the maximum available, as some power 
capacity is needed for ancillary services, while some units might be 
unavailable for production due to problems or regular maintenance 
schedules. That leads to the conclusion, that in absence of smart 
charging scheduling techniques, it is possible to need additional 
thermal capacity to meet peak hours’ demand in the future.

In power systems with high renewable energy production 
penetration, it is vital to absorb as much renewable energy as 
possible, to enhance the operation of such units and take the full 
potential of low carbon emitting units. The results of the wind 
curtailment in our power system show that flexible load from EVs 
can be beneficial for the operation of renewable sources and the 
environment when combined with smart-charging mechanisms or 
market signals to EVs holders or users.

Finally, it is important to investigate the percentage of increase in 
the energy cost per MWh, in respect with the of EVs penetration 
rate. Figure 6 helps us draw some conclusions about that, especially 
on the huge impact of random charging profile. Firstly, we can see 
that the increase when using the optimized charging profile does 
not exceed 1.1% in the 100% EVs penetration scenario, compared 

Figure 4: Total operational cost ($) of the deterministic model under different charging profiles for various electric vehicles penetration
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to no penetration of EVs. Secondly, in the random charging 
profile, we have a much higher increase which is growing faster 
after 40% of EVs penetration. That could be explained because 
after this certain percentage it will be mandatory to commit the 
most expensive units available. We also observe that there is a 
slight decrease of the price in the optimized charging profile and 
the off-peak hours charging profile. That has to do with the wind 
profile and the units committed. As we said before, we have used 
a non-favorable wind profile with high production during off-peak 
hours and low production during peak load hours. That leads to 
shutting down of many inflexible units during the off-peak hours 
and starting them up to meet peak loads. When we add the flexible 
load, it is distributed across those off-peak hours in a way that the 
system does not need to shut down units with high shut-down cost. 
That is the reason why the cost shows a slight decrease in small 
levels of penetration of EVs.

5.2. Stochastic Model Results
We have run the stochastic model for the same three charging 
scenarios, and we present the effect on the electricity demand in 
Annex V. The procedure to extract the data is the following: As 
long as we have ten different UC results, we multiply each result 
with the probability of the scenario. Similarly to the deterministic 
model, the results of the committed capacity when using charging 
profile 1 and 3 have minor differences. This conclusion comes out 
from both the load demand charts in Annex V and the total thermal 
production cost in Figure 7.

When using charging profile two, the maximum load in 100% EVs 
penetration exceed the total thermal production capacity slightly 
during hour 18 of the planning horizon. Wind power capacity 
helps the system to meet the increased load demand, although 
there should be an emergency plan in case of unexpected outages 

Figure 5: Overview of thermal production capacity, production mix and demand evolution, considering 100% electric vehicles penetration, 
maximum load and random charging profile

Figure 6: Percentage difference of the energy cost ($/MWh) of the deterministic model solution based on 0% electric vehicles penetration energy 
cost
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in production units, such as demand response and interruptibilty 
schemes. For the stochastic model, we have the same conclusion 
as for the deterministic model, concerning the evolution of the 
total operatimg cost, as shown in Figures 4 and 7.

The wind production curtailment results show us that the 
additional load from EVs can absorb some or all of the curtailed 
production especially when it is combined with an efficient 
charging method. However even when using the random charging 
profile, there is a slight decrease in the curtailed production. In 
any case, the curtailed production is a small percentage of the 
total demand, and we cannot lead to concrete conclusions, but 
there is an indication that excessive renewable energy can charge 
extra load from EVs.

The form of the curves for each charging profile for different EVs 
penetration is similar to those for the deterministic model. As the 

number of EVs is increasing from 0% to nearly 80%, we observe 
that the cost for each MWh of energy produced is lower than in 
0%, as shown in Figure 8. The explanation is that many expensive 
coal-fired units are used more efficiently while there is no need to 
shut them down during the low load hours and start them up again 
later when the load is higher. The avoidance of such startup and 
shut down costs is vital for the total production cost. However, we 
observe that in 100% penetration of EVs the percentage of increase 
of the cost is slightly higher than in the deterministic model for all 
the charging profiles. The conclusion from the above is that the 
model has a similar operation to the deterministic approach with 
a slightly higher operational cost, caused by the introduction of 
the stochastic nature of wind production.

5.2.1. Interval unit model results
We have run the interval unit model for the same three charging 
scenarios, and we present the results in Annex V. First of all, 

Figure 7: Total operational cost ($) of the stochastic model under different charging profiles for various EVs penetration

Figure 8: Percentage difference of energy cost ($/MWh) of the stochastic model solution based on 0% EVs penetration energy cost
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we observe that the form of the load curves is different from 
the other two models. In this case, due to the higher robustness the 
algorithm distributes in a different way the flexible load than in the 
previous models. On the other hand, we observe that the resulted 
curves when using charging profile 1 and 3 are very similar, 
as in the previous models. The curves of the total operational 
cost, in Figure 9, have the same form as in the previous models. 
Specifically, the charging profile 1 and 3 have a similar cost, 
while profile 2 has a higher cost. However, the level of the total 
operational cost is significantly greater than in the previous models.

We have to mention that when using the random charging profile two, 
it is not possible to run the simulation in full (100%) EVs penetration, 
because the total production capacity is not enough to meet the 
demand. That is a major difference from the previous models. As we 
can see the system when using a higher robustness UC algorithm, the 

installed power plants are not able to provide enough electricity for the 
maximum number of EVs. This is more obvious in case of the fourth 
UC model the robust model. The curve for the random charging profile 
energy cost difference, in Figure 10, is smooth at the beginning until 
60% of EVs penetration, and then it is very steep. That phenomenon 
can be explained by the higher unit capacity commitment of the 
interval model. As mentioned in section 2, the interval model commits 
more units to be able to cover extreme fluctuations of the wind power 
production, which means that for low levels of additional EVs load, the 
required capacity is already committed. However, for higher additional 
EVs loads, it commits the most expensive units.

The results of this model are quite different from the previous 
models. First of all, the available thermal production capacity 
was not enough to run the random charge profile for 100% of EVs 
penetration. Secondly, we have a higher total operational cost in 

Figure 9: Total operational cost ($) of the interval model solution under different charging profiles for various EVs penetration

Figure 10: Percentage difference of energy cost ($/MWh) of the Interval model solution based on 0% EVs penetration energy cost
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all cases due to higher reliability of the method. Thirdly, we have 
much more wind energy production curtailed which comes from 
the increased reliability of the solution produced.

5.3. Models Comparison
Finally, we are presenting a comparison, in Figures 11 and 
12, between the three models regarding total operational cost, 
which reflects the total committed unit’s capacity. The results for 
the deterministic model is the base, on which we are calculating 
the percentage differences between the deterministic and each of 
the other two models (stochastic and interval).

The comparison shows that the deterministic model is the cheapest 
one as it commits the capacity needed for the most probable 

(deterministic) scenario. The stochastic scenario is slightly more 
expensive than the deterministic, as it introduces ten scenarios of 
wind production. Finally, the interval model is the most expensive, 
taking into account that it is the most robust compared to the 
others. Table 5 provides the performance ranking of the different 
UC models based on the total operational cost, for the different 
scenarios examined related to the penetration level of EVs (in %) 
and the charging profile. The represented percentages show the % 
increase of the total operational cost from the deterministic model.

The comparison between the UC models in Table 5, show that 
the most RUC model leads to higher total operating cost, due 
to its more conservative methodology to tackle the stochastic 
nature of wind. Moreover, from the above analysis, we derive 

Figure 11: Comparison between the Stochastic model and the Deterministic model total operational cost

Figure 12: Comparison between the Interval model and the Deterministic model total operational cost
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that the deterministic and the stochastic models allocate the EVs 
load in a similar way whereas the interval model allocates it in a 
different way. That can be explained by the fact that interval model 
handles the uncertainty of the wind production differently. The 
similarity of the stochastic and deterministic model is coming from 
the procedure used to create the deterministic scenario of wind 
production. The data that were used are the same, and the scenarios 
were extracted by using certain scenarios reduction methods. As 
a result, when combining the ten most probable scenarios into 
one then the outcome should be very close to the one most likely 
scenario (deterministic).

6. CONCLUSIONS

The integration of EVs in the power system is a challenging issue 
for the power system and network operators. The paper uses 
applies different mixed-integer linear programming UC models, 
which apply different methodologies to incorporate high levels of 
renewable energy production. The UC models, applying different 
methods to integrate the uncertainty from the renewables, are 
further extended to integrate the EVs, aiming to compare the UC 
models but as well the different charging profiles of the EVs. Our 
focus is on the effects of the excessive EVs’ load on the production 
side, hence the total operational cost, the average energy cost, the 
wind curtailment, the dispatch of power units, as well as the power 
grid adequacy to handle the extra load under different charging 
strategies and.

The selected power system is IEEE RTS 96 and the penetration 
levels of EVs vary from 0% to 100% with 20% steps. For the 
simulations, we used two charging strategies and a third one for 
confirmation. The first charging profile is a centrally controlled 
optimized profile, in which the UC algorithm selects the hours that 
will be allocating the excess load, to minimize the total production 
cost. The second charging profile is used to stress the power system 
and check the penetration levels of EVs that the system is ready 
to incorporate. The charging under the second strategy is done 
right after each vehicle’s trip and until is fully charged. The third 

charging strategy was an off-peak hour charging profile, in which 
the EVs could be charged only during hours 1–8 and 21–24.

Simulation results show that an optimized charging strategy is 
considerably more efficient than the random charging strategy, 
both in the total operating cost and in the ability to integrate 
more EVs. The average cost of energy for the optimized charging 
for 100% of EVs penetration is not increasing more than 1.5% 
compared to the cost of energy for 0% EVs penetration. On the 
other hand, for the random charging strategy, the equivalent cost 
increases up to 15% for the same conditions. Furthermore, the 
advantage of using an optimized charging is the ability to integrate 
more EVs, which was challenged applying the most RUC model 
(interval). In that case, the model was not able to run for the 
100% penetration due to lack of production capacity. Finally, the 
third charging profile gave us similar results with the optimized 
charging profile.

The comparison between the UC models confirmed our theoretical 
assumptions, that the most RUC model provides higher total 
operating cost, due to its more conservative approach to tackle 
uncertain renewable electricity generation. The results show, 
that the most robust model (interval) gives an average 8.5% 
more expensive solution than the less robust model. However, 
the middle robustness model (stochastic) solution is only 0.36% 
more expensive than the solution of the deterministic model. There 
exist a non-linear trade-off between power system robustness and 
total operating cost for the integration of EVs, depending on the 
characteristics of each power system, affecting also the penetration 
level of EVs.

The above conclusions could be further enhanced by further 
extensions or scenarios examined by the UC models. Such 
scenarios could consider more types of renewable sources, such 
as photovoltaics and biomass, or to consider a higher number of 
EVs or other types of chargers. Such model improvements could 
be the examination of further technologies as well as the usage 
of vehicle-to-grid technologies. Additionally, there could be 

Table 5: Performance ranking of the UC models, based on the total operational cost, for the different EVs penetration level 
and charging profiles scenarios
EVsPenetration (%) Performance ranking Profile 1 (optimized) Profile 2 (random) Profile 3 (off‑peak)
0% 1 Deterministic

2 Stochastic (+0.04%)
3 Interval (+8.71%)

20% 1 Deterministic Deterministic Deterministic
2 Stochastic (0.16%) Stochastic (+0.59%) Stochastic (+0.70%)
3 Interval (+10.23%) Interval (+10.15%) Interval (+10.72%)

40% 1 Deterministic Deterministic Deterministic
2 Stochastic (0.12%) Stochastic (+0.33%) Stochastic (0%)
3 Interval (+8.01%) Interval (+8.50%) Interval (+8.31%)

60% 1 Deterministic Deterministic Deterministic
2 Stochastic (0.67%) Stochastic (+0.68%) Stochastic (+0.41%)
3 Interval (+8.25%) Interval (+7.48%) Interval (+7.54%)

80% 1 Deterministic Deterministic Deterministic
2 Stochastic (0.45%) Stochastic (+0.46%) Stochastic (+0.50%)
3 Interval (+7.83%) Interval (+7.29%) Interval (+8.13%)

100% 1 Deterministic Deterministic Deterministic
2 Stochastic (0.47%) Stochastic (+0.38%) Stochastic (+0.8%)
3 Interval (+7.79%) -unable to run- Interval (+8.05%)
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further improvements on the driving patterns. The patterns that 
were used are the same for the whole system. However such a big 
system might include different mix of cities and villages, where 
people certainly have different driving patterns. The application of 
detailed models are always very useful for decision making and for 
provision of insights on the expected impacts of the penetration of 
EVs. However, the spatial characteristics of each power system, the 
power capacity mix, the demand patterns, the available resources, 
as well as the structure of the regional economy and society – so 
as to capture potential driving patterns shifts and the penetration 
potential of different technologies-, are very important factors to 
be considered, in order to implement applications useful for real 
system and network operators.
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Annex I: Basic formulation of the REAL UC models

Nomenclature
A. Sets

B = Index of generating unit cost curve segments, 1-Β
I = Index of generating units, 1-I
J = Index of generating unit start-up cost, 1-J
L = Index of transmission lines, 1-L
S = Index of bus bars, 1-S
T = Index of hours, 1-T

B. Parameters
ai = Fixed production cost of unit i ($)
Bsm = Admittance of transmission line between nodes s-m (S)
ds (t) = Load demand at bus s (MW)
gi

down  = Minimum downtime of unit i (h)

gi
up  = Minimum up time of unit i (h)

gi
down init,  = Time that unit i has been down before t=0 (h)

gi
up init,  = Time that unit i has been up before t=0 (h)

gi
0  = Output of unit i at t=0 (MW)

gi
max  = Rated capacity of unit i (MW)

gi
min  = Minimum output of unit i (MW)

gi b,
max  = Capacity of segment b of the cost curve of unit i (MW)

gi b,
on-off  = On-off status of unit i at t=0, equal to 1 if gi

up init, > 0 , 

otherwise 0
kib = Slope of the segment b of the cost curve of unit i ($/MW)
lsm
max  = Capacity of the transmission line between nodes s-m 

(MW)
Li

down,min  = Length of time that unit i has to be off at the start 
of the planning horizon (h)

Li
up, min  = Length of time that unit i has to be on at the start of 

the planning horizon (h)
M = Large number used for linearization
rampi

down  = Ramp-down limit of unit i (MW/h)
rampi

up  = Ramp-up limit of unit i (MW/h)
suci j,

cost  = Cost steps in start-up cost curve of unit i ($)

suci j,
lim  = Time steps in start-up cost curve of unit i (h)

C. Variables
Ci (t) = Operating cost of unit i at time t ($)
counti

down  = Unit i downtime period counter

gi (t) = Output power of unit i at time t (MW)
gib (t) = Output power of unit i on segment b at time t (MW)
suci (t) = Start-up cost of unit i at time t ($)
wij (t) = Binary variable equal to 1 if unit i is started at time t 

after being out for j hours, otherwise 0
xi (t) = Binary variable equal to 1 if unit i is producing at time 

t, otherwise 0
yi (t) = Binary variable equal to 1 if unit i is started at the 

beginning of time t, otherwise 0
zi (t) = Binary variable equal to 1 if unit i is shutdown at the 

beginning of time t, otherwise 0
θs (t) = Voltage angle at bus s (rad)

Formulation

The aim is to minimize the total generation cost of the thermal 
power plants which is described in the following objective function 
(Dvorkin et al., 2015).

 C ti
i

I

t

T

( )
==
∑∑

11

 (1)

Expressions (2) and (3) describe the binary logic. Specifically, 
expression (3) prohibits a unit starting up to be simultaneously 
shut down. Expression (2) implements the logic that if a unit is 
starting up at time t, it cannot be on at time t-1.

 yi (t) - zi (t) = xi (t) – xi (t−1) Ɐ1≤t≤T, i≤I (2)

 yi (t) + zi (t) ≤1 Ɐ t≤T, i≤I (3)

Equation (4) defines the total cost for each unit i. The total cost 
is the summation of the startup cost of the units (if needed), the 
fixed cost and the variable cost:

 C t x t kb g t suc t t T i Ii i i b i
b

B

( ) ( ) ( ) ( ) ,,= ⋅ + ⋅ + ∀ ≤ ≤
=
∑α

1

 (4)

The total unit output is equal to the sum of the generation in each 
segment of the cost curve:

 g t g t t T i Ii i b
b

B

( ) ( ) ,,= ∀ ≤ ≤
=
∑

1

 (5)

ANNEX
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Minimum unit output must be higher than the minimum output 
of unit i:

 g t g x t t T i Ii i i( ) ( ) ,≥ ⋅ ∀ ≤ ≤min  (6)

Unit output for each generation level.

 g t g x t t T i I b Bi b i b i, ,( ) ( ) , ,≥ ⋅ ∀ ≤ ≤ ≤max  (7)

Minimum up time constraints:

 
( ( ))

,min

1 0
1

− = ∀ ≤
=
∑ x t i Ii
t

Li
up

 (8)

x tt g y t L t T g i Ii i
up

i i
up

tt t

t g

i
up

i
up

( ) ( ) ,,≥ ⋅ ∀ + ≤ ≤ − + ≤
=

+ −

∑ min
1

1 1  (9)

 ( ( ) ( )) ,x tt y t T g t T i Ii i
tt t

T

i
up− ≥ ∀ − + ≤ ≤ ≤

=
∑ 0 2  (10)

Where Li
up

i
up

i
up init

i
on off, ,min max min T= ⋅ − {0, { , (g - g ) g }} 

Minimum down time constraints:

 x t i Ii
t

Li
down

( )

,

=
∑ = ∀ ≤

1

0

min

 (11)

Annex II Table 1: Trips that start withing each hour period categorized by purpose
Hour Business, work and study-related (%) Service and shopping (%) Leisure (%) Other purpose (%)
1 0.09 0.01 0.03 0.01
2 0.03 0.00 0.00 0.00
3 0.04 0.02 0.01 0.00
4 0.05 0.01 0.00 0.00
5 0.21 0.01 0.03 0.00
6 1.33 0.02 0.08 0.05
7 4.63 0.11 0.30 0.06
8 9.12 0.44 0.60 0.19
9 4.51 0.85 1.08 0.29
10 1.62 1.29 1.73 0.35
11 1.02 2.27 2.17 0.52
12 1.18 2.23 2.30 0.40
13 2.08 1.87 2.51 0.36
14 2.12 1.68 2.05 0.38
15 3.04 1.65 1.95 0.45
16 4.27 1.40 1.74 0.39
17 6.06 1.36 2.09 0.38
18 2.99 1.45 2.79 0.32
19 1.26 0.98 2.84 0.32
20 0.60 0.59 1.68 0.19
21 0.52 0.35 1.15 0.20
22 0.64 0.18 0.59 0.08
23 0.34 0.08 0.32 0.05
24 0.18 0.04 0.18 0.02

Annex II Figure 1: Starting time of different category of trips over a 24-hour period
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( ( )) ( ) ,1 1− ≥ ⋅ ∀ + ≤ ≤ −
=

+

∑ x tt g z t L t T gi
tt t

t g

i
down

i i
down

i
do

i
down

min wwn

i I+ ≤1,
 (12)

( ( ) ( )) ,1 0 2− − ≥ ∀ − + ≤ ≤ ≤
=∑ x tt z t T g t T i Ii itt t

T
i
down  (13)

Where L g gi
down down

i
down init

i
on off, , ) ( )min max min= − ⋅ − − {0, {T, (gi 1 }}}

Ramp-up and ramp-down constraints:

 − ≤ − − ∀ ≤ ≤ ≤ramp g t g t t T i Ii
down

i i( ) ( ) ,1 2  (14)

 ramp g t g t t T i Ii
up

i i≥ − − ∀ ≤ ≤ ≤( ) ( ) ,1 2  (15)

 1( )≤down o
i i iramp g t g i I− − ∀ ≤  (16)

 ramp g t g i Ii
up

i i
o≥ ( )1 − ∀ ≤  (17)

Expression (18) and equations (19) and (20) impose the constraints 
and calculate the startup cost of each unit i. Specifically, inequation 
(18) sets the limitations for the calculation of the value of variable 
wij (t), taking into account the initial conditions.

w t z t j j Jij i
tt sucij
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( ) ( ) ${
,
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≤ − + ≤ −
=

+

∑ 1 1
1
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 suc t suc w t t T i Ii ij ij
j

J
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=
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1

 (20)

Where symbol $ represents logical IF and symbol Ʌ symbolizes 
logical AND.

Equation (21) defines the power balance in the electrical system.

g t B t t

B t t

i sm s m
s m L m si

I
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( ) ( ( ) ( ))
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{ , } |

− ⋅ − −

⋅ −
∈ >=
∑∑ θ θ

θ θ
1
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 (21)

Transmission constraints:

 − ≤ ⋅ − ≤ ∀ ≤ ∈l B t t l t T s m Lsm sm s sm
max max( ( ) ( )) ,{ , }θ θ  (22)

 −π≤θs (t)≤ π Ɐt ≤ T, s≤S (23)

Annex II Figure 2: Starting time of one-way and two-way trips over a 24-hour period

Annex II Table 2: Starting time of one-way and two-way 
trips over a 24 h period
Hour Two-way trips (%) One way trips (%)
1 0.13 0.01
2 0.03 0.00
3 0.06 0.00
4 0.05 0.00
5 0.25 0.00
6 1.43 0.05
7 5.04 0.06
8 10.16 0.19
9 6.44 0.29
10 4.64 0.35
11 5.46 0.52
12 5.70 0.40
13 6.45 0.36
14 5.86 0.38
15 6.64 0.45
16 7.41 0.39
17 9.51 0.38
18 7.23 0.32
19 5.08 0.32
20 2.86 0.19
21 2.02 0.20
22 1.41 0.08
23 0.73 0.05
24 0.40 0.02
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 θs (t) = 0 Ɐt≤T� (24)

Annex II. Driving patterns

The main goal of the model is to reproduce in a realistic 
way the driving patterns of real life. Therefore, we should 
process the statistical data from national authorities that are 
available. According to the Swedish Institute for Transport and 
Communication Analysis, which had made an extensive survey of 
Swedish resident’s traveling patterns during the period 1/10/2005 
and 30/9/2006, the car is the most common means of transport 
(SITCA, 2017). In this paper, the journeys are separated into four 

broad categories. Business, work, and study -related; Service and 
shopping; Leisure; Other purpose.

For each one of the categories above, it is measured how many 
journeys start during each hour. To be able to use the statistics we 
make the following assumptions:
1. The statistics regard journeys with any transport. Therefore, 

we assume that the same rates apply to car transportation also.
2. The statistics are based on periods of 60 minutes. For 

convenience reasons, in the model building, we assume that 
all the journeys start at the end of each period.

3. We assume that trips from categories 1, 2 and 3 are two-way 
travel, whereas category four journeys are one-way trips.

Annex II Table 3: Average speed for each of the length 
groups
Tri type Trip length (km) Average speed (km/h)
Urban roads 1.6 26
Urban roads 3.2 26
Urban roads 8 26
Urban roads 16 26
Secondary roads 40 44
Main roads 80 86
Motor ways 160 115
Source: Andréa and Hammarströmb, 2000

Annex II Figure 3: Percentage of trips in each Trip length group

Annex III Table 4: BatteryFull(e): The total capacity of 
the batteries of EVs in each distance group (e) in (MWh)
BatteryFull( e)

Column1
e1 11583.81
e2 27028.89
e3 52288.03
e4 33464.34
e5 25902.69
e6 6435.45
e7 4183.04

Annex III Table 5: ChargeLine(e): The power of the 
charger that each group of EVs is mounted on in MW
ChargeLine(e)

Column1
e1 0.003
e2 0.003
e3 0.003
e4 0.003
e5 0.003
e6 0.003
e7 0.006

Annex III Table 2: EvsAvailable (t.e.s): The EVs that are 
parked and available for charging
EVsAvailable (t.e.s) s101 s102 s103
t1 e1 4533.78 4533.78 4533.78
t1 e2 10578.82 10578.82 10578.82
t1 e3 20464.98 20464.98 20464.98
t1 e4 13097.59 13097.59 13097.59
t1 e5 10138.04 10138.04 10138.04
t1 e6 2518.77 2518.77 2518.77

Annex III Table 6: MaxTransfer (t.e.s): The maximum 
power that could be ejected from the power system for 
charging the EVs at each hour
MaxTransfer (t.e.s) s101 s102 s103
t1 e1 13.60134 13.60134 13.60134
t1 e2 31.73647 31.73647 31.73647
t1 e3 61.39495 61.39495 61.39495
t1 e4 39.29277 39.29277 39.29277
t1 e5 30.41411 30.41411 30.41411
t1 e6 7.55630 7.55630 7.55630

Annex III Table 1: Trips (t.e.s): The trips that start each 
hour for each group of EVs(e) for each bus bar (s)
Trips (t.e.s) s101 s102 s103
t6 e1 130.4002 130.4002 130.4002
t6 e2 304.2671 304.2671 304.2671
t6 e3 588.6119 588.6119 588.6119
t6 e4 376.7116 376.7116 376.7116
t6 e5 291.5893 291.5893 291.5893
t6 e6 72.4445 72.4445 72.4445

Source: Madzharov, et al., 2014

Annex III Table 3: Consumption(e): The EVs 
consumption in MWh according to their distance group
Consumption(e)

Column1
e1 0.00028
e2 0.00056
e3 0.00140
e4 0.00280
e5 0.00700
e6 0.01400
e7 0.02800
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Annex II Tables 1 and 2 and Annex II Figure 1, based on the above 
analysis, provide the Trips that start withing each hour period 
categorized by purpose and the Starting time of different category 
of trips over a 24-h period respectively.

Annex II Figure 1 shows that journeys from categories 1-3 from 
two peaks in a way that confirms our assumption that they are 
two-way trips. The logic behind that is that someone leaves his/
her house in the morning and returns later. For example. we 
observe that work-related journeys peak at 08.00 and then at 17.00 
which is a typical schedule for workers. Furthermore. Half of the 
journeys happen until 14.00 and the other half is made after that 
time. Helping us to understand the two-way trips better. For that 
reason. we aggregate the journeys for the first three categories 
into one category called two-way journeys and those from the 
fourth category to one-way trips. shown in Annex II Table 2 and 
Annex II Figure 2.

Annex II Figure 3 shows the distribution of trip lengths that will 
be used for the calculations.

The average speed used in this research is presented in 
Annex II Table 3. from which it is derived. That every trip starting 
in a period will travel for less than an hour and therefore. in an 
ideal situation it will be charging during the next period. That 

happens for all the length groups except the longest ones which 
are the smaller by percentage group.

In the UC models’ input file. We add the following parameters. 
shown in Annex III Tables 1-6.

Annex II Figure 1 shows that journeys from categories 1. 2 and 3 
from two peaks in a way that confirms our assumption that they 
are two-way trips. The logic behind that is that someone leaves 
his/her house in the morning and returns later. For example. we 
observe that work-related journeys peak at 08.00 and then at 17.00 
which is a typical schedule for workers. Furthermore. half of the 
journeys happen until 14.00. and the other half is made after that 
time. helping us to understand the two-way trips better. For that 
reason. we aggregate the journeys for the first three categories 
into one category called two-way journeys and those from the 
fourth category to one-way trips. shown in Annex II Table 2 and 
Annex II Figure 2.

The average speed used in this research is presented in Annex II 
Table 3. from which it is derived. that every trip starting in a period 
will travel for less than an hour and therefore. in an ideal situation 
it will be charging during the next period. That happens for all 
the length groups except the longest ones which are the smaller 
by percentage group.


