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ABSTRACT

This paper investigates if energy block chain based crypto currencies can help diversify equity portfolios consisting primarily of leading energy 
companies of the US S&P Composite 1500 energy index. Key contributions are in terms of assessing the importance of energy cryptos as alternative 
investments in portfolio management, and whether different volatility models such as autoregressive moving average – Generalized Autoregressive 
Heteroskedasticity (ARMA-GARCH) and machine learning (ML) can help investors make better investment decisions. The methodology utilizes the 
traditional Markowitz mean-variance framework to obtain optimized portfolio combinations. Volatility measures, derived from the Cornish-Fisher 
adjusted variance, ARMA family classes and ML models are used to compare efficient portfolios. The study also analyses the effect of adding cryptos 
to equity portfolios with non-positive excess returns. Different models are assessed using the Sharpe performance measure. Daily data is used, 
spanning from November 21, 2017 to January 31, 2019. Findings suggest that energy based cryptos do not have a significant impact on energy equity 
portfolios, despite the use of different risk measures. This is attributable to the relatively poor performance of energy cryptos which did not contribute 
in improving the excess return per unit of risk of efficient portfolios based on the leading US energy stocks.

Keywords: Equity Portfolios, Energy Cryptos, Performance Evaluation, Machine Learning, Volatility Measure 
JEL Classifications: Q40, G11, G12

1. INTRODUCTION

Cryptocurrency portfolio management is already a reality with 
names like Blockfolio and Delta, allowing investors or traders 
to manage their portfolios of cryptocurrencies and altcoins 
using different tools like advanced charting, order books, and 
portfolio tracking. Despite the finance and banking sector being 
the leader when it comes to the amount invested in block chain 
technologies, other industries such as energy, healthcare, retailing, 
and manufacturing are unreservedly starting to adopt similar 
technological innovations. As of last year, the global energy sector 
was worth over two trillion US dollars (Cryptoverze, 2018) with 
the International Data Corporation predicting strong, double 
digit growth in the energy sector during 2016-2021. As reported 
by IBM (2017), the prevalent benefits of adopting block chain 

technologies are associated with risk, time and cost savings. For 
example, countries such as Moldova, which imports more than 
70% of its energy, will benefit from solar energy, through a crypto 
currency called solar coin, potentially reducing the reliance on 
imported fossil fuels such as natural gas and oil from Russia, 
with consumers also benefiting from lower prices (Tabary, 2018). 
Using smart contracts, nearly 20% of German firms have adopted 
block chain technologies in the energy sector (Witsch and Coester, 
2018). Various startups in the US energy sector have raised nearly 
$325 million in 2017 to implement block chain to energy related 
projects (Lacey, 2017). These projects range from facilitating peer 
to peer dealings without the necessity of a retailed based energy 
provider or central utility, to tracking low carbon impact energy 
production. While block chain aims to introduce decentralized 
energy trading in various energy sectors like the electric power 
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sector, such sectors are commonly regulated in many countries. 
Nevertheless, policy makers have started to work on policy 
guidelines to gradually adapt to block chain technologies.

Central to the heart of this study, it is vital to understand how the 
energy industry is developing and the role block chain is or would 
eventually play. EIA (2018) forecasts the electric power sector 
to consume more energy than any other sectors, with the growth 
in renewable energy consumption being the firmest among other 
fuels. Natural gas consumption, is however, also expected to rise 
substantially due to development in the industrial sector, primarily 
for industrial heat and power, and liquefied natural gas produce. 
Even with natural gas production expected to account for nearly 
forty percent of US energy produce by 2050, wind and solar 
power generation leads the growth compared to other renewables. 
Gradually, traditional centralized power plants run by fossil fuels 
are facing competition from distributed power generation like 
solar panels and micro turbines. With numerous climate conscious 
policymakers which support clean energies, complemented with 
falling wind and solar power costs, renewable energy sources are 
expected to provide over ten per cent of global electricity supply 
over 2017-2022 (EIA, 2018). Despite the majority of renewable 
energies being deployable on large scale, solar energy has already 
been adopted on a smaller scale, where customers are managing 
their energy consumption through distributed energy resources.

During 2016, firms have globally incurred expenses of nearly 
fifty billion US dollars to promote existing digital electric power 
systems. Many established utilities in the electricity sector like 
E.ON in Germany have already embraced the potential advantages 
of block chain (Burger et al., 2016). In fact, utility related projects 
rank second in terms of block chain ventures (Livingston et al., 
2018). Enerchain, a utility based project using block chain, is 
expected to sell electricity and gas to forty-five companies in 
Europe by the close of 2018 (Witsch and Coester, 2018). With a 
few of these firms being either involved in the distribution grids 
operations or wholesale production, the effect of these block chain 
related projects can be significant in the electricity market. For 
example, 4New, an energy producer, has been the first company to 
use waste to generate electricity to implement a block chain system 
(Keane, 2018). Other markets including oil are also involved 
with block chain related projects such as Intel Hyper ledger and 
Toyota, and the Energy Web Foundation partnership with Shell 
(Gratzke et al., 2017). US retail giants like walmart have lately 
been conferred a patent to develop an electric grid which will be 
powered by various crypto currencies (Alexandre, 2018). The 
block chained energy projects, being tokenized through energy 
crypto currencies, connect the customer or investor to renewable 
energy markets, where the latter gradually disconnect dependence 
on fossil fuel markets. While there is big potential for risk, time 
and cost savings from these groundbreaking systems, there are 
presently some issues with crypto currencies. For instance, in 
Canada, crypto miners have been consuming so much energy with 
their mining processes that the government had to intrude and stop 
further requests of power from these entities (Meyer, 2018). To 
avoid potential rate increases of energy supply, in a decentralized 
environment where the price would be determined by the forces of 
demand and supply, governments like the UK and Australia have 

already contracted to develop initial guidelines for energy related 
block chains applications (Metalitsa, 2018).

Based on the above, with fossil fuel becoming relatively less 
consumed as we move towards a cheaper, cleaner and decentralized 
block chain technology, it is vital to evaluate if energy cryptos 
have a major role to play in portfolios which are aligned with 
top energy companies’ activities. Alternatively stated, this study 
looks at whether the energy based block chain crypto can affect 
the leading US energy stocks based equity portfolios. With the 
cryptocurrency market, generally, exhibiting low correlations with 
other asset classes such as energy commodities (Author, 2018) and 
equities (Chen et al., 2016), it is interesting to pursue the prime 
question whether energy cryptos can help diversify away the risk 
of an equity portfolio, consisting principally of leading US energy 
stocks. This first question is yet to be examined.

A second, yet important question, which also arises is how, 
using different measures of risk from different models such as 
Cornish-Fisher (CF) expansion, autoregressive moving average – 
generalized autoregressive heteroskedasticity (ARMA-GARCH) 
and machine learning (ML), can help the investor or trader to 
make better informed decisions in how to allocate funds among 
the risky assets coming from different asset classes, and also 
how well the portfolio performed using the Sharpe performance 
measure. Four major energy cryptos are included into a portfolio 
which consists of the top ten US energy stocks. The analysis is 
initially conducted using the Markowitz mean-variance framework 
to determine the efficient portfolios, including the optimal risky 
portfolio combination. With other risk values coming from other 
models such as CF, ARIMA-GARCH, and ML, the efficient 
portfolios are compared using Sharpe performance measure, 
which is traditionally used to capture total risk. Due to the negative 
returns of cryptos, the study also analyzes the effect of adding 
energy cryptos into equity portfolios with non-positive excess 
returns. The rest of the paper provides some literature review, data, 
research methodology, and the research findings. Some conclusive 
remarks follow.

2. LITERATURE REVIEW

2.1. Modern Portfolio Theory
The ground breaking modern portfolio theory proposed by 
Markowitz (1952), continues to play a critical role in the field of 
portfolio management, where efficient portfolios depends on two 
population characteristics – the covariance and average of asset 
returns. For instance, Scala et al. (2019) adopted the Markowitz 
framework to propose a simplified strategy in managing portfolios 
of renewable energy sources. Similarly, Platanakis and Urquhart 
(2019) analyzed the effect of including cryptocurrencies, and found 
the Markowitz model to rank second after the Black-Litterman 
model. Platanakis et al. (2018) also found there is very little 
difference when choosing between an equally weighted portfolio 
and the optimal mean-variance portfolio. Given the covariance 
matrix and average returns, optimal risky portfolio weights can be 
computed, based on the preferred level of risk or targeted return 
values. However, in reality, the true parameters are not known, 
such that proxies are usually used. For instance, the sample mean 
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and sample covariance matrix are usually adopted which results in 
the “plug-in” portfolio (Ao et al., 2017). However, as reported by 
Michaud (1989) and Basak et al. (2009), the plug-in portfolio’s out 
of sample performance usually deteriorates as the number of assets 
increases. Some authors like Fastrich et al. (2015) and Fan et al. 
(2012) proposed the use of constraints in weights to improve the 
portfolio performance. However, as reported by Ao et al. (2017), 
these lead to suboptimal Sharpe ratios.

More importantly, some authors have proposed alternative 
measures of risk. For instance, Roy (1952) reported that the 
use of downside risk measures is geared towards the objective 
of maximizing the probability that the return of the portfolio 
is above a minimum acceptable level like the risk free rate. 
For instance, while Konno (1990) proposed the mean absolute 
deviation as a measure of dispersion, Speranza (1993) used the 
mean absolute value of negative deviations, and found that it is 
half of the mean absolute deviation from the mean. Lastly, but 
not least, although Markowitz (1959) introduced semi-variance 
in portfolio management, he recommended that the use of 
variance is computationally more manageable and provides the 
same information. Although we do not depart from the use of the 
traditional Markowitz model, our main contribution is to look 
into the implementation of alternative risk measures such as ML 
and generalized autoregressive conditional heteroskedasticity 
(GARCH) models, and analyze the performance of energy equity 
portfolios, under the mean-variance efficient frontier framework.

2.2. ARIMA GARCH Model
Since Engle (1982) estimated variability in U.K. inflation with the 
autoregressive conditional heteroskedasticity (ARCH), several 
empirical work made use of the ARCH model or some variations 
thereof. The main objective of using ARCH-type models is to 
examine the dynamic nature of the fluctuations in time series 
data. However, to capture all of the dependence in variance, 
the ARCH-type model requires a number of lags of the squared 
error (u2

t−i), which might result in an ARCH model that is nt 
statistically desirable. Bollerslev (1986) developed the generalized 
autoregressive conditional heteroskedasticity (GARCH) model as 
a technique to capture the volatility clustering in financial time 
series data. The GARCH model also failed to take into account 
the asymmetric effect found by Black (1976). Nelson (1991) 
proposed the EGARCH model with the objective of including 
such effect and fitted into EGARCH model. While there is a 
significant number of empirical research work related to GARCH 
family models (Hammoudeh and Li, 2008; Wang and Moore, 2009; 
Elshareif et al., 2012; and Kang et al., 2009), many researchers 
such as Francq and Zako’ıan (2004), Babu and Reddy (2015), 
Aknouche and Bibi (2009) and Xi (2013) have also applied and 
combined various ARMA models with ARCH processes, resulting 
in ARMA–GARCH hybrid models. The objective of these hybrid 
models is to stimulate the understanding and assessment of the 
dependence and the causal structure and provide much better 
accuracy of predictions.

2.3. ML
Nonparametric density estimation differs from parametric 
approach in that it does not require user specification of model 

parameters. Therefore, nonparametric approach is a far more 
flexible option in simulating the density function of a variable. It 
is also not affected by the specification bias that is present in the 
parametric approach (Lehmann, 1990). Kernel density estimation 
is a nonparametric approach that is widely used in many fields 
of economics and engineering. Bouezmarni and Scaillet (2005) 
applied KDE to model the Brazilian income distribution, which 
is known to be highly skewed with an accumulation of observed 
points near the zero boundary. To this end, authors proposed the 
use of asymmetric kernel function with nonnegative support. They 
prove that asymmetric KDEs converge, in L1, to the true probability 
density function. Renault and Scaillet (2004) successfully model 
recovery rates on defaulted bonds using KDE approach based on 
beta kernels. Beta kernel was adopted because the recovery rate 
values range between 0 and 1. The results of empirical tests on 
S&P’s database and Monte Carlo simulations demonstrated the 
validity of their approach.

Guerre et al. (2000) applied KDE to analyze auction data. In 
particular, the authors devised a procedure to model the distribution 
of bidder’s private values from observed bids based on kernel 
estimates. The authors show that their kernel estimators converge 
uniformly at the best possible rate. Jeon and Taylor (2012) used KDE 
in their work to produce density forecasts for wind power generation. 
The authors model wind power in terms of wind speed and wind 
direction. Conditional kernel density estimation is used to represent 
the stochastic relationship between the wind power and wind speed 
and direction. Post-sample density forecasting results showed that 
their approach was able to outperform the benchmark methods. 
Yavlinsky et al. (2005) used KDE in image annotation. The authors 
modeled the distribution of image features via nonparametric kernel 
smoothing. They showed image properties such as global color and 
texture distributions can be used effectively to annotate images. Test 
results based on Corel and Getty image archives produced results 
that are competitive with other similar methods.

2.4. Portfolio Performance
To evaluate the performance of portfolios and related benchmarks, 
performance measures such as Sharpe, M2, Treynor, and Jensen’s 
alpha were developed and used in the investment arena. Alongside, 
asset-pricing models were developed to explore which aspect of 
a portfolio should lead to lower or higher expected returns. For 
instance, the capital asset pricing model (CAPM) introduced by 
Sharpe (1964) suggests that relying on such a model assumes 
the portfolio is exposed to market risk. While alpha proposed by 
(Jensen, 1968) is based on the difference between the actual returns 
and CAPM’s expected return, it does not control firm specific risk 
which could be important for investors (Fama, 1972). Equally, 
Treynor’s ratio proposed by Treynor (1965) considers only excess 
return per unit of systematic risk, which is analogous to Jensen’s 
alpha as discussed in Aragon and Ferson (2006). Sharpe (1966) 
introduced the Sharpe ratio which primarily captures the degree to 
which a portfolio is able to produce an excess return per unit of risk, 
where excess return is the difference between return and the risk-
free rate. The Sharpe ratio is conventionally used for a portfolio 
compared to a single investment, since a portfolio excess risk and 
return consider the benefits of diversification, as opposed to the 
Sharpe of a single asset, where correlation cannot be calculated.
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While various applications exist on the application of Sharpe 
(Author [2016] and Aragon and Ferson [2006] for an overview), 
the Sharpe ratio does not distinct between downside and upside 
risk. This is predominantly pertinent since cryptocurrency and 
energy markets tend to be non-normally distributed. Leland (1999) 
suggests the need to look into higher moments of distributions to 
capture investors’ utility functions. For positively (negatively) 
skewed distributions, a portfolio would have a higher (lower) mean 
than for a normally distributed function, resulting in a relatively 
lower (higher) risk and higher (lower) excess return per unit of 
risk. To consider the issues related to distributions and Sharpe 
performance measure, Sortino and Van der Meer (1991) proposed 
the Sortino ratio that adjusts the Sharpe measure by looking at 
downside risk, where downside risk relates to returns falling below 
a defined target rate. Harry Markowitz, the founder of modern 
portfolio theory, also discussed the importance of downside risk 
in his seminal Markowitz (1959) paper, despite using standard 
deviation in his portfolio theory model.

2.5. Crypto and Energy Markets
It is vital to appreciate the factors affecting demand and supply 
in the energy crypto and energy commodity markets since the 
main purpose of the study is to evaluate whether energy cryptos 
can benefit portfolios consisting exclusively of leading energy 
stocks. While not studying solely energy block chain based 
crypto currencies and commodity energy markets, He et al. (2016) 
provides a decent synopsis of the currency characteristics of 
bitcoin and commodities, after summarizing findings of Calomiris 
(1988), Bordo (1981) and Redish (1993). As far as supply factors 
are concerned, both markets are decentralized in nature, with the 
source of supply being private under cryptos, and both private 
and public under commodity markets. Production costs are 
relatively high with cryptos owing to the amount of electricity 
required in crypto mining, and also high in commodity markets 
which involve mining. For commodity energy markets, the cost 
is gradually falling due to cheaper energy renewables. Regarding 
demand factors, both crypto currency and commodity markets 
can be used as a store of value, although the former is particularly 
susceptible to exchange rate risk and the latter to commodity 
price risk. Both can be used as a medium of exchange, although 
the crypto currency is still relatively new to the global financial 
arena. Although commodities have intrinsic values and can be used 
as units of account, cryptos have neither of these two features. 
Besides the demand and supply factors, it is also beneficial to 
understand how cryptocurrencies are affected by macroeconomic 
events. For instance, Author et al. (2019) analyzed major global 
announcements in US, UK and Europe, and found no specific news 
release during the structural breaks witnessed in crypto markets 
by late 2017. While Elendner et al. (2016) analyzed the top ten 
cryptos based on their market values and found them to be weakly 
correlated, Trimborn and Härdle (2016) found the CRIX to be more 
representative of the market than Bitcoin (BTC).

While some these studies attempt to explore the crypto and external 
world in areas like news announcements, energy futures markets, 
and crypto prices, they showed some lacking in some fundamental 
areas. For example, Author et al. (2019) analysis considered only 
news which were released without other news being simultaneously 

released on the same day. This limits the scope of the findings when 
more than one news is released from different categories. Studies 
like Trimbor and Härdle (2016) and Elendner et al. (2016) either 
considered only the whole market index or top ten cryptos, such 
that generalization for key sectors like energy within the crypto 
markets are not made. Lastly, Chuen et al. (2018), despite using a 
Cornish Fisher framework along the traditional MPT theory, did not 
look into other measures of risk coming from different models like 
ARCH family classes or ML. Most noticeably, none of the studies 
mentioned looked specifically at the relationship between energy 
cryptos and energy equity, using a portfolio framework, where the 
diversification benefits of including energy cryptos into an energy 
equity based portfolio is assessed.

Alternatively stated, this study bridges the gap in the prevailing 
literature on three grounds. First, it is the first, to test whether leading 
energy stocks and energy cryptos can be combined together within 
one optimal risky portfolio and assess their performance using 
the Sharpe performance measure. While it is expected that when 
energy prices rise, this would allow, ceteris paribus, renewable 
energy based crypto prices to increase, by acting as substitutes 
from traditional fossil based energy companies, and vice versa, it 
has also been observed that alternative investments like cryptos 
and commodities share low correlations, as reported previously in 
literature. An increase (decrease) in the prices of energy products, 
passed through higher (lower) equity prices in the energy sector, 
can lead to a significant (insignificant) change to energy crypto 
prices, which can potentially affect the risk and return of energy 
equity portfolios with (without) energy based cryptos. Since the 
decoupling of crude oil and natural gas prices which occurred 
around 2008, the demand for oil to produce electricity has plunged 
greatly, due to aged petroleum assets being gradually retired, lower 
natural gas prices, and better awareness on the environmental impact 
of the relatively high sulfur component of oil. While a negative 
correlation between different assets would decrease portfolio risk, 
a negative correlation between specific energy companies, say the 
top ten energy companies of S&P1500 energy index, and energy 
cryptos can help later identify which energy cryptos can be mixed 
to a portfolio of energy stocks and vice versa.

Second, this study is the first one which introduces different 
measures of risk. The paper expands on the traditional modern 
portfolio theory model introduced by Markowitz (1952), by 
including alternative measures of risk based on the Cornish Fisher 
expansion model, the ARIMA-GARCH optimized model and 
a ML. This enables different approximations of risk to be used 
to reach the optimal risky portfolio, under an efficient frontier 
framework. Last, but not least, due to the negative returns observed 
in the last few years, the study also analyzes the effect of adding 
energy cryptos into equity portfolios with non-positive excess 
returns. This allows us to observe the impact of negative crypto 
returns onto an energy based portfolio made up of only zero or 
negative returns. This creates a scenario where all returns in both 
the energy equity and crypto currency markets are negative or 
zero, and analyzes whether mixing the new alternative asset class 
with traditionally based equity portfolios help in reducing portfolio 
risk, characterized by a scenario of downside risk, as proposed by 
Sortino and Van der Meer (1991) and Markowitz (1959).
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3. RESEARCH METHODOLOGY AND DATA

The daily percentage return, Ri, is based calculated as the logarithm 
of the return at time t over the return at time t-1 (ignoring dividends). 
The use of logarithmic as opposed to simple returns is supported by 
the heightened volatility exhibited in crypto and commodity markets 
and supported by Hudson and Gregoriou (2015) who found higher 
volatility tend to reduce expected returns upon using logarithmic 
returns. Further, due to portfolios usually being constructed and 
held over medium to long investment horizons, logarithmic returns 
are preferred to simple returns, where Dissanaike (1994) and Roll 
(1983) found the latter to yield unsatisfactory results. The volatility 
measures across models differ as follows:

3.1. Markowitz Mean-variance Framework
As reported by Markowitz (1952), the modern portfolio theory 
(MPT) is based on individual asset’s standard deviation, σ, as a 

measure of risk where σ =
−

−
∑( )R R

n
i i

2

1
. Under the assumption 

that investors are mostly risk averse with a preference in convex 
utility curves being positioned on the north west end of a risk and 
return map, and a normal distribution in the asset returns, a 
portfolio is constructed with the aim of reaching a maximum 
portfolio return while minimizing standard deviation. The portfolio 
variance and portfolio return are decomposed as follows:

 R Rp i ii

n
=

=∑ ω
1

 (1)

 σ ω ω σp a b abb

n

a

n2

11
=

== ∑∑ � (2)

Where ωi represent the weights of different assets within the risky 
portfolio and σab is the covariance between two assets. MPT 
optimizes portfolio combinations by maximizing a possible 
expected portfolio return and minimizing portfolio risk, subject 
to the constraint that ii

n

=∑ 1
� resulting in the efficient frontier. For 

the purpose of this study, we assume only long positions for all 
assets, such that no negative weight is allowed in the optimal 
portfolio construction. To take into account the different risk 
appetite of investors, a risk aversion coefficient was introduced in 
the optimization process as:

 max p R i ii

n
a b abb

n

a

n
p

R∈ = ==∑ ∑∑−{ }ϕ ω ω ω σ
1 11

 (3)

where φ represents the risk aversion of the investor. With 
investors assumed to be risk averse, φ would take a positive 
value, where an investor seeking higher return is expected to 
bear or invest in a riskier portfolio. The mean-variance model, 
however, is subject to some criticism when it comes to the 
normal distribution assumption. In line with Chuen et al. (2018) 
who found cryptocurrencies returns were highly non normal, a 
Cornish-Fisher expansion (CF) is also adopted to include higher 
moments of returns, i.e., skewness and kurtosis into the Markowitz 
mean-variance model. While other expansions like Gram-Charlier 
and Edgeworth expansions (Leon et al., 2009), the CF expansion 
provides a relatively straightforward relation between kurtosis, 
skewness and the second moments in the distribution of asset 

returns, as supported by Cao et al. (2010) and Fabozzi et al. 
(2013). Proposed by Cornish and Fisher (1938), CF provides 
an explicit expansion for any standardized quantile of the true 
distribution as a function of the corresponding quantile of the 
normal approximation, such that it is then a simple polynomial 
function of the corresponding unit normal quantile, where the 
coefficients of each resulting term are functions of the moments 
of the true distribution. Alternatively stated, the CF quantile can 
be stated as:

 q ZCF CF CF, , �α αµ σ= +  (4)

Where qcf,α is the CF quantile function and ZCF,α is the normalized 
quantile and is calculated as:

 Z a a z a z a zCF , = + + +0 1 2
2

3
3 (5)

Where a0=−s; a1=1−3k+5k2; a2=s; a3=k−2s2. k K
=
24

 and s S
=
24

. K 

and S are the kurtosis and skewness parameters. Z represents the 
Gaussian normal distribution with a mean value of 0 and variance 
of 1. While the relationship between the Gaussian and CF quantile 
can be explained further as reported in Amédée-Manesme et al. 
(2018), our interest resides more on Maillard (2018) who reports 
the standard deviation, σCF, of the Cornish Fisher expansion model 
as follows:

  
CF

K S KS
=

+ + −1
1

96

25

1296

1

36

2 4 2

 (6)

A recent application of the Cornish Fisher expansion model 
in portfolio includes Chuen et al. (2018) who found that the 
traditional Markowitz approach of using standard deviation 
resulted in an underestimated measure of risk compared with the 
Cornish Fisher expansion.

3.2. ARIMA GARCH Model Specification
Following Bollerslev (1986), Nelson’s (1991) and Babu and Reddy 
(2015), we examine and model the behavior of daily returns of 
ten top energy stocks and 4 cryptos. Two distinct groups have 
been identified, the first group follows GARCH models and it 
consists of nine indices namely (KMI, CVX, XOM, EOG, OXY, 
MPC, VLO, SNC, TSL). The other group, on the other hand tends 
to follow ARMA-GARCH Models which includes COP, SLB, 
POWR and GRID.

The standard GARCH (1, 1) model used can be expressed as 
follows:

 y = +t t tπ θ ε  (7)

 σ α ε βσωt
2

0 1 t-1
2

t-1
2= + +  (8)

Where πt is a set of exogenous variables capturing past information 
and ε σ ω αt t

2
0 1~ N(0, ) , , and β are the parameters to be estimated. 

In the ARMA-GARCH model, we will include the AR (1) or MA 
(1) in the standard GARCH (1, 1) model - conditional mean 
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equation. This inclusion of ARMA depends on evidence generated 
from our daily returns series. For example if some return series 
show evidence of autocorrelation, then AR (1) will be combined 
with GARCH (1,1) model and estimated accordingly. Hence, 
following Babu and Reddy (2015) and Wang and Moore (2009), 
the specification of ARMA-GARCH model is stated as follows:

 r e e I Nt t t t t= + −µ σ, 1 0~ ( , )

 
(9) 

 σ ω α ε βσt t t
2

0 1 1
2

1
2= ++ − −

 (10)

where µ φ θ= +− −1 1 1 1r et t� . N represents the conditional normal 
density with mean zero and variance σt. It−1 is the information 
available at t−1. α1, β, ϕ and θ are the parameters to be estimated.

3.3. ML Model Specification
Nonparametric density estimation is an important tool in statistical 
data analysis. It is used to model the distribution of a variable 
based on a random sample. The resulting density function can be 
utilized to investigate various properties of the variable. Among 
the nonparametric methods kernel density estimation (KDE) is 
the most popular approach in the current literature (Fan, 2005; 
Silverman, 2018; Simonoff, 1996). It is a well-established 
technique both within the statistical and ML communities (Botev 
et al., 2010; Kim and Scott, 2012; Liu et al., 2011).

Let {x1, x2,…, xn} be an i.i.d. sample drawn from an unknown 
probability density function f. Then the kernel density estimate 
of f is given by:

 f x
nh

K
x x
h
i

i

n( ) = −
=∑1 1

( ) (11)

Where K is the kernel function and h is the bandwidth parameter. 
Intuitively, the true value of f (x) is estimated as the average 
distance of x from the sample data points xi. The “distance” 
between x and xi is calculated via a kernel function K (t). There 
exists a number of kernel functions that can be used for this 
purpose including Epanechnikov, exponential, tophat, linear and 
cosine. However, the most popular kernel function is the Gaussian 
function i.e., K (t) = ϕ (t), where ϕ is the standard normal density 
function. Given that daily stock return values are approximately 
symmetrical and have a theoretically unbounded support with 
diminishing tails we also employ ϕ as our kernel function in our 
calculations. The bandwidth parameter h controls the smoothness 
of the density function estimate as well as the tradeoff between 
the bias and variance. A large value of h results in a very smooth 
(i.e., low variance), but high bias density distribution. A small 
value of h leads to an unsmooth (high variance), but low bias 
density distribution.

The rule of thumb for optimal bandwidth value is stated as follows:

 h s
n

= ( ) .
4

3

5
0 2 (12)

Where s is the sample standard deviation (Silverman, 2018). We 
use the same bandwidth value as in equation 1 to perform our 
calculations. In particular, we used the scikit-learn ML library 

and its implementation of KDE to model the probability density 
functions of daily returns for individual stocks and cryptos. KDE in 
scikit-learn is implemented in the sklearn.neighbors. Kernel density 
estimator, which uses the ball tree or KD tree for efficient queries1.

3.4. Portfolio Performance Measure
As part of evaluating the performance of the efficient portfolios, 
including the optimal portfolio combination, the Sharpe 
performance measure is used. The Sharpe ratio is the excess return 
per unit of risk, and assumes total risk (downside and upside) is 
considered. In line with Sortino and Van der Meer (1991), who 
captured downside risk through the Sortino ratio, we also looked 
into non-positive returns, by calculating the excess return as RA−
MARA, where MARA represents the minimum acceptable return. 
If (RA−MARA) > 0, the resulting value is substituted to zero, 
otherwise, the value is set as RA−MARA. This guarantees that the 
model captures only downside risk. For the purpose of this study, 
the minimum acceptable return is set as the risk-free rate which is 
based on an average of the 3 month US Treasury bill rates.

For the purpose of this study, the top ten energy stocks are selected 
from S&P Composite 1500 energy index, which captures the 
performance of publicly listed companies which are members 
of the Global Industry Classification Standard energy sector. 
Launched in December 2005, the index has ninety-two constituents 
with a maximum market capitalization value of $310,254 million 
and mean capitalization value of $14,712 million, as at January 
31, 2019. The top ten stocks were selected based on their relative 
index weight to the index, and are classified as follows:

The energy crypto currencies selected are SunContract (SNC), 
power ledger (POWR), energo labs (TSL) and GRID+(GRID). 
Although energy coin (ENRG) prices were available for the 
time under analysis, it was disregarded to the gap in the crypto 
dataset from October 2018 to January 2019. Other energy based 
cryptos like KWHCoin, Energi, 4NEW and Energi Mine were also 
excluded since they were first released only between June 2018 
and August 2018. The daily data sample is set from November 21, 
2017 to January 31, 2019. While the Chicago Mercantile Exchange 
allows electronic trading of energy contracts from Sunday to 
Friday, and pit trading is from Monday to Friday, the crypto market 
never closes. The daily closing prices of crypto currencies are 
gathered from Coinmarketcap. The daily stock prices for the top 
energy stocks were collected from Factset.

4. RESEARCH FINDINGS

4.1. Descriptive Statistics
Before pursuing any analysis, it is useful to capture the historical 
performance of the energy stocks and energy cryptos. As reported 
in Figure 1, the four energy cryptos exhibited a relatively similar 
trend, with a noticeable peak reached in December 2017, before 
trending significantly downwards since then. While GRID had 
a relatively higher price of 2.86 compared to other cryptos, 
energy cryptos shared strongly positive correlation coefficients 

1 The Nearest Neighbors module documentation in scikit-learn for further 
details
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ranging from 0.75 to 0.92. This is similar to Author (2019) who 
finds positive correlations between 0.72 and 0.9 among energy 
cryptos over the period 2017-2018. Figure 2 displays the energy 
stock prices for the top ten constituents listed under the S&P 
Composite 1500 energy index. As observed, the prices tend to 
behave in a similar fashion during the 2017-2019 period. Except 
for COP and SLB which shared a negative correlation of −0.1, 
all other energy stocks shared positive correlations among 
themselves, ranging from 0.21 to 0.96. The positive correlation 
pairs among the risky assets point to a low level of diversification 
in such a portfolio, since all the stocks originate from the same 
asset class. Although not reported here, correlation coefficients 
between energy stocks and energy cryptos were mixed in values, 
with each energy stock having between two and five negative 
correlation values with energy cryptos. These ranged from −0.5 
to −0.59, thereby increasing the expectation that the inclusion 
of energy cryptos in the energy equity portfolio can potentially 
reduce the portfolio risk as a benefit of diversification across 
different asset classes.

Figure 1 represents the daily prices for select energy block chain 
based cryptos over the period November 2017–January 2019. The 
entities (trading symbols) are SunContract, power ledger, energo 
labs and GRID+(GRID). Closing prices are the latest data for 
each day (UTC time). 

Figure 2 shows the daily stock prices, at close, for the lten energy 
companies, which are all listed as leading constituents under the 
S&P1500 Composite 1500 energy index. The companies (trading 
symbols) include Exxon Mobil, Chevron corp, ConocoPhillips, 
Schlumberger Ltd, EOG Resources, Occidental Petroleum, 
Marathon Petroleum Corp, Phillips 66 (PSX), Valero Energy 

Group and Kinder Morgan Inc. Asset specification details are 
provided in Table 1.

In Figures 3 and 4, we present histograms of daily logarithmic 
returns of ten stocks and four cryptos along with respective KDE 
graphs for the ML based model. In line with Sortino and Van 
der Meer (1991) who proposed the Sortino ratio which captures 
downside side, we modeled the probability density function, 
using negative or zero excess returns, where excess returns were 
calculated as the difference between actual returns and an average of 
the 3 month US treasury bill rates. We dubbed the adjusted returns 
as Sortino returns. The probability density function for the Sortino 
returns are reported in Figure 4. A comparison of the standard 
deviations for all assets between the two probability density 
functions shows that there is a substantial difference in the standard 
deviations using the normal returns compared to Sortino returns. 
The greatest difference is observed among the energy stocks. The 
standard deviations based on normal returns for energy stocks are 
much lower compared to Sortino based returns. It is also worth 
observing that the standard deviations based on Sortino returns are 
relatively consistent among the energy stocks and the cryptos. On 
the other hand, the standard deviations based on normal returns are 
much higher for cryptos compared to energy stocks.

Figure 3 displays the probability density function for all the selected 
energy equities and energy cryptos’ logarithmic daily returns over 
the period November 2017–January 2019. Equities include Exxon 
Mobil, Chevron Corp, ConocoPhillips, Schlumberger Ltd, EOG 
Resources, Occidental Petroleum, Marathon Petroleum Corp, 
Phillips 66 (PSX), Valero Energy Group and Kinder Morgan Inc. 
Energy cryptos are SunContract, Power Ledger, Energo Labs 
(TSL) and GRID+(GRID).
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Figure 1: Energy crypto prices (November 2017–January 2019)

Figure 2: Top 10 energy equity prices (November 2017–January 2019)
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Figure 4 displays the probability density function for all the 
selected energy equities and energy cryptos’ adjusted logarithmic 
daily returns. The adjusted returns are calculated after taking the 
difference between actual logarithmic returns and an average 
of the 3 month treasury bill rates over the period November 
2017–January 2019. All positive returns are substituted as zero 
returns to capture only downside risk. Equities include Exxon 
Mobil, Chevron Corp, ConocoPhillips, Schlumberger Ltd, EOG 

Resources, Occidental Petroleum, Marathon Petroleum Corp, 
Phillips 66 (PSX), Valero Energy Group and Kinder Morgan Inc. 
Energy cryptos are SunContract, Power Ledger, Energo Labs 
(TSL) and GRID+(GRID).

4.2. Analysis
Before analyzing the impact of the different measures of risk on the 
energy portfolios, it is vital to depict the behavior of the different risk 

Figure 3: Probability density function for all energy equity and energy cryptos’ returns

Table 1: Asset specification details
Company Trading symbol Sector Industry Sub industry
Exxon mobil XOM Energy Oil, gas and consumable fuels Oil and gas exploration and production
Chevron corp. CVX Oil, gas and consumable fuels Integrated oil and gas
Conoco phillips COP Oil, gas and consumable fuels Oil and gas exploration and production
Schlumberger Ltd. SLB Energy equipment and services Oil and gas equipment and services
EOG resources EOG Oil, gas and consumable fuels Oil and gas exploration and production
Occidental petroleum OXY Oil, gas and consumable fuels Oil and gas exploration and production
Marathon petroleum corp. MPC Oil, gas and consumable fuels Oil and gas refining and marketing
Phillips 66 PSX Oil, gas and consumable fuels Oil and gas refining and marketing
Valero energy group VLO Oil, gas and consumable fuels Oil and gas refining and marketing
Kinder Morgan Inc. KMI Oil, gas and consumable fuels Oil and gas storage and transportation
Source: Factset, S&P500 Dow Jones Indices
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models over the energy cryptos and energy equities. As observed in 
Figure 5, the risk values for all the energy stocks, under all the four 
models, shared mostly the same relationships, with the GARCH-
ARIMA model showcasing the lowest risk values compared to the 
standard deviation, CF risk adjusted model and the ML model. While 
the latter three models also appear to be positively correlated with 
each other for the four energy cryptos, the GARCH-ARIMA model 
departs from this analogy, with much lower risk values.

SD refers to standard deviation; SD (CF adjusted) is the standard 
deviation from the Cornish Fisher risk adjusted model; ML is the 
risk from the ML based model; and GARCH-ARIMA is the optimal 
risk from ARIMA-GARCH family class models. Equities include 
Exxon Mobil, Chevron Corp, ConocoPhillips, Schlumberger Ltd, 
EOG Resources, Occidental Petroleum, Marathon Petroleum 
Corp, Phillips 66 (PSX), Valero Energy Group and Kinder Morgan 
Inc. Energy cryptos are SunContract, Power Ledger, Energo 

Figure 4: Probability density function for all energy equity and energy cryptos’ adjusted returns
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Labs (TSL) and GRID+(GRID). The GARCH-ARIMA graph is 
displayed on the right hand side vertical axis.

4.2.1. Efficient portfolios under the Markowitz framework
As a well-established model in portfolio management, it is 
imperious to construct efficient portfolios consisting of solely of 
energy stocks, and also assess the impact of including different 
asset classes such as energy cryptos on the portfolio’s risk and 
return. Figure 6 reports efficient portfolio combinations include 
mostly energy stocks such as KMI, XOM, CVX, COP, SLB and 
PSX. No influence of the cryptos on the energy equity based 
portfolios. As we move from the minimum variance portfolio 
to the right of the efficient frontier, the weight of COP increased 
steadily, caused primarily due to the stock having the highest 
return compared to all other constituents. A portfolio which 
includes energy cryptos with equal weights resulted in a negative 
portfolio return of −0.2% with a risk of 2.89%. Comparatively, 
a portfolio with only energy stocks had a return of 0.01% with 
a portfolio risk of 1.36%. The difference in the portfolio risk 
and return is partly due to the negative performance of all 
individual cryptos, which had relatively larger losses compared 
to the individual energy stocks. Although not reported here, the 
inclusion of energy cryptos did not result in any significant change 
to the efficient frontier of the portfolio, despite the individual 
stocks and energy cryptos’ risk were adjusted with the Cornish 
Fisher model. Major constituents of the efficient portfolios, 
with or without cryptos, consisted of KMI, XOM, COP, PSX 
and VLO, with a gradual increase in the weight of COP as we 
move towards the optimal risky portfolio. The optimal portfolio 

return of 0.10158% yielded a Sharpe value of 0.0519 under both 
portfolios, with insignificant differences observed for portfolio 
combinations which were below the minimum variance portfolio. 
This can be explained by the poor performance of energy cryptos 
which pulled down the return of the portfolio for non-efficient 
portfolio combinations.

4.2.2. Efficient portfolios without cryptos using Markowitz, 
Markowitz CF portfolio and ML
Figure 7 displays the risk and return of portfolios consisting only 
of energy equities, where risk is measured as standard deviation, 
Cornish-Fisher risk adjusted standard deviation and ML based 
risk measure. The Cornish Fisher adjustment to the Markowitz 
Portfolio (with no cryptos) resulted in a slight improvement in the 
return per unit of risk. For example, for a portfolio comprising of 
98% COP and 2% KMI, the Sharpe value increased from 0.0511 to 
0.0515. The optimal portfolio return of 0.10158% yielded a higher 
Sharpe of 0.0519 for both the traditional and the Cornish Fisher 
adjusted model. The effect of the CF adjustment was more evident 
near the minimum variance portfolio, where the same return 
could be achieved with a slightly lower risk than the traditional 
Markowitz model. The ML model however resulted in higher 
risk values for the same returns, compared to the Markowitz and 
Markowitz CF adjusted model. The Sharpe of the optimal risky 
portfolio was the highest with the CF model at 0.0519, followed 
by the Markowitz model at 0.0514, and the ML yielding 0.0489 
respectively.

4.2.3. Efficient portfolios under ML
As shown in Figure 8, major constituents for the ML based 
portfolio, with and without the inclusion of energy cryptos, were 
KMI, XOM, CVX, COP, OXY and PSX. The inclusion of the 
crypto in the ML based model did not result in any noticeable 
change in the Sharpe values of efficient portfolio combinations. 
Similar to the Markowitz and Markowitz CF adjusted based 
models, higher return per unit of risk was achieved with efficient 
portfolios consisting primarily of COP. This can be explained due 
to the energy stock having the highest returns among all other 
constituents. The Sharpe of the optimal portfolio with ML model 
remained at 0.0489. The relatively poor performance of the energy 
cryptos, coupled with the low positive correlation values did not 
help to reduce the risk of the optimal risky portfolios. The only 
discernable difference was observed for efficient portfolios around 
the minimum variance portfolio. For instance, a portfolio based 
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wholly on equity portfolios with a return of −0.05% had a risk of 
1.33%, compared to a portfolio with stocks and cryptos, which 
reported the same return with a slightly lower risk of 1.30%. For 
negative portfolio returns, the inclusion of crypto in the equity 
portfolio, resulted in lower risk with the same return as in a 
portfolio holding only energy stocks. This suggests, that during 
an economic downturn, including a crypto in an equity based 
portfolio would tend to reduce the risk levels for a given return. 
However, the differences between the two portfolios disappear 
as we approached the optimal risky portfolio combination, with 
a higher risk and return.

4.2.4. Efficient portfolios with cryptos using Markowitz, 
Markowitz CF and ML models
While section 5.2.2 shows the risk and return of efficient portfolios, 
which consist only of energy stocks, it is vital to similarly analyze 

the impact of using different risk measures onto portfolios which 
include the four selected energy cryptos. As reported in Figure 9, the 
inclusion of the energy cryptos in the efficient portfolios resulted in 
the lowest excess return per unit of risk for the ML model, compared 
to the other two models. While the use of cryptos slighly improved 
the Sharpe value of the optimal portfolio for the Markowitz model 
from 0.0514 to 0.0515, the Sharpe value decreased from 0.0519 
to 0.0515 under the CF adjusted model. The Sharpe value did not 
change under the ML model i.e., remain at 0.0489.

4.3. Risk Adjusted Returns and Efficient Portfolios
Due to the negative performance of cryptos, the study also analyses 
the effect of adding cryptos to equity portfolios with non-positive 
excess returns. This allows us to capture the impact of negative 
cryptos returns onto the equity based portfolios. Alternatively 
stated, the use of zero or negative excess returns, allows us to 
capture the downside risk of mixing different asset classes together 
in an efficient portfolio framework. As observed in section 5.1, 
the standard deviations based on Sortino returns were relatively 
consistent among the energy stocks and the cryptos, compared 
to the standard deviations based on normal returns which were 
much higher for cryptos relative to energy stocks. Figure 10 
shows the portfolio risk and return of the efficient portfolios. 
Both the Markowitz and Markowitz CF adjusted Portfolio model 
resulted in Sharpe values of −0.5969 and −0.6077 respectively. 
Comparatively, the ML based model yielded a Sharpe value of 
−0.033. In all the three models, equity portfolio combinations with 
a proportionally higher weight in XOM, on the efficient frontier, 
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yielded higher excess return per unit of risk. Compared with the 
Markowitz and Markowitz CF adjusted model, the optimal risky 
portfolio under the ML model had a higher portfolio risk. This can 
be explained due to the individual risk values of the ten energy 
stocks ranging from a minimum risk value of 14.45% for MPC and 
a maximum risk value of 15.38% for XOM. This can be compared 
with the other two models, where standard deviations values 
ranged only between 0.86% (XOM) and 1.22% (EOG) under the 
Markowitz model, and between 0.85% (XOM) and 1.19% (EOG) 
under the Markowitz CF portfolio model.

Although not reported here, the use of the Cornish Fisher adjusted 
model for portfolios with and without cryptos, reveals that the 
inclusion of energy cryptos did not result in any significant change 
to the efficient frontier of the portfolio, despite the individual 
stocks and energy cryptos’ risk were adjusted with the Cornish 
Fisher model. The highest excess return per unit of risk among 
all efficient portfolios was −0.6078 with a portfolio risk of 0.85% 
and return of −0.51%. The inclusion of energy cryptos did not 
benefit the equity portfolio due to the proportionally more negative 
returns observed for all individual cryptos. Most of the efficient 
portfolios consisted predominantly of equity companies such as 
KMI, XOM and VLO. As we move from the minimum variance 
portfolio towards the optimal risky portfolio, the weight of XOM 
increased gradually, due to the stock having the highest return of 
−0.51%. Similarly, the use of the ML based model for portfolios 
with and without cryptos, supports that the inclusion of the crypto 
in the ML based model did not result in any noticeable change in 
the Sharpe values of efficient portfolio combinations. The Sharpe 
of the optimal portfolio remains at −0.0336, with higher excess 
return per unit of risk observed as efficient portfolios consist more 
of the XOM energy stock. The relatively poor performance of the 
energy cryptos, coupled with the low positive correlation values 
did not help to reduce the risk of the optimal risky portfolios. Under 
portfolios comprising solely of energy stocks, portfolios with lower 
returns than the minimum variance portfolio returns had relatively 
higher risk as denoted in the graph. Comparatively, for the same 
portfolio return, energy equity portfolios which also included 
cryptos did not witness an increase in risk. This is attributed to 
the relatively lower returns levels for each of the energy cryptos, 
compared to the energy stocks.

Moreover, our study looks at the impact of including energy 
cryptos in existing energy equity portfolios, using risk adjusted 
returns. As reported in Figure 11, the inclusion of the energy 
cryptos in the efficient portfolios resulted in the lowest excess 
return per unit of risk for the ML model, compared to the other 
two models. While the use of cryptos slightly improved the 

Sharpe value of the optimal portfolio for the Markowitz model 
from 0.0514 to 0.0515, the Sharpe value decreased from 0.0519 
to 0.0515 under the CF adjusted model. The Sharpe value did not 
change under the ML model.

The highest excess return per unit of risk was observed under the 
ML model without cryptos at −0.0336. The Markowitz portfolio 
model produced a Sharpe value of −0.5969 for the optimal risky 
portfolio, where the inclusion of cryptos within the portfolio did 
not make any significant impact. The same remark was made with 
the Markowitz Cornish Fisher adjusted model, where the energy 
cryptos did not contribute to the performance of the portfolio. 
The ML model had a proportionately high decrease in its Sharpe 
value, after having included cryptos into the portfolio construction. 
This could be explained by the relatively lower returns in the 
new alternative asset class such as crypto currencies compared to 
energy equities. Overall, the inclusion of cryptos did not affect the 
performance of energy equity based portfolios, with the exception 
of the ML based model.

4.4. Portfolio Performance Evaluation
While the use of different risk models in the construction of the 
efficient portfolios (with and without cryptos) is important, it is 
even more imperative to evaluate the portfolio performance of the 
different models. The Sharpe values of the optimal risky portfolios, 
under each risk model, are calculated. Both the Sharpe values of 
using all returns and risk adjusted returns are provided in Table 2:

For portfolios, which included the use of all returns, positive 
and negative, the inclusion of the energy cryptos in the efficient 
portfolios resulted in the lowest excess return per unit of risk for 
the ML model, compared to the other two models. While the use of 
cryptos slightly improved the Sharpe value of the optimal portfolio 
for the Markowitz model from 0.0514 to 0.0515, the Sharpe value 
decreased from 0.0519 to 0.0515 under the CF adjusted model. The 
Sharpe value did not change under the ML model. Comparatively, 
for zero and non-positive excess returns’ based efficient portfolios, 
the highest excess return per unit of risk was observed under the 
ML model without cryptos at −0.0336. The Markowitz portfolio 
model produced a Sharpe value of −0.5969 for the optimal risky 
portfolio, where the inclusion of cryptos within the portfolio did 
not make any significant impact. The same remark was made with 
the Markowitz Cornish Fisher adjusted model, where the energy 
cryptos did not contribute to the performance of the portfolio. 
The ML model had a proportionately high decrease in its Sharpe 
value, after having included cryptos into the portfolio construction. 
This could be explained by the relatively lower returns in the new 
alternative asset class (crypto currencies) compared to equities. 
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Overall, the inclusion of cryptos did not affect the performance 
of energy equity based portfolios, with the exception of the ML 
based model.

5. CONCLUSION

While energy commodities such as crude oil and natural gas affect 
not only other commodities but also other alternative assets such 
as equities, energy policy makers are gradually getting more 
concerned with renewable energy sources and technologies such 
as block chain which are behind those cleaner energy products. 
The introduction of the new alternative asset class dubbed as 
crypto currencies, has motivated recent work, where researchers 
not only looked into what can potentially determine the value of 
crypto currencies but also into conceivable relationships of crypto 
currencies with other financial assets. This study fills the gap by 
being the first to evaluate whether energy based block chain cryptos 
can affect energy equity portfolios which consists of the leading US 
energy stocks. Our study is also the first to dwell into how different 
measures of risk, derived from the Markowitz Cornish-Fisher (CF) 
expansion, ARMA – generalized autoregressive heteroskedasticity 
(GARCH) and ML models, can help the investor make better 
informed decisions in how to allocate funds among the risky assets 
coming from different asset classes, and also how well the portfolio 
performed using the Sharpe performance measure. Last, but not 
least, the study analyzes whether mixing the new alternative asset 
class with traditionally based equity portfolios help in reducing 
portfolio risk, in a scenario which captures downside risk.

While the positive correlations among energy stocks suggest a 
low level of diversification in existing energy equity portfolios, 
negative correlations between energy stocks and energy cryptos 
suggest initially that the inclusion of energy cryptos can reduce 
portfolio risk. Risk values for all energy stocks, under the 
Markowitz, Cornish-Fisher Markowitz adjusted, Machine-
Learning and ARIMA-GARCH models shared mostly the same 
relationship, with the ARIMA-GARCH model having the lowest 
risk values. Risk values of energy stocks under the ARIMA-
GARCH model also departed from the positively correlation 
observed among other risk models’ values. The inclusion of energy 
cryptos did not significantly impact the efficient portfolio frontier, 
under both the Markowitz and Markowitz Cornish Fisher adjusted 
risk models. A similar observation was found upon using the ML 
based risk values, where higher excess return per unit of risk was 
achieved with efficient portfolio consisting primarily of COP. The 
relatively poor performance of energy cryptos with low positive 
correlation values did not help to reduce the optimal risky portfolio 
risk. This was also evidenced when analyzing the impact of 
including energy cryptos onto energy equity portfolios consisting 

only of negative or zero returns. Last, but not least, findings of 
the portfolio performance evaluation support that the inclusion of 
energy cryptos in efficient portfolios did not significantly impact 
the excess return per unit of risk. Overall, findings suggest that 
traditional Markowitz based and ML models can be used to capture 
risk, while not materially affecting the portfolio performance 
evaluation. Further, the findings provide portfolio managers further 
light that energy cryptos do not significantly impact the efficient 
frontier, while they are actively aiming to construct optimal 
risky portfolios with the highest possible Sharpe values. A future 
research avenue can tap into investigating how regulatory bodies 
such as the International Energy Agency put forward policies 
for the energy industry to benefit from the digitization of energy, 
through technologies such as energy based block chain cryptos.
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