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ABSTRACT

Small commercial and industrial (CIS) electricity demand is an important category of electric energy consumption. Historically, it has received 
substantially less research attention than residential usage, potentially due to data constraints. This study seeks to partially fill that gap in the energy 
economics literature by employing a fairly unique data set for the El Paso, Texas, USA metropolitan economy that includes private capital stock 
estimates from 1978 through 2017. The empirical model is specified using a recently developed analytical framework based on duality theory and a 
derived input demand function. Parameter estimation is completed using an Autoregressive-distributed lag model and an error correction model. In the 
long-run, CIS customers in El Paso respond only to own-price and the quantity of capital stock per capita. In the short-run, CIS customers adjust their 
electricity usage in response to changes in all variables except for the price of electricity. The most unexpected result from this analysis is a short-run 
income elasticity of −0.32, indicating that CIS electricity usage decreases with economic expansion in El Paso, Texas.

Keywords: Electricity Usage, Metropolitan Economic Growth, Small Commercial and Industrial Customers, Capital Stocks, Duality Theory, 
Derived Input Demand 
JEL Classifications: Q41, R11, M21

1. INTRODUCTION

This study analyzes the usage of electricity as an input in 
production by small commercial and industrial (CIS) customers in 
El Paso, Texas from 1978 to 2017. Explanatory variables include 
an average price of electricity, an average natural gas price, labor, 
per capita personal income, private capital stock per capita, and 
weather variables. Parameter estimation techniques employed 
include an autoregressive-distributed lag model (ARDL) and an 
error correction model (ECM).

It is helpful for regional utilities and regulatory agencies to 
understand how changes in economic conditions affect small 
industrial and commercial electricity consumption. If usage 
increases with income growth, generation capacity may need to 
be expanded (Fullerton et al., 2012; Bildirici, 2013). However, if 

usage decreases with increases in income within this rate class, 
pressures to increase generation capacity will be less severe 
(Fullerton et al., 2016).

El Paso Electric Company (EPEC) is an investor owned regulated, 
public utility that has a service territory of 10,000 square miles, 
stretching from Hatch, New Mexico to Van Horn, Texas, and 
includes two cross-border transmission connections to Ciudad 
Juárez, Mexico (EPEC, 2017a). EPEC energy sources include 
nuclear, natural gas, purchased power, and solar. The electricity 
company owns six generation facilities and has a net dependable 
generating capacity of approximately 2082 MW (EPEC, 2017a).

EPEC is a summer-peaking utility. In 2017, EPEC had 417,900 
retail customers. The average number of small industrial and 
commercial (CIS) customers in 2017 was 41,978. Total CIS usage 
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during this period was approximately 2411 MWH of the total 
7844 MWH (megawatt-hours) retail sales in 2017 (EPEC, 2017a). 
In other words, CIS customers represented 10% of EPEC retail 
accounts in 2017, and CIS usage accounted for about 31% of total 
retail MWH sales for EPEC that year (EPEC, 2017a).

Section two provides a brief overview of related literature. The 
third sections describes the model specification. Section four 
reviews the data employed for this study. Estimation results are 
summarized in the fifth section. The study concludes with result 
implications and suggestions for future research.

2. LITERATURE REVIEW

Most prior research indicates that commercial and industrial 
electricity usage increases as income, output, value-added, 
or economic activity increase (Houthakker, 1951; Baxter and 
Rees, 1968; Hawkins, 1975; Taylor, 1975; Polemis, 2007; 
Madlener et al., 2011; Cebula, 2013; Lim et al., 2014; Bildirici 
and Kayikci, 2016). Long-run elasticities are also larger, in 
absolute magnitude, than short-run elasticities. Estimated long-
run income elasticities range from 0.60 to 1.67, while short-run 
income elasticities range from 0.11 to 0.82 for the commercial and 
industrial rate classes across numerous studies (Mount et al., 1973; 
Murray et al., 1978; Fatai et al., 2003; De Vita et al., 2006; Polemis, 
2007; Amusa et al., 2009; Madlener et al., 2011; Lim et al., 2014; 
Kohler, 2014; Burke and Abayasekara, 2018).

A variety of studies indicate that long-run changes in economic 
activity or personal income are important in explaining variations 
in commercial and industrial electricity demand, short-run income 
changes are statistically insignificant or irrelevant (Zachariadis and 
Pashourtidou, 2007; Amusa et al., 2009). Eltony and Hajeeh (1999) 
model electricity demand in the commercial sector of Kuwait, 
with income proxied by real GDP. Results suggest commercial 
electricity demand does not respond to changes in income in the 
short-run, but usage is more responsive in the long-run, due to 
capital stock adjustments. Some studies find inverse relationships 
between commercial and industrial electricity usage and income. 
Watson et al. (1987) forecast short-run commercial electricity sales 
in Massachusetts and Rhode Island. Regional economic activity is 
proxied by unemployment. Surprisingly, the unemployment rate 
coefficient is −0.31, implying that the commercial sector treats 
electricity as an inferior good in this region.

The price, or own-price, of electricity is also an important 
explanatory variable for commercial and industrial electricity 
consumption. Most analyses report negative own-price 
coefficients, with electricity consumption decreasing as price 
increases in the short-run and in the long-run (Mount et al., 1973; 
Murray et al., 1978; Chung and Aigner, 1981; Fatai et al., 2003; 
De Vita et al., 2006; Polemis, 2007; Madlener et al., 2011; Cebula, 
2013; Lim et al., 2014; Kohler, 2014). Conversely, results of some 
studies suggest that commercial and industrial electricity demands 
are unresponsive to price changes in the long-run and/or the short-
run (Baxter and Rees, 1968; Hawkins, 1975, Amusa et al., 2009). 
Commercial sector electricity consumption has also been found to 
be unresponsive to short-run prices changes, but extremely price 

elastic in the long-run (Eltony and Hajeeh, 1999; Zachariadis and 
Pashourtidou, 2007). Bildirici and Kayikci (2016) find negative 
price elasticities in the short-run, but, surprisingly, positive long-
run elasticities for countries in Eastern Europe.

As with analyses of residential electricity usage, a long-standing 
debate exists over to how to measure the price of electricity. Fisher 
and Kaysen (1962) argue that average prices and marginal prices 
are both adequate because of marginal price heterogeneity among 
electric utilities. Additionally, because of historical marginal price 
data limitations, many research studies often use average price 
variables (Halvorsen, 1978; Shin, 1985). Watson et al. (1987) 
notes that firm demand for electricity changes little in response 
to short-run changes in price, and, therefore, includes an average 
price measure to proxy long-run, trend movements in commercial 
electricity demand. Furthermore, because the CIS customer class 
within EPEC is charged a standard service monthly flat rate of 
$0.11034 per kWh in the summer and $0.10034 per kWh in the 
winter (EPEC, 2017b), there is no distinction between marginal 
and average price (Denton, et al., 2003). Amusa et al. (2009) justify 
the use of average electricity prices because customers react to 
the full costs of electricity rather than components of electricity 
costs. Finally, average price variables have also been found to 
yield reliable results in prior studies of electricity consumption 
in El Paso (Fullerton, 1998; Fullerton et al., 2016).

Another variable that often helps model commercial and industrial 
electricity consumption is the price of substitute fuels. Murray 
et al. (1978) obtains a positive cross-price elasticity coefficient, 
suggesting oil and electricity are substitutes in Virginia. Fatai et al. 
(2003) use an index of substitute prices and find long-run and short-
run cross-price elasticities of 0.35 and 0.25, respectively. However, 
Baxter and Rees (1968) conclude that industrial electricity demand 
is relatively unresponsive to substitute fuel prices. Hawkins (1975) 
also finds that commercial and industrial demand for electricity 
is insensitive to substitute price changes in New South Wales, 
Australia. De Vita et al. (2006) discovers that diesel and kerosene 
substitute prices are insignificant because of the limited ability to 
switch between grid electricity and auto-generators in Namibia.

Weather variables are also widely used in econometric models 
of electricity consumption (Murray et al., 1978; Cebula, 2013). 
Watson et al. (1987) uses cooling-degree days (CDD), heating-
degree days (HDD), and monthly dummy variables to capture 
the effects of weather on electricity sales. One additional 
CDD increases electricity sales to the commercial rate class 
by 26,284 kWh per customer per year, and an additional HDD 
increases sales to the commercial rate class by 7467 kWh per 
customer per year. Fatai et al. (2003) concludes that a 1% HDD 
increase will increase total electricity consumption by 33% in 
New Zealand. Highlighting the potentially important role of 
climate on CIS sales in summer peaking regions, Zachariadis 
and Pashourtidou (2007) finds the commercial sector is more 
responsive to short-term variations caused by weather, than to 
changes in income and price in Cyprus.

Many studies also examine how commercial and industrial usage 
responds to deviations from equilibrium positions (Eltony and 
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Hajeeh, 1999; Kohler, 2014). A model or series reaches equilibrium 
position when it has no further tendency to change. Eltony and 
Hajeeh (1999) report error correction results that indicate very 
rapid commercial electricity demand disequilibria responses 
in Kuwait. Zachariadis and Pashourtidou (2007) observe that 
commercial electricity consumption reverts faster to equilibrium 
than does the residential sector in Cyprus. In contrast, Amusa et al. 
(2009) obtains an error correction coefficient of −0.13, meaning 
that equilibrium re-attainment is relatively slow in South Africa. 
Results from Madlener et al. (2011) indicate that convergence to 
a new long-run equilibrium can require between 3 and 14 years 
depending on the industrial sector in Germany. Bildirici and 
Kayikci (2016) also documents very slow rates of convergence to 
equilibrium in Eastern European countries, with error correction 
terms that range from −0.01 to −0.08.

Numerous studies on commercial and industrial electricity demand 
use ECM within an ARDL framework (Fatai et al., 2003; Amusa 
et al., 2009; Kohler, 2014; Bildirici and Kayikci, 2016). ARDL 
models can correct for endogeneity and are straightforward and 
simple to use. The bounds testing approach to cointegration within 
an ARDL framework can estimate both long-run and short-run 
elasticities, even when the variables are of I(0) and I(1) mixed order 
of integration (Pesaran and Shin, 1999; Dergiades and Tsoulfidis, 
2008; 2011). Table 1 summarizes the elasticity coefficients from 
this branch of the literature. Commercial and industrial long-run 
run income elasticities range from 0.60 to 1.67, while short-run 
income elasticities range from 0.11 to 0.82. Except for the study 
by Bildirici and Kayikçi (2016), long-run price elasticities range 
from −0.21 to −1.36, while short-run price elasticities range from 
−0.04 to −0.63. Not surprisingly, business electricity demand is 
relatively more inelastic in the short-run than in the long-run.

This effort investigates CIS electricity usage in El Paso, Texas. With 
more than 840,000 residents and more than 10,800 commercial 
establishments, El Paso is one of the largest metropolitan 
economies in Texas (Fullerton et al., 2018). A recent empirical 
study examines the responsiveness of residential electricity usage 

in El Paso, Texas to changes in electricity prices, natural gas prices, 
per capita income, housing stocks, HDD, and CDD (Fullerton 
et al., 2016). Results indicate that, over the long-run, El Paso 
households consume electricity as an inferior good and in a manner 
that is price elastic. The formal model specification for CIS usage is 
based upon duality theory using the analytical framework of Allen 
and Fullerton (2018). In that construct, CIS usage is characterized 
by an input-demand function that is derived from a normalized 
quadratic profit function. Parameter estimation for the resulting 
expression is discharged within an ARDL framework.

3. EMPIRICAL MODEL AND DATA

3.1. Empirical Model
Duality theory and a normalized quadratic functional form are 
used to describe CIS demand for electricity as derived demand 
(Allen and Fullerton, 2018). The derived input-demand function 
for electricity shown in equation 1 is used to empirically specify 
and estimate long-run and short-run models of CIS electricity 
consumption using an ECM within an ARDL framework. ARDL 
estimation allows analyzing both short-run and long-run dynamics. 
That is helpful because of shortcomings that may arise within the 
context of static modeling approaches (Fox and Kivanda, 1994). 
This study employs time series data and the decisions of CIS firms 
are likely to be better modeled within dynamic frameworks (Clark 
and Grant, 2000; Boonsaeng and Wohlgenant, 2006). Additionally, 
the data-based approach is able to account for dynamic variations in 
CIS electricity demand over time, as it allows sample information 
to select the underlying data-generating process and capture the 
long-run equilibrium structure (Reziti and Ozanne, 1999).
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Specifying the input-demand for electricity in an ARDL framework 
yields equation 2, where t is a time period subscript and k is the 

Table 1: Summary of elasticity coefficients of the related literature
Author (s), year Long-run equation Short-run equation

Income Price Income Price Error correction term
Mount et al. (1973) 0.86 −1.36 0.11 −0.17 -
Murray et al. (1978), commercial 0.70 −0.47 - −0.04 -
Murray et al. (1978), industrial 1.11 −0.21 0.82 −0.29 -
Eltony and Hajeeh (1999) 0.81 −0.98 0.34 −0.33 −1.10
Fatai et al. (2003) 0.70 −0.43 0.24 −0.18 -
De Vita et al. (2006) 0.59 −0.30 - - -
Zachariadis and Pashourtidou (2007) 1.12 −0.30 - - −0.23
Polemis (2007) 0.85 −0.85 0.61 −0.35 −0.24
Amusa et al. (2009) 1.67 - - - −0.13
Madlener et al. (2011), industrial averages 1.14 −0.37 0.58 −0.44 −0.45
Kohler (2014) 0.63 −0.94 0.42 −0.63 −0.67
Lim et al. (2014) 1.09 −1.00 0.86 −0.42 -
Bildirici and Kayikci (2016), averages 0.71 1.59 0.37 −0.17 −0.07
Burke and Abayasekara (2018), commercial between 
panel IV estimates

0.59 −0.56 0.14 (total) −0.09 (total) -

Burke and Abayasekara (2018), industrial between 
panel IV estimates

- −1.34 -

Coefficient results are for commercial, industrial, or aggregate usage. Empty cells indicate the coefficient was insignificant or not reported
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number of lagged periods. Because the data are logarithmically 
transformed, the parameters represent elasticities of demand. Ct is CIS 
input demand for electricity, while PQt is normalized output price and 
PEt, PGt, and PLt are normalized input-prices of electricity, natural 
gas, and labor, respectively. Kt is the fixed quantity of capital. The 
parameters, CDDt and HDDt, are CDD and HDD days and are used 
to measure how weather variations affect CIS electricity consumption. 
The random error term is denoted ut. Once the long-run specification 
is developed, the next step is to ensure that no series within equation 
2 is integrated of order 2 or higher. Series that are integrated of order 
2 or higher require at least second-differencing to reach stationarity 
and are not suitable for ARDL estimation. An augmented dickey-fuller 
(ADF) unit root test is applied to the first difference of each series to 
examine if that is the case (Asteriou and Hall, 2015).

InCt=�α0+α1InCt−k+α2InPEt−k+α3InPQt−k+α4InPGt−k+α5InPLt−k 
+α6InKt−k+α7InCDDt−k+α8InHDDt−k+ut (2)

Next, the long-run cointegrating equation is specified and 
estimated. Specifying the input-demand function for electricity as 
a long-run cointegrating equation results is shown in equation 3, 
where Δ is the difference operator and vt is a random error term. 
The coefficients β1 through β8 are short-run parameters, while the 
coefficients β9 through β16 represent long-run parameters.

∆InCt=�β0+β1∆InCt−k+β2∆InPEt−k+β3∆InPQt−k+β4∆InPGt−k 
+β5∆InPLt−k+β6∆InKt−k+β7∆InCDDt−k+β8∆InHDDt−k 
+β9∆InCt−1+β10∆InPEt−1+β11∆InPQt−1+β12∆InPGt−1+ 
β13∆InPLt−1+β14∆InKt−1+β15∆InCDDt−1+β16∆InHDDt−1+vt

 (3)
Once equation 3 has been specified and estimated, a bounds test 
for cointegration is conducted to determine whether the variables 
exhibit a meaningful, long-run relationship (Pesaran and Shin, 
1999; Nkoro and Uko, 2016). The advantages of the bound tests are 
two-fold. First, the bound test can be used whether the explanatory 
variables are I(0) or I(1). Second, the test can be used in cases 
involving small sample sizes (Pesaran et al., 2001).

The bounds test is an F-test of the null hypothesis, H0=β9=β10=β11= 
β12=β13=β14=β15=β16=0 against the alternative that H0 is false 
(Pesaran et al., 2001). The computed F-statistic is then compared 
against two critical values for the opposing cases that all variables 
are I(0) or all variables are I(1). If the F-statistic falls between the 
upper and lower bounds, the test is deemed inconclusive. If the 
F-statistic is below the lower critical value, the null hypothesis 
cannot be rejected, therefore, cointegration does not exist. In 
contrast, if the F-statistic is above the upper critical value, the 
null hypothesis is rejected and cointegration does exist. Narayan 
(2005) offers critical values for cases of finite sample sizes ranging 
from n = 30 to n = 80 in increments of 5. Once the bounds test 
confirms the existence of a cointegrating relationship, the next step 
is to select the optimal number of lags for each variable, using the 
Schwarz Information Criterion (Asteriou and Hall, 2015).

After estimating the long-run cointegrating equation, the short-run 
ECM is specified and estimated. The short-run ECM derived 
from the ARDL model is shown in equation 4. The short-run 
ECM examines short-run departures from equilibrium. The 

dependent variable is the first-differenced, natural logarithm of 
input quantity of electricity, denoted ∆lnCt. The first-differenced, 
natural logarithm of the normalized output price is ∆lnPQt−k. 
The first-differenced, natural logarithms of the normalized input 
prices are ∆lnPEt−k., ∆lnPGt−k and ∆lnPLt−k. The first-differenced, 
natural logarithm of the fixed quantity of capital is ∆lnKt−k. 
The first-differenced, natural logarithms of CDD and HDD are 
∆lnCDDt−k and ∆lnHDDt−k, respectively.

The error correction term, ut−1, is the prior period disturbance 
term taken from the cointegrating equation. The sign of the 
coefficient of the error correction term is expected to lie between 
−1 and 0, as deviations from equilibrium will be offset by 
adjustments in the subsequent period (Fullerton et al., 2012; 
Asteriou and Hall, 2015). The magnitude of c9 represents the 
speed of adjustment for re-attaining equilibrium. The reciprocal 
of c9 represents the total amount of time required for complete 
error dissipation. The ARDL and ECM models are estimated 
using least squares analysis.

∆InCt= c0+c1∆InCt−k+c2∆InPEt−k+c3∆InPQt−k+c4∆InPGt−k 
+c5∆InPLt−k+c6∆InKt−k+c7∆InCDDt−k+c8∆InHDDt−k 
+c9ut−1+wt (4)

Finally, the parameter stability in the ARDL model is examined 
using the cumulative sum (CUSUM) and the cumulative sum of 
squares (CUSUMSQ) tests (Brown et al., 1975; Garbade, 1975). 
These tests identify structural breakpoints within time series data. 
The null hypothesis of parameter constancy is H0: β1=β2=

…=β16= 
β and 2 2 2 2

1 2 16  σ σ σ σ= =…= = , where β is a vector of coefficients 
and� σ2 is the variance of the disturbance term across different 
sub-samples. Assuming the null is not rejected, bit is obtained 
recursively and is the least-squares estimate of β it , such that 
b X X X Cit it it it t−

−
= ( )1

1’ ’ where Ct is the dependent variable and Xi t

is a vector of independent variables. The recursive residual is 
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(Brown et al., 1975). If the computed test statistics remain within 
the critical-value boundaries, the null hypothesis cannot be 
rejected, and it is concluded that the data series are stable across 
time (Garbade, 1975).

3.2. Data
The dependent variable in this paper is CIS electricity consumption 
in kilowatt-hours per CIS customer billed by EPEC. The own-price 
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variable is average revenue per kilowatt-hour. Data for electricity 
consumption, the number of customers, and revenue are from El 
Paso Electric Company filings (EPEC, 2017c) with the Federal 
Energy Regulatory Commission. Annual frequency data from 
1978 to 2017 are employed for this study.

El Paso per capita personal income is from the University of 
Texas at El Paso Border Region Modeling Project (Fullerton 
et al., 2018). The price of natural gas per CFF sold to Texas 
commercial consumers is used to estimate potential substitution 
or complementary effects between natural gas and electricity. This 
series was obtained from the United States Energy Information 
Administration (EIA, 2017). The price of labor is measured by El 
Paso wages and salaries paid per worker as reported by the Border 
Region Modeling Project (Fullerton et al., 2018). The quantity 
of capital is defined as the stock of El Paso private capital and is 
from the El Paso Central Appraisal District (EPCAD, 2017). CDD 
and HDD are defined as the number of degrees that the average 
temperature is either above or below 65° Fahrenheit during a 24-h 
period. Both series are compiled from the website of the National 
Oceanic and Atmospheric Administration Northeast Regional 
Climate Center (NOAA, 2017).

El Paso per capita personal income is deflated to real 2009 dollars 
using the personal consumption expenditures implicit price 
deflator. All other price and salary data are deflated using the U.S. 
GDP implicit price deflator (DEF) and are in real 2009 dollars. 
Both deflators are from the U.S. Bureau of Economic Analysis 
(BEA, 2017). The names, definitions, and units of measurement 
of all variables in the sample are listed in Table 2. Table 3 reports 
summary statistics for each data series.

4. EMPIRICAL RESULTS

Prior to parameter estimation, unit root tests are performed to 
ensure that no series is greater than I(2). The unit root test using 
the ADF test statistic indicates that all the variables included in 
the model are either I(0) or I(1) as shown in Table 4. These results 
indicate that the data are appropriate for analysis within an ARDL 
framework.

Degree of freedom constraints impose a maximum of four lags of the 
dependent variable and three lags of each explanatory variable in the 
ARDL equation specification. The model for per customer electricity 
consumption selected using the Schwarz Information Criterion is 
ARDL(3, 1, 3, 3, 3, 1, 2, 2). Parameter estimates and diagnostic 
statistics for the resulting ARDL model are shown in Table 5.

A Breusch-Godfrey serial correlation LM test of the null 
hypothesis that the residuals are not autocorrelated indicates 
that serial correlation is not problematic at 2 lags. The Breusch-
Pagan-Godfrey Heteroscedasticity Test for the null hypothesis 
that the residuals are homoscedastic also indicates that the error 
term variance is constant in this model. The results of both tests 
are reported in Tables 6 and 7.

The computed F-statistic for the null hypothesis H0: β9=β10=β11=β12
=β13=β14=β15=β16=0 is 6.93 as shown in Table 8. This is higher than 

Table 2: Variables
Variable Definition
C CIS electricity consumption in kilowatt-hours per CIS 

customer billed by EPEC, obtained from EPEC Federal 
Energy Regulatory Co1mmission Form No. 1., annual 
report of major electric utilities, licensees, and others

CUST Average number of CIS customers billed by EPEC, 
obtained from EPEC Federal Energy Regulatory 
Commission Form No. 1., annual report of major 
electric utilities, licensees, and others

PE Real EPEC average price per kilowatt-hour of 
electricity in U.S. cents, base period 2009=1, obtained 
from EPEC Federal Energy Regulatory Commission 
Form No. 1., annual report of major electric utilities, 
licensees, and others

PQ Real El Paso Personal Income per capita in U.S. 
dollars, base period 2009=1, obtained from the UTEP 
border region modeling project

PG Real price per CCF of natural gas sold to Texas 
commercial consumers in U.S. dollars, base period 
2009=1, obtained from the U.S. energy information 
administration

PL Real El Paso wages and salaries paid per worker in 
U.S. dollars, base period 2009=1, obtained from the 
UTEP border region modeling project

K Quantity of real El Paso private capital stock per capita 
in U.S. dollars, base period 2009=1, obtained from El 
Paso central appraisal district

CDD El Paso cooling degree days, obtained from national 
oceanic and atmospheric administration northeast 
regional climate center

HDD El Paso heating degree days, obtained from national 
oceanic and atmospheric administration northeast 
regional climate center

DEF U.S. gross domestic product implicit price deflator, 
base period 2009=1, obtained from U.S. bureau of 
Economic analysis

PCE Personal consumption expenditures implicit price 
deflator, base period 2009=1, obtained from U.S. 
bureau of economic analysis

POP El Paso population, obtained from the UTEP border 
region modeling project

Table 3: Data summary statistics
Variable name C PE PQ PG
Mean 65,715 12.09 22,117 7.32
Max. 73,211 16.22 31,337 11.38
Min. 57,428 9.29 15,684 5.41
Variance 21,953,910 2.79 20,496,672 2.70
Standard 
deviation

4,686 1.67 4,527 1.64

Skewness 0.13 0.75 0.33 1.03
Kurtosis 1.74 3.51 1.90 3.16
Coefficient of 
variation

0.07 0.14 0.20 0.22

Variable name PL K CDD HDD
Mean 25,474 6,697 2,463 2,366
Max. 28,354 10,876 3,141 3,012
Min. 23,000 4,738 1,816 1,522
Variance 3,285,319 3,185,640 105,195 99,460
Standard 
deviation

1813 1785 324 315

Skewness 0.16 0.93 −0.12 −0.18
Kurtosis 1.55 2.56 2.53 3.11
Coefficient of 
variation

0.07 0.27 0.13 0.13
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the 5% critical value for the upper bound computed by Narayan 
(2005). The bounds test results in Table 8 indicate that the variables 
included in the model are cointegrated. Further diagnostic checks, 
the CUSUM and CUSUMSQ tests of parameter stability, are also 
carried out. Figures 1 and 2 confirm that the model parameters 
are relatively stable over time and the computed statistics do not 
surpass the 5% critical bounds.

Estimation results for the long-run Cointegrating and the long-
run level models are shown in Tables 9 and 10, respectively. 
The majority of the estimates are not statistically significant 
in Table 10, indicating long-run independence. Only the long-
run own-price and capital stock coefficient estimates from the 
cointegrating equation are statistically significant at the 5% 
level.

The own-price elasticity coefficient is negative as hypothesized sign 
and falls within the inelastic range. That suggests that changes in 
the average price of electricity have, historically, induced relatively 
small effects on the quantity of the electricity demanded by El 
Paso CIS customers over the long-run. Other things equal, a 1% 
increase in the real average price of electricity is associated with 
a 0.64% decrease in usage per CIS customer over the long-run, a 
value that is almost half as small as what has been documented 

Table 4: Unit root test results
Series Augmented dickey-fuller test statistic Prob.*
D (LC) −3.094213 0.036
D (LPE) −4.463706 0.001
D (LPQ) −9.145892 0.000
D (LPG) −6.498174 0.000
D (LPL) −5.776990 0.000
D (LK) −6.004136 0.000
D (LCDD) −9.207738 0.000
D (LHDD) −8.566317 0.000
*MacKinnon (1996) one-sided P values

Figure 1: Cumulative sum results for electricity consumption per 
customer

Table 5: ARDL model
Variable Coefficient Std. Error t-Statistic Prob.*
LC(−1) 0.281660 0.221141 1.273667 0.2290
LC(−2) 0.101338 0.222043 0.456390 0.6570
LC(−3) 0.224660 0.177347 1.266781 0.2314
LPE −0.030481 0.058230 −0.523460 0.6110
LPE(−1) −0.219490 0.062730 −3.498950 0.0050
LPQ −0.322989 0.159628 −2.023383 0.0680
LPQ(−1) 0.304113 0.147006 2.068720 0.0629
LPQ(−2) −0.245984 0.132249 −1.860005 0.0898
LPQ(−3) 0.360593 0.122189 2.951107 0.0132
LPG −0.118590 0.033925 −3.495594 0.0050
LPG(−1) 0.064749 0.023971 2.701195 0.0206
LPG(−2) 0.003730 0.017858 0.208872 0.8384
LPG(−3) 0.048792 0.018975 2.571437 0.0260
LPL 0.372276 0.226078 1.646669 0.1279
LPL(−1) −0.220639 0.242221 −0.910900 0.3819
LPL(−2) 0.743197 0.248157 2.994872 0.0122
LPL(−3) −0.511704 0.221569 −2.309453 0.0413
LK −0.315899 0.106071 −2.978177 0.0126
LK(−1) −0.162131 0.123295 −1.314984 0.2153
LCDD 0.107399 0.024060 4.463791 0.0010
LCDD(−1) −0.006755 0.021032 −0.321185 0.7541
LCDD(−2) −0.054652 0.024085 −2.269178 0.0444
LHDD −0.025861 0.026016 −0.994062 0.3416
LHDD(−1) −0.017290 0.022395 −0.772019 0.4564
LHDD(−2) −0.066661 0.024897 −2.677418 0.0215
c 6.163650 4.571040 1.348413 0.2046
R-squared 0.996395 Mean dependent var 11.09666
Adjusted R-squared 0.988202 S.D. dependent var 0.070582
S.E. of regression 0.007666 Akaike info criterion −6.711536
Sum squared resid 0.000647 Schwarz criterion −5.579539
Log likelihood 150.1634 Hannan-Quinn criter. −6.312454
F-statistic 121.6173 Durbin-Watson stat 2.750275
Prob (F-statistic) 0.000000
*P-values and any subsequent tests do not account for model selection
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for residential customers in this metropolitan economy (Fullerton 
et al., 2016). Other studies have also obtained long-run own-price 
elasticities for the commercial customer class that are <1.0 in 
absolute value (Fatai et al. 2003; De Vita et al., 2006; Zachariadis 
and Pashourtidou, 2007; Polemis, 2007; Ros, 2017).

The long-run coefficients for LPG, LPQ, and LPL have large 
standard errors and are statistically insignificant in Table 10. The 
statistical insignificance of the price of natural gas coefficient, 
LPG, is not completely surprising, as natural gas is a relatively 
costly substitute for electricity in the long-run (Bernstein and 
Griffin, 2006). While there have been some recent substitutions 
of natural gas for electricity in heating processes, heating 
requirements are not particularly demanding in the desert climate 
of El Paso, Texas. By comparison, Burke and Abayasekara (2018) 
also finds that the price of natural gas does not help explain 
variations in commercial electricity consumption in the long-run 
in the United States at the state level.

The insignificance of the economic activity parameter estimate 
implies that CIS electricity demand does not respond in a 

statistically reliable manner to economic expansion or contraction 
in El Paso. This is possibly a consequence of energy-efficiency 
gains in the production activities of final goods and services in both 
small commerce and industry. This result is out of step with strong 
relationships between output and non-residential usage in many 
other studies (Houthakker, 1951; Baxter and Rees, 1968; Hawkins, 
1975; Taylor, 1975; Polemis, 2007; Madlener et al., 2011; Cebula, 
2013; Lim et al., 2014; Bildirici and Kayikci, 2016; Burke and 
Abayasekara, 2018). For El Paso, the relationship appears positive, 
but less reliable than in other regions.

The large standard error for the price of labor coefficient suggests 
that it may be more feasible to use capital in place of labor over 
the course of the long-run by CIS firms in El Paso. That potentially 
results from the status of labor as the single largest cost of business 
for most firms in this sector. Barnett et al. (1998) found that three 
of the four industries included in an analysis of electricity usage in 
Alabama from 1979 to 1982 are biased away from labor. That study 
also indicates that improvements in technology lead to greater 
capital shares at the expense of labor in production processes. 
Greater reliance on automation in both industry and commerce 
has affected global demand for labor throughout history (Lucking-
Reiley and Spulber, 2001).

The capital stock coefficient estimate in Table 10 indicates that 
a 1% increase in the quantity of real capital stock per capita is 
associated with a 1.22% decline in electricity consumption per CIS 
customer in El Paso over the long-run. That is not unexpected, 
as improved building designs (Ruparathna et al., 2016) and 
more efficient appliances (Garg et al., 2017) allow for reduced 
electricity usage in commercial sectors throughout the world. 
New investments by CIS businesses in El Paso undoubtedly take 
advantage of superior construction and appliance advances over 
the course of time.

Neither of the long-run CDD and HDD coefficients in Table 10 
satisfy the 5% significance criterion. In the case of the CDD 
parameter, the relatively low t-statistic most likely indicates that 
the positive relationship between CIS electricity consumption 
and CDD is not always numerically reliable. That is somewhat 
surprising because hot weather is generally regarded as an 
important driver of electricity consumption in this region. The sign 
of the HDD coefficient implies that colder weather is associated 
with reduced electricity usage by CIS firms. Numerous factors may 
contribute to this outcome. Examples include weather patterns, 
technology, climate change, and latitude (Crowley and Joutz, 
2005; Hor et al., 2005; Polemis, 2007; EIA, 2003; 2012; EPA, 
2015). This result in Table 10 is not unique to El Paso. Burke and 
Abayasekara (2018) also document a long-run, inverse relationship 
between HDD and state-level commercial electricity demand 
across the United States.

The prior period error term from the long-run cointegrating model 
in Table 9 is taken and then added as a parameter to the ECM 
equation. The estimation results for the short-run ECM regression 
are reported in Table 11. As expected, the short-run elasticities are 
smaller in magnitude than the corresponding long-run elasticities. 
Those outcomes confirm patterns documented elsewhere that the 

Figure 2: Cumulative sum of squares results for electricity 
consumption per customer

Table 6: Serial correlation test results
Breusch-Godfrey serial correlation LM test
F-statistic 2.487594 Prob. F (2,9) 0.1380

Table 7: Heteroskedasticity test results
Heteroskedasticity test: Breusch-Pagan-Godfrey
F-statistic 0.853788 Prob. F (25,11) 0.6459

Table 8: ARDL bounds test
Test statistic Value k
F-statistic 6.925392 7

Critical value bounds
Significance I (0) Bound I (1) Bound
10% 2.03 3.13
5% 2.32 3.50
2.5% 2.60 3.84
1% 2.96 4.26
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impacts of the explanatory variables on CIS electricity usage are 
more dramatic over the long-run (Burke and Abayasekara, 2018). 
The parameter coefficients in the ECM results that are statistically 
significant at the 5% level include lags of the dependent variable, 
personal income per capita, the price of natural gas, the price of 
labor, per capita capital stock, and the CDD and HDD weather 
variables.

The insignificant own-price elasticity coefficient in Table 11 
indicates that CIS customers do not respond very reliably to short-
run variations in the price of electricity. Similarly, Zachariadis and 
Pashourtidou (2007) and Amusa et al. (2009) also report price 
effects in the short-run are statistically indistinguishable from 
zero. A delayed response to electricity price changes is logical. CIS 
production activities are generally difficult to alter in the short-run 
because of capital requirements and it is easier to adjust factors 
over the long-run (Burke and Abayasekara, 2018).

The short-run cross-price elasticities for natural gas are 
negative in Table 11. That differs from earlier studies such as 
Murray et al. (1978) or Fatai et al. (2003), which obtain positive 
cross-price elasticity coefficients. This result indicates that El Paso 
CIS customers treat electricity and natural gas as complements 
in the short-run. This is reasonable, as electricity and natural gas 
are often used as joint inputs (Burke and Abayasekara, 2018). 
The negative natural gas price coefficient also stands in contrast 

to the findings of Fullerton et al. (2016), which discovers that 
residential customers in El Paso treat natural gas and electricity 
as substitutes. Holding all else constant, an increase in the price 
of natural gas by 1% will decrease the use of electricity per CIS 
customer by 0.22% within 3 years.

The statistically significant contemporaneous and second-lag 
coefficients of the price of labor are positive, suggesting that 
labor and electricity are substitutes in the short-run. As wages per 
worker increase by 1%, electricity demanded per CIS customer 
increases by 0.65% after 3 years. Hesse and Tarkka (1986) also 
reports evidence that labor and electricity are substitutes in the 
manufacturing industry in nine European countries from 1960 
to 1980.

The capital stock per capita parameter estimate is negative in the 
short-run. El Paso CIS electricity consumption decreases by 0.32% 

Table 10: Long‑run coefficients
Variable Coefficient Std. Error t-Statistic Prob.
LPE −0.637127 0.198712 −3.206284 0.0084
LPQ 0.244006 0.436804 0.558617 0.5876
LPG −0.003359 0.064380 −0.052177 0.9593
LPL 0.976521 0.839757 1.162862 0.2695
LK −1.218403 0.097033 −12.556535 0.0000
LCDD 0.117223 0.099079 1.183124 0.2617
LHDD −0.279888 0.140540 −1.991518 0.0718

Table 9: Long-run cointegrating model
Variable Coefficient Std. Error t-Statistic Prob.
D (LC(−1)) −0.325998 0.183669 −1.774928 0.1036
D (LC(−2)) −0.224660 0.177347 −1.266781 0.2314
D (LPE) −0.030481 0.058230 −0.523460 0.6110
D (LPQ) −0.322989 0.159628 −2.023383 0.0680
D (LPQ(−1)) −0.114609 0.154359 −0.742482 0.4734
D (LPQ(−2)) −0.360593 0.122189 −2.951107 0.0132
D (LPG) −0.118590 0.033925 −3.495594 0.0050
D (LPG(−1)) −0.052522 0.022056 −2.381348 0.0364
D (LPG(−2)) −0.048792 0.018975 −2.571437 0.0260
D (LPL) 0.372276 0.226078 1.646669 0.1279
D (LPL(−1)) −0.231493 0.248018 −0.933370 0.3707
D (LPL(−2)) 0.511704 0.221569 2.309453 0.0413
D (LK) −0.315899 0.106071 −2.978177 0.0126
D (LCDD) 0.107399 0.024060 4.463791 0.0010
D (LCDD(−1)) 0.054652 0.024085 2.269178 0.0444
D (LHDD) −0.025861 0.026016 −0.994062 0.3416
D (LHDD(−1)) 0.066661 0.024897 2.677418 0.0215
LPE(−1) −0.249972 0.079011 −3.163758 0.0090
LPQ(−1) 0.095734 0.191146 0.500841 0.6264
LPG(−1) −0.001318 0.025280 −0.052134 0.9594
LPL(−1) 0.383130 0.302687 1.265764 0.2317
LK(−1) −0.478030 0.149020 −3.207835 0.0083
LCDD(−1) 0.045992 0.038691 1.188676 0.2596
LHDD(−1) −0.109812 0.051333 −2.139197 0.0557
LC(−1) −0.392341 0.114512 −3.426201 0.0057
c 6.163650 4.571040 1.348413 0.2046
R-squared 0.932563 Mean dependent var −0.001940
Adjusted R-squared 0.779296 S.D. dependent var 0.016319
S.E. of regression 0.007666 Akaike info criterion −6.711536
Sum squared resid 0.000647 Schwarz criterion −5.579539
Log likelihood 150.1634 Hannan-Quinn criter. −6.312454
F-statistic 6.084579 Durbin-Watson stat 2.750275
Prob (F-statistic) 0.001673
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in response to a 1% increase in the capital stock per capita. That 
implies that capital stock upgrades lead to short-run efficiency 
gains by commercial electricity users in El Paso. In contrast, 
Adebola and Opeyemi (2011) does not find a causal relationship 
between capital and electricity, while Hesse and Tarkka (1986) 
observes a positive relationship between capital and electricity in 
nine European countries from 1973 to 1980.

The signs of the CDD and HDD coefficients are positive as 
hypothesized. Subsequent to a 1% increase in CDD, CIS electricity 
demand per customer grows by 0.16% within 2 years of the 
temperature increment. A 1% increase in HDD leads CIS electricity 
usage to grow by 0.04% within 2 years. Watson et al. (1987), 
Fatai et al. (2003), and Zachariadis and Pashourtidou (2007) 
also document increased electricity consumption during periods 
of hotter and colder weather. The statistical significance of both 
sets of parameters underscores the reliability of these reactions 
to climate variations.

Among the most interesting results in Table 11, the signs of the 
personal income per capita coefficients are negative. An increase 
in El Paso real personal income per capita by 1% leads to a 
0.80% decline in CIS electricity within a 3-year period. That runs 
counter to the service sector electricity demand outcomes obtained 
for Korea by Lim et al. (2014). CIS electricity consumption 
per customer has been declining since 2000, a large portion of 
the sample period. That may be due to more energy-efficient 
appliances and machinery becoming available to CIS businesses 
in El Paso subsequent to the turn of the century.

As hypothesized, the sign for the error correction parameter is 
less than zero. The statistically significant error term parameter 
in the Table 11 ECM equation indicates that approximately 39% 
of any deviation from equilibrium is corrected within 1 year. 
The magnitude of the error correction term is within the range of 
error correction terms reported by various other studies (Eltony 
and Hajeeh, 1999; Zachariadis and Pashourtidou, 2007; Amusa 

et al.; 2009; Kohler; 2014). Approximately 2.5 years are required 
for complete long-run equilibrium re-attainment.

5. CONCLUSION

An ARDL approach is used to analyze CIS electricity consumption 
in El Paso, Texas. The theoretical model employs duality theory 
and derived input demand. Sample data collected for El Paso 
include fairly comprehensive information that allow specifying a 
reasonable facsimile of the analytical model. Among other things, 
ARDL modeling also allows for different optimal lag lengths. 
It also has reliable finite sample properties. Instead of a two-
stage regression approach, the ARDL bounds testing technique 
employed specifies the equation in a single, reduced form, allowing 
for simultaneous estimation of short-run and long-run effects. 
The ARDL approach has also been found to produce smaller 
forecasting errors and superior forecasting performances over 
other dynamic model constructs.

Results obtained indicate that CIS electricity demand reacts to 
changes in own-price and the quantity of capital stock per capita 
in the long-run in El Paso. An inverse, long-run relationship 
between CIS electricity usage and the amount of capital stock is 
documented, potentially due to the emergence of more energy-
efficient machinery. In the short-run, gas and electricity are used 
as complements, while labor and electricity are substitutes in the 
short-run. Short-run results further indicate that CIS customers 
in El Paso are not sensitive to own-price changes. The inverse 
relationship between the capital stock and electricity consumption 
holds in the short-run as well. Variations in CDD and HDD are 
found to affect short-run changes in electricity consumption within 
the CIS customer class. The error correction term indicates that 
CIS customers adjust to deviations from equilibrium at a somewhat 
moderate rate, with 39% of the correction occurring within 1 year 
and 100% of the correction occurring after 2.5 years.

The underlying analytical framework employed here seems to a 
viable means for analyzing CIS electricity usage. One advantage 
of duality theory is the ability to derive an input-demand equation 
which is consistent with profit-maximizing and/or cost-minimizing 
behavior. The dual approach includes all the elements of simpler 
models previously utilized for the analysis of commercial and 
industrial electricity usage. It also includes inputs such as labor and 
capital in the input-demand equation. The statistical significance 
of the long-run capital coefficient and short-run labor and capital 
coefficients underscores the importance of including these inputs 
in an equation modeling CIS electricity consumption. A less robust 
approach might neglect this aspect of non-residential demand and 
exclude important explanatory variables. The approach utilized 
seems to merit additional testing using data from other electric 
utilities and metropolitan economies.
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