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ABSTRACT

This study empirically investigates the effects of crypto-currencies trading on the energy consumption as an important consequence of blockchain 
technology on climate change. In this article, we use the data of Bitcoin trading volume as well as all crypto-currencies trading volumes for the period 
going from 2014M1 to 2017M12 to investigate the effects on the primary energy consumption. Our empirical results show a positive correlation between 
crypto-currencies trading volumes and the energy consumption. Moreover, the crypto-currencies trading volume has a granger-causality to energy 
consumption in the period of study indicating that these two variables have a long-run co-integration. In other words, our findings show a significant 
positive (and increasing) influence of cryptocurrency activities on the energy consumption in both short-run and long-run. This study investigates 
one step further in examining the effects of residuals of the crypto-currencies trading volume on the residuals in energy consumption to confirm 
that a higher trading volume in cryptocurrencies might cause a higher energy consumption. Our findings show a negative influence of the trading of 
crypto-currencies - precisely, the higher the crypto-currency activities are, the higher the energy consumption is, affecting therefore the environment.

Keywords: Crypto-currencies, Environment, Energy consumption, Innovation 
JEL Classifications: Q40, Q51, Q54, Q55, Q56

I. INTRODUCTION

Bitcoin and other cryptocurrencies got an increasing attention 
these recent years leading to an important media coverage 
(Polasik et al., 2015; Thies and Molnár, 2018). Furthermore, the 
technology behind these cryptocurrencies, a decentralized and 
open-source system named “blockchain” is often presented as one 
of the most innovative technology offering several many disruptive 
innovation in the next years (Casino et al., 2019; Macrinici et al., 
2018; Underwood, 2016; Yli-Huumo et al., 2016).

Despite all potential innovations, blockchain might imply, this 
technology is paradoxically related to one of the most challenging 
collective problems around the world: the climate change (Harris, 
2018). Change (2017) emphasized that Blockchain technology 
can play a major role in fighting climate change by (i) improving 
carbon emission trading, (ii) promoting clean energy trading, 
(iii) enhancing climate finance flows (Green, 2018). Sanderson 
(2018) mentioned that despite the growth of green bond markets 

in size and sophistication, the verification and reporting standards 
are lagged behind. In this context, blockchain technology could 
be a potential solution to encourage this market and establish its 
credibility so that it helps prove the effectiveness of the green 
bond market by reducing carbon emissions for both issuers and 
investors. As a final consequence, the blockchain could promote 
the higher development of this market and indirectly contribute 
to the strategy against climate change.

Duchenne (2018) added that smart contracts and blockchains are 
important in helping to remove significant friction in the attempts 
to tackle climate change. However, this author also emphasized 
that “this comes at a cost of understanding the real impacts of the 
disruption this new technology brings, both on the financing side 
of renewable energy projects, climate finance in general, and the 
various legislative scheme supporting same.” Furthermore, Harris 
(2018) emphasized the importance of the potential solutions 
offered by blockchains to improve environmental issues in 
accordance with the objectives of the Paris climate agreement. 
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Blockchain technology is not all roses Schinckus (2020). It is worth 
mentioning that all transactions\records needs an algorithmic 
validation through the resolution of cryptographic problem. Such 
algorithmic consensus (namely proof-of-work for the vast majority 
of crypto-currencies) requires a particular level of energy to fuel 
the computers working on the cryptographic problem. There 
exist several algorithmic consensuses but the proof-of-work is 
the most commonly used for security reason. In this consensus, 
the cryptographic problem to solve is sent to all computer nodes 
in the network while only the node which solves the problem, 
will validate the new transaction\record and get the reward. This 
situation generates a context in which all other computer nodes 
simply consumed energy without any reason\reward (for an 
overview on the different algorithmic consensus, Dupont, 2019). 
The current situation actually calls for further investigations about 
the ecological aspects of blockchain technology.

In this context, this study investigates the influences of 
cryptocurrencies trading on the energy consumption. The 
relationship between all cryptocurrencies (including Bitcoin) 
trading volumes and the energy consumption is examined. 
Using a series of econometric techniques applied on monthly 
time series covering the period 2014M1-2017M12, we found 
that (i) the cryptocurrencies trading has a granger-causality to 
energy consumption; (ii) there is long-run co-integration between 
cryptocurrencies trading and energy consumption; (iii) the 
cryptocurrencies trading notably increases energy consumption 
in both short-run and long-run. The results have been supported 
by robustness checks as detailed in our methodology section.

The article is structured as follows. The next section will present 
an overview of the main studies dealing with blockchain and 
energy consumption while the third section will present our 
methodology and data. The fourth section will discuss our results 
before concluding this study with a fifth section.

2. LITERATURE REVIEW

The global development of cryptocurrencies generated a lot of 
debates and interests from scholars (Alvarez-Ramirez et al., 2018; 
Balcilar et al., 2017; Brandvold et al., 2015; Brauneis and Mestel, 
2018; Jiang et al., 2018; Koutmos, 2018; Takaishi, 2018; Van Vliet, 
2018). In this article, we mainly focus on the underlying technology 
used in the trading of cryptocurrencies: the blockchain technology 
whose Bitcoin is well-known to be the first application (Chen, 
2018). Blockchain technology combines decentralized transactions 
and data management technology in a such way the security, 
anonymity and data integrity in transactions are out of controlling 
any third party organization (Yli-Huumo et al., 2016). This security 
and integrity are very important issues. Yli-Huumo et al. (2016) 
reviewed 41 primary papers and shown that <20% of studies 
focuses on Blockchain applications including e.g. smart contracts 
and licensing, while over 80% of studies paid more attention to 
the Bitcoin system revealing that most of the studies concentrated 
on improving Blockchain limitations from privacy and security 
perspectives. Underwood (2016) wrote that Blockchain technology 
has many potential applications for the digital economy. In their 
systematic review on the blockchain-based applications, Casino 

et al. (2019) concluded that there are various research gaps and 
future exploratory directions for academics and practitioners 
especially in supply chain, business, healthcare, IoT, privacy, and 
data management.

Because blockchain technology allow a decentralized network 
of economic agents to agree about the true state or the validation 
of shared data, it contributes to increase\improve competition, 
lowering entry barriers and privacy risk, while allowing 
participants to make join investments without assigning market 
power to a platform operator (Catalini and Gans (2016). Larios-
Hernández (2017), for instance, explained that digital finance 
technologies using blockchain have empowered a new type of 
entrepreneurship seeking opportunities in relation to financially 
excluded individuals. The benefit of such applications for people 
who have limited or no access to formal financial services has 
been discussed in the literature (World Bank Report, 2017). Chen 
(2018) indicated that blockchain technology has given innovators 
the capability of creating digital tokens to represent scarce assets, 
potentially reshaping the landscape of entrepreneurship and 
innovation by giving innovators a new way to develop, deploy, 
and diffuse decentralized applications.

Several solutions have also been implemented in terms of energy. 
As mentioned in the speech of Alexandre Gellert Paris (Associate 
Programme Officer at the UNFCCC), blockchain technology is 
named as a potential solution for a better stakeholders’ involvement, 
transparency and engagement of countries, regions and cities. Such 
context generates numerous business opportunities to bring more 
trust and further innovative solutions in the fight against climate 
change. Blockchain technology has been mentioned to develop 
peer-to-peer trade of clean energy, for certified and facilitated 
transactions among consumers by improving carbon emission 
trading, facilitating clean energy trading and enhancing climate 
finance flows. Sanderson (2018) wrote that blockchain technology 
could be a potential solution to encourage the growth of green bond 
markets in both size and sophistication with the credibility and 
then contribute to the climate change fighting. Woodhall (2018) 
explained that blockchain and smart contracts are important in 
helping to remove frictions in the attempts to tackle climate change. 
Hwang et al. (2017), for instance, introduced energy prosumer 
service model applying blockchain technology, big data and Internet 
of Things which allows various energy sources to be connected to 
various users and producers. These authors suggested that these 
technologies can improve the energy efficiency of renewable 
energy projects. In the same vein, Sikorski et al. (2017) analyzed 
the application of blockchain in facilitating machine-to-machine 
(M2M) interactions and improving the electricity use in the chemical 
industry. Brilliantova and Thurner (2018) wrote a literature review 
combined with expert interviews about the future energy landscape 
after the blockchain advent. Their study concluded that the widest 
impact of blockchain technology will have in the short-term is 
the electric vehicle integration while in the long-term blockchains 
are expected to enable peer-to-peer microgrids. Other articles\
studies (Green, 2018; Harnett, 2018) also discussed the important 
role of blockchain technology in climate change problem. Chen 
(2018) mentioned the necessity to mobilize economics and finance 
knowledge to generate a low-carbon transition and the necessity to 
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work on this quickly enough to prevent dangerous anthropogenic 
interference with the climate system.

Gore (2018) promoted the first-ever, blockchain-based peer-to-
peer energy transactions system implemented by a resident in 
Brooklyn (New York) who owns a roof-top solar panel and sells 
the world’s first few kilowatt-hours of locally generated surplus 
solar energy to a neighbor through an Ethereum Blockchain 
smart contract (instead of selling this surplus of electricity to a 
traditional utility company). Gore (2018) explained that blockchain 
technology can also help consumers with a more streamlined 
and accurate billing or accounts experience on the demand 
side. A conclusion of this application is that the integration of 
blockchain in the energy sector implies a more accurate energy 
generation and a better consumption data tracking system. Such 
situation favors transparency and all stakeholders’ benefit from 
fairer prices than they are under a classical centralized tariff 
system. Mengelkamp et al. (2018) evaluated the blockchain-
based microgrid energy market in Brooklyn Microgrid project as 
a case study and they showed that blockchains are an appropriate 
technology to operate decentralized microgrid energy markets. 
Marke (2018) summarized that blockchain can contribute to 
smarter renewable energy deployment, smoother international 
climate finance transfers, fraud-free emissions management, and 
better green finance law enforcement. Truby (2018) indicated that 
blockchains could stimulate accountability and community-led 
reporting while promoting technology development, finance and 
cryptocurrency solutions for fighting climate change. Zhang et al. 
(2018) provided a list of examples from China and other countries 
about the contributions of blockchain technology to boost climate 
actions. One can observe an increasing number of applications 
using blockchains in improving the energy consumption (Andoni 
et al., 2019 for a review on this topic)1.

However, the blockchain technology is not all roses. The 
environmental benefit related to blockchain-based applications 
is one part of the reality that must be nuanced simply because the 
use of blockchains also requires energy. The process of adding 

1 Andoni et al. (2019) observed that the blockchain technology is an emerging 
technology, which has drawn considerable interest from energy supply 
firms, startups, technology developers, financial institutions, national 
governments and the academic community, promises transparent, tamper-
proof and secure systems. They reviewed 140 blockchain research projects 
and startups to construct a map of the potential and relevance of blockchains 
for energy applications. They documented a range of blockchain application 
in energy from emerging peer-to-peer energy trading and Internet of Things 
(IoT) applications to decentralized marketplaces, electric vehicle charging 
and e-mobility.

transaction records (block) to the past transactions (to constitute 
a blockchain) requires a specific computational power labeled as 
mining. Whatever the kind of algorithm that is used to validate 
cryptographically the transaction, blockchain-based currencies 
require a significant level of computational power that refers to 
the energy that computers need to solve the cryptographic problem 
associated with all new transaction in the network. In this context, 
Ongena et al. (2018) explained that there are several conditional 
challenges that still must be overcome to realize blockchain 
technology’s full potential in terms of environment. Mora et al. 
(2018) or Morris (2018) warned about the negative externalities 
generated by the use of cryptocurrencies by explaining that the 
global temperature could increase of 2°C by 2034. Although they 
do not provide so apocalyptic numbers2, several empirical studies 
suggest the same increasing trend in the Bitcoin’s use of energy 
(Vranken, 2017; McCook, 2018; De Vries, 2018; Mora et al., 2018; 
Morris 2018; Stoll et al., 2019; Goodkind et al., 2020).

3. METHODOLOGY AND DATA

With the aim at examining the effect of cryptocurrency trading 
on the energy consumption, our study collected the monthly data 
of primary energy consumption from US Energy Information 
Administration and the trading volume of Bitcoin and all 1636 
cryptocurrencies from 2014M1 to 2017M12. The details about 
our data are provided in the Table 1 presented below.

The Figure 1 exhibited in the following page shows the energy 
consumption and the cryptocurrencies trading volume during the 
period of study. It indicates an important rise in the cryptocurrencies 
trading volume at the end of 2017, which is in line with a gradual 
increase in the energy consumption. The nature of our monthly 
data related to energy requires a seasonal adjustment that we did by 
using a X-12-ARIMA seasonal adjustment program. The data are 
then presented in logarithms for the final econometric analysis. The 
data description is reported in the Table 2 on the following page.

The Table 3 presented in the following page shows the 
unconditional correlation matrix among variables.

It is interesting to notice that the Bitcoin trading volume and the 
energy consumption have a significant positive correlation (0.326) 

2 Mora et al. (2018) study generated a lot of debates. Recent works (Houy, 
2019; Dittmar and Praktiknjo (2019) questioned the Mora et al. (2018) 
methodology and provide less apocalyptic figures – but they do not deny 
the increasing trend in the Bicoin’s electricity consumption.

Table 1: Primary data, sources, and description
Variable Sources Obs. Mean Std. Dev. Min Max
Total primary energy consumption 
(seasonal adjustment) (Quadrillion BTU)

U.S. Energy Information 
Administration (November 
2018 Monthly Energy Review)

48 8.15 0.19 7.54 8.54

Total indigenous electricity production (seasonal 
adjustment domestic electricity production - TWH)*

U.S. Energy Information 
Administration (November 
2018 Monthly Energy Review)

48 867773 12364.7 829437.3 893043.1

Trading volume of Bitcoin (USD) www.coinmarketcap.com 48 5.8E+06 5.5E+06 7.3E+05 2.7E+07
Total trading volume on Cryptocurrency market (USD) www.coinmarketcap.com 48 9.0E+11 1.9E+12 1.7E+11 1.3E+13
*The data is calculated basing on the data of 35 largest economies (Appendix for country list)
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while all cryptocurrencies trading volume has an insignificant but 
positive correlation with energy consumption (0.094). This suggests 

a positive relationship between cryptocurrency trading volume and 
energy consumption. The Table 3 also reports the results of unit 
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Figure 1: Cryptocurrency market and energy consumption

Table 2: Data calculations and description
Variable Calculations Obs. Mean Std. Dev. Min Max
Energy Log of total primary energy consumption 

(seasonal adjustment)
48 2.098 0.024 2.021 2.145

Elecpro Log of total indigenous electricity production 48 13.67 0.014 13.62 13.70
VoBit Log of trading volume of Bitcoin 48 6.512 0.984 5.454 9.635
VoCry Log of total trading volume on cryptocurrency market 48 15.216 0.836 13.499 17.096
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root test (Dickey and Fuller, 1979) for levels and 1st difference 
of variables. The results show that the energy consumption is 
stationary at the level, while the trading volume of Bitcoin and all 
cryptocurrencies are stationary at the 1st difference. Based on this 
first results, we use the granger-causality test (Granger, 1969) and 
Johansen cointegration test (Johansen, 1991) for trading volume of 
Bitcoin/All cryptocurrencies with the energy consumption. These 
tests are presented in the Table 4 presented below.

These results indicate that there is a granger-causality between 
the trading volume of all cryptocurrencies and the energy 
consumption, while there is a statistical evidence on the Granger-
causality from Bitcoin trading volume on energy consumption and 
the Granger-causality from energy consumption to Bitcoin/All 
cryptocurrencies trading volume. This result provides evidence 
on the influence of cryptocurrencies trading on the energy 
consumption. Interestingly, the results of Johansen co-integration 
test show that there is a long-run relationship between Bitcoin/
all cryptocurrencies trading volume and the energy consumption. 
With the primary observation, the co-integration, Granger-

causality, and the stationary of variables in different levels, the 
influences of cryptocurrency trading on the energy consumption 
will be examined through an autoregressive distributed lag 
(ARDL) model (Hassler and Wolters, 2006; Pesaran and Shin, 
1998; Pesaran et al., 2001) as detailed in the following equation:

 
Energy Energy Energy

VoCry VoCry
t t p t p

t k t k

= + +…+

+ +…+
− −

−

β β β

α α
0 1 1

1
++ε t  (1)

where t refers to time (monthly data); Energy is the primary energy 
consumption (in log form); VoCry is the total cryptocurrency 
trading volume (in log form), which is also replaced by Bitcoin 
trading volume (VoBit) for robustness check; β and α are estimated 
coefficients; ε is the classical residual term. We apply the bound 
test of Pesaran et al. (2001) to find the optimal lags for the equation 
(2). Furthermore, the long-run and short-run effects are estimated 
with the ARDL model.

It is worth mentioning that the revolution of energy consumption 
in equation might be due to many exogenous factors (Ekholm 
et al., 2010; O’neill and Chen, 2002; Schipper, 1995) so that we 
implement a second step by estimating the following equations 
to extract the residuals of each variable:

 Energy Energy Tt t t t= ∂ + ∂ + ∂ +−0 1 1 2
ϑ  (2)

 VoCry VoCry Tt t t t= + + +−γ γ γ µ
0 1 1 2

 (3)

 VoBit VoBit Tt t t t= + + +−θ θ θ ρ
0 1 1 2

 (4)

In which: T proxies the monthly data (to catch the time effect). 
These estimations help to extract the residuals describing 
the unexplained part of 3 particular dynamics: the energy 
consumption, the trading of all crypto-currencies and the trading 
of bitcoin, respectively. The results of equation (2), (3), and (4) 
are reported in Table 5 shown in the following page.

Table 3: Correlation matrix and unit root tests
Correlation Energy Elecpro VoBit VoCry
Energy 1.000
Elecpro 0.756*** 1.000

0.000
VoBit 0.326** 0.444*** 1.000
P-value 0.024 0.001
VoCry 0.094 0.356** 0.735*** 1.000
P-value 0.525 0.012 0.000
Variable Dickey-Fuller test 

for level
Dickey-Fuller test for 

1st difference
Z (t) P-value Z (t) P-value

Energy −4.659*** 0.0001 −9.193*** 0.0000
Elecpro −3.932*** 0.001 −9.040*** 0.0000
VoBit −1.002 0.7524 −9.865*** 0.0000
VoCry 0.574 0.9869 −3.575*** 0.0063
**, *** are significant levels at 5% and 1%, respectively

Table 4: Granger-causality tests and cointegration tests
Variable: X X does not granger-cause energy Energy does not granger-cause X

Z-bar P-value Z-bar P-value
VoBit 0.674 0.411 0.723 0.395
VoCry 2.991* 0.084 0.139 0.709
Variable: X Maximum rank Cointergation test of energy with X

Trace statistics 5% critical value Max statistic 5% critical value
VoBit 0 20.58** 15.41 19.21** 14.07

1 1.373 3.76 1.373 3.76
VoCry 0 21.93** 15.41 21.64** 14.07

1 0.293 3.76 0.293 3.76
Variable: X X does not granger-cause Elecpro Elecpro does not Granger-cause X

Z-bar P-value Z-bar P-value
VoBit 7.343*** 0.007 0.082 0.774
VoCry 4.135** 0.042 0.024 0.875
Variable: X Maximum rank Cointergation test of Elecpro with X

Trace statistics 5% critical value Max statistic 5% critical value
VoBit 0 22.15** 15.41 21.04** 14.07

1 1.112 3.76 1.112 3.76
VoCry 0 18.38** 15.41 18.02** 14.07

1 0.364 3.76 0.364 3.76
*, **, *** are significant levels at 10%, 5%, and 1%, respectively
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The Table 6 below describes the correlations and the unit root 
test for residuals of energy consumption, all cryptocurrencies 
trading volume, and Bitcoin trading volume. It shows that the 
unexplained evolution of all crypto-currencies trading volume 
have a significant positive correlation with the unexplained 
evolution of the energy consumption while the unexplained 
evolutions in Bitcoin trading volume have an insignificant positive 
correlation. Such results confirm the positive correlation between 
cryptocurrencies trading volume with energy consumption not only 
in levels but also in terms of unexplained evolutions. The Figure 2 
below shows the unexplained evolutions in energy consumption, 
all crypto-currencies trading volume, and bitcoin trading volume.

It is worth noticing that the fluctuations in unexplained evolution 
of the energy consumption around 2015M1 and 2017M1 are in line 
with high fluctuations in cryptocurrencies trading volume. We then 
examine possible structural break for each residual using the Wald test 

as suggested by Donald (1993) and Patrick (1992). The LM ARCH 
test of Engle (1982) is then used to examine the ARCH disturbance 
for each variable. The Table 7 below shows the results of structural 
tests and ARCH disturbance test showing no evidence of structural 
break and no ARCH disturbance.

Therefore, we can finally estimate the effect of the unexplained 
evolution of cryptocurrencies trading volume on the unexplained 
evolution of the energy consumption through the following equation:

  EnergyR VoCryRt t t= + +σ σ τ
0 1

 (5)

Figure 2: Cryptocurrency market and Energy consumption: the 
residuals in the two

Table 5: Estimations for each variable to extract the 
residuals (the unexplained evolutions)
Model: OLS 
estimation

(1) (2) (3) (4)

Dep. Var: Energy Elecpro VoCry VoBit
L.Energy 0.355**

[0.143]
L.Elecpro 0.348**

[0.139]
L.VoCry 0.933***

[0.101]
L.VoBit 0.506***

[0.136]
T (monthly) 0.0001 0.0003** 0.011** 0.028***

[0.0002] [0.0001] [0.005] [0.008]
Constant 1.290*** 8.686*** −5.597* −11.082***

[0.362] [1.878] [3.106] [3.591]
N 47 47 47 47
R-squared 0.123 0.286 0.786 0.844
*, **, *** are significant levels at 10%, 5%, and 1%, respectively

Table 6: Data description, correlation matrix, and unit 
root tests for unexplained evolutions
Residuals Obs Mean Std. Dev. Min Max
EnergyR 47 −8.6E-11 0.0217 −0.0707 0.0439
ElecproR 47 −1.2e-12 0.0121 −0.0399 0.0277
VoCryR 47 −2.7E-09 0.4116 −0.6608 1.4268
VoBitR 47 2.3E-09 0.3270 −0.6313 0.8865
Correlation EnergyR ElecproR VoBitR VoCryR
EnergyR 1.000
ElecproR 0.838*** 1.000

0.000
VoBitR 0.236 0.168 1.000
P-value 0.111 0.257
VoCryR 0.263* 0.034 0.379*** 1.000
P-value 0.074 0.816 0.009
Variable Dickey-Fuller test for level

Z (t) P-value
EnergyR −6.597*** 0.0000
ElecproR −6.576*** 0.0000
VoBitR −7.331*** 0.0000
VoCryR −6.108*** 0.0000
*, **, *** are significant levels at 10%, 5%, and 1%, respectively. The residuals are 
predicted from the estimations in Table 6

Table 7: Structural break tests and ARCH disturbance 
tests for unexplained evolutions
Var Cumulative sum test for parameter stability

Test 
statistic

1% 
critical 
value

5% 
critical 
value

10% 
critical 
value

Conclusions

EnergyR 0.4824 1.143 0.9479 0.850 No Break
ElecproR 0.3594 1.143 0.9479 0.850 No Break
VoBitR 0.5564 1.143 0.9479 0.850 No Break
VoCryR 0.4439 1.143 0.9479 0.850 No Break
Var Estimated break 

date
Wald test

Statistic P-value Conclusions

EnergyR 2017 m3 2.7634 0.6046 No Break
ElecproR 2017 m3 0.4604 1.0000 No Break
VoBitR 2017 m3 3.2111 0.5114 No Break
VoCryR 2017 m3 2.0958 0.7620 No Break
Var LM test for autoregressive conditional 

heteroskedasticity (ARCH)
Statistic P-value Conclusions

EnergyR 1.626 0.2023 No ARCH disturbance
ElecproR 0.015 0.9038 No ARCH disturbance
VoBitR 1.055 0.3043 No ARCH disturbance
VoCryR 0.525 0.4686 No ARCH disturbance
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where EnergyR refers to the residuals from equation (2). VoCryR 
is the residual term from the equation (3). We also replace 
the residuals from equation (4) to examine the effect of the 
unexplained evolution of the Bitcoin trading volume (VoBitR) 
on the unexplained evolution of the energy consumption3. The 
following section reports and discusses in more detail our 
findings.

4. RESULTS AND DISCUSSION

The results of our ARDL estimation for the equation (1) are 
reported in the Table 8 that show the effects of Bitcoin/All 
cryptocurrencies trading volume on energy consumption in both 
short-run and long-run.

Firstly, the adjustment term (the lag of dependent variable – Energy) 
has a significant negative effect on the difference energy 
consumption in the studied period implying that a higher level 
of energy consumption in the previous month is adjusted in the 
following month through the long-run level. The value of the 
coefficient is ranged between -1 and 0 indicating that the results 
from the ARDL model are consistent.

Secondly, the trading volume of all cryptocurrencies has a 
significant positive effect on energy consumption in both 
short-run and long-run meaning that the cryptocurrencies trading 
causes a higher energy consumption globally. Interestingly, 
the coefficient of long-run effect (0.011) is much stronger than 
the coefficient of short-run effect (0.008), which implies a 
long-run consequence. This observation is a key contribution 
of our article since, to our knowledge, there is no existing 
works offering a clear empirical evidence on the long-term 
deteriorating consequence of the cryptocurrencies trading on 
the energy consumption. These results are also consistent with 
our earlier findings according to which the crypto-currenccies 
trading has a positive correlation with energy consumption. 

3 As the evidence of no ARCH disturbance, no structural break, and all 
variables are stationary at the level, the equation (4) is estimated by OLS 
and checked the robustness by Robust OLS.

Moreover, cryptocurrency trading has a granger-causality with 
the energy consumption.

The Table 8 below refers to the results for the case of Bitcoin trading 
volume and it shows the insignificant positive effects of Bitcoin 
trading volume on energy consumption in both short-run and 
long-run. This result is quite consistent with our earlier observation 
on the correlation and Granger-causality test among the variables. 
It can be understanding by the fact that, although the bitcoin trading 
volume is large, it is still relatively less important that the trading 
volume of all 1636 cryptocurrencies that, together consume more 
energy than the bitcoin only. Despite this result on the energy 
consumption, the Table 8 indicates that the bitcoin trading volume 
has a significant positive influence on the short-run and the long-
run production of energy consumption. Such observation confirms 
that the bitcoin has a problem of sustainability in the long term. 
The effects of unexplained evolutions of crypto-currencies trading 
on the unexplained evolutions of energy consumption are reported 
in the Table 9 shown in the following page.

The findings show that the unexplained evolution of both, the 
bitcoin trading volume and the trading of all cryptocurrencies have 
a significant positive impact on the unexplained evolutions of energy 
consumption. This result confirms our findings about the crypto-
currencies trading that increase the global energy consumption. 
Furthermore our observations indicate that the trading volume of 
crypto-currencies market might significantly explain the unexplained 
evolution of the energy consumption. In other words, one might 
consider that the unexpected evolution of energy consumption can 
be described by the evolution of cypto-currencies trading.

For the robustness check, our study also checked the correlation, the 
Granger-causality, and the co-integration among cryptocurrencies 
trading volume as well as the unexplained evolutions in energy 
consumption. Our analysis shows  shows that there is a significant 
positive correlation between all cryptocurrencies trading volume 
and the unexplained evolution in energy consumption. Moreover, 
there are co-integrations between them. The ARDL model is 
mobilized for the stationary of variables at different levels 

Table 8: The cryptocurrency trading volume and energy consumption: ARDL estimations
ARDL model D.Energy D.Elecpro
The effects 
of:

Bitcoin volume Total cryptocurrency volume Bitcoin volume Total cryptocurrency volume

Adjustment L.Energy/L.Elecpro −0.668*** −0.724*** −0.671*** −0.600***
[0.147] [0.144] [0.139] [0.139]

Long-run L.VoBit 0.008 0.009***
[0.006] [0.003]

Short-run D.VoBit 0.005 0.006***
[0.004] [0.002]

Long-run L.VoCry 0.011** 0.007*
[0.005] [0.004]

Short-run D.VoCry 0.008** 0.004*
[0.004] [0.002]

Constant 1.320*** 1.309*** 9.085*** 8.092***
[0.315] [0.302] [1.898] [0.139]

N 46 46 46 46
R-squared 0.344 0.385 0.362 0.311

*, **, *** are significant levels at 10%, 5%, and 1%, respectively
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(unexplained evolution of energy consumption is stationary at the 
level, while the trading volume of cryptocurrency is stationary at 
the 1st difference). The results of ARDL estimations confirm that 
the trading volume of cryptocurrencies has a significant positive 
impact on the unexplained evolutions of energy consumption in 
the short-run and the long-run.

5. CONCLUSION

This study deals with the environmental aspects of 
crypto-currencies trading through its statistical relationship 
with the energy consumption. This article examines the effects 
of cryptocurrencies trading on the energy consumption over 
the period 2014M1-2017M12. The data for the Bitcoin and 
1636 cryptocurrencies trading volume combined with primary 
energy consumption were collected for an analysis of time series 
through the application of econometric techniques. In this study, 
we also investigate the effect of the unexplained evolution of 
cryptocurrencies trading volume on the unexplained evolution of 
energy consumption.

Our empirical analysis provides three different contributions. First, 
we show the positive influence of the trading of cryptocurrencies 
on the energy consumption by generating a higher unexplained 
level of energy consumption. Second, the trading volume of all 
cryptocurrencies has a significant positive impact on the energy 
consumption in both short-run and long-run indicating a long-run 
deteriorating impact of the consumption of energy. Finally, the 
trading of bitcoin appears to have a long-run positive influence 
on the production of energy emphasizing its limitations in terms 

of sustainability. In this research, we did not distinguish the 
proof-of-work based crypto-currencies from the other algorithms 
based ones - this could be a limitation of our study – but still 
acceptable since the vast majority of the crypto-currencies are now 
traded through the energy consuming Proof-of-Work consensus 
(Goodkind et al. 2020), we simply use the data related to the trading 
of all crypto-currencies in our analysis. Another methodological 
aspect can be mentioned here: in line with the existing literature, 
we associated here the electricity consumption with the trading 
volume of cryptocurrencies – it is worth mentioning that some 
studies (Dittmar and Praktiknjo 2019; Masanet et al., 2019) claim 
that the Bitcoin’s electricity consumption should be analyzed 
in relation with the hashrate (i.e. the network computational 
power). Due to the limitation of data (the past evolution of the 
hashrate is available only for the Bitcoin), we decided to use the 
trading volume (number of transactions) to proxy the activity 
of all cryptocurrencies. Furthermore, our study can easily be 
replicated with the hashrate as major indicator (instead of the 
trading volume). More generally, our study paves the way for 
future research that will categorize the crypto-currencies based on 
their validating algorithms to identify which ones offer the most 
sustainable option for the future of digital currencies.
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