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ABSTRACT

The use of intermittent power supplies, such as solar energy, has posed a complex conundrum when it comes to the prediction of the next days’ supply. 
There have been several approaches developed to predict the power production using Machine Learning methods, such as Artificial Neural Networks 
(ANNs). In this work, we propose the use of weather variables, such as ambient temperature, solar irradiation, and wind speed, collected from a 
weather station of a Photovoltaic (PV) system located in Amman, Jordan. The objective is to substitute the aforementioned ambient temperature with 
the more realistic PV cell temperature with a desire of achieving better prediction results. To this aim, ten physics-based models have been investigated 
to determine the cell temperature, and those models have been validated using measured PV cell temperatures by computing the Root Mean Square 
Error (RMSE). Then, the model with the lowest RMSE has been adopted in training a data-driven prediction model. The proposed prediction model 
is to use an ANN compared to the well-known benchmark model from the literature, i.e., Multiple Linear Regression (MLR). The results obtained, 
using standard performance metrics, have displayed the importance of considering the cell temperature when predicting the PV power output.

Keywords: Renewable Energy, Photovoltaic, Prediction, Cell Temperature, Multiple Linear Regression, Artificial Neural Networks 
JEL Classifications: C53, Q47

1. INTRODUCTION

Jordan is a nation lying in the heart of the Middle East, surrounded by 
Palestine, Iraq, Syria, Saudi Arabia, and shares a water border with 
Egypt. Unlike the most of the neighboring nations, Jordan does not 
have enough crude oil to sustain itself. In fact, Jordan relies heavily 
on the import of the crude oil to satisfy the consumption. This fact 
meant that Jordan has to import oil at a huge cost which amounts to 
more than 10% of the total GDP (Department of Statistics 2017; Jaber 
et al., 2004; Ministry of Energy and Mineral Resources (MEMR) 
2017; Ministry of Planning and International Cooperation 2015; 
National Electric Power Company (NEPCO) 2018).

In order for Jordan to meet its growing energy demand, alternative 
means of generating energy have been investigated. Jordan’s 

energy strategy has decided to promote Renewable sources of 
Energy (RE), especially solar and wind; because Jordan lies in 
the solar belt and has access to strong winds in some parts of the 
country. According to national vision and strategy (Ministry of 
Planning and International Cooperation 2015), it was planned 
to achieve a contribution of 10% related to the total energy mix 
in 2020. As a result of the implementation of this strategy, the 
generation capacity of RE projects carried out on the transmission 
and distribution grids has been increasing from 1.4 MW in 2014 
to 980 MW by late 2018, representing about (18.7%) of the 
total generation capacity (Figure 1) (Ministry of Planning and 
International Cooperation, 2015).

Among the various RE sources, the Photovoltaic (PV) systems 
are considered the most popular and strongly attractive source 
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of energy (Brunet et al., 2018). However, the PV cell relies on 
sunrays to produce electricity, which poses a problem for the 
energy distribution companies since the amount of rays hitting 
the solar panel constantly varies during the day. The power output 
changes depending on multiple factors affecting the PV, from 
weather conditions (e.g., wind speed) to the angle of incidence 
of the solar rays.

With that being said, the energy distribution companies cannot 
effectively predict the performance of RE and hence do not have 
the ability to accurately analyze the amount of energy that will be 
produced by the RE sources and plan accordingly to fulfill the user 
demand. Therefore, balancing the alternating variable input of the 
RE becomes a major challenge for the energy supplier, and finding 
a method or tool to predict (forecast) is necessary in order to aid 
the implementation of variable RE inputs (Al-Dahidi et al., 2018).

An effective and reliable tool that could be used in power 
production prediction is the utilization of Artificial Intelligence 
(AI). AI is a tool that simulates the cognitive behavior of a human 
brain in machines or computers. The computer or machine initially 
learns (i.e., Machine Learning [ML]) or in this context data is 
inputted into the system. The system then utilizes algorithms 
to attempt to reach a certain target or output. After learning, the 
system then starts reasoning which algorithm is best to reach the 
desired output. Finally, the system undergoes a self-correction 
process, which tries to continually improve the algorithm used to 
reach the desired output more accurately.

In order to predict the power generated from PV panels, there 
have been two main types of ML algorithms utilized to determine 
the power output as accurately as possible. These algorithms 
can be generally categorized into physics-based and data-driven 
(Al-Dahidi et al., 2018; Das et al., 2018; Ernst et al., 2009; Moslehi 
et al., 2018). Physics-based extract a mathematical equation 
from the collected weather variables (e.g., ambient temperature, 
irradiation, wind speed, etc.) to find the PV power output. On the 
other hand, data-driven are appropriated by ML algorithms without 
the need for any physics-based model. In fact, they exploit pre-
existing historical data collected from sensors or a weather station to 
find a relation between the weather variables and the power output.

In this work, only data driven methods will be analyzed. Most 
of the previous research works have used the two parameters 
of irradiation and ambient temperature in their analysis. For 
example, Fernandez-Jimenez et al., 2012, presented a short term 
forecasting method that consists of three modules, two of which 
were Numerical Weather Prediction (NWP) models and the third 
was an Artificial Neural Network (ANN)-based model. The first 
two were used to forecast weather variables to be used by the third 
module. The final value is the hourly power output of the PV plant 
with a 1-39 h forecast horizon; Liu et al., 2017, proposed the use 
of BP NN to predict power output up to 24 h-ahead; Zhong et al., 
2018, employed the use of both General Regression and BP, and 
the results were then compared showing more favorable results 
with BP; Liu et al., 2019, established a Weight Varying Ensemble 
forecasting model that improved short term power prediction. In 
(Mellit, 2009), a Recurrent NN (RNN) was used for forecasting 
the generation of a PV power system; Ding et al., adopted an 
ANN-based approach. An improved BP learning algorithm is 
used to overcome the shortcomings of the standard BP learning 
algorithm; Chow et al., employed ANN to mimic the nonlinear 
correlation between meteorological factors and power output, 
and then display that short-term power prediction performance 
is commensurate to the real-time power prediction performance 
when ahead solar angles are taken into account; Oudjana et al., 
adopted NN for one week-ahead prediction using weather 
variables; Shi et al., proposed a forecasting PV power output 
approach based on weather classification and Support Vector 
Machines (SVMs); Hussein et al. (Kazem and Yousif 2017), used 
neural mathematical models such as Generalized Feedforward 
Networks (GFF), MultiLayer Perceptron (MLP), Self-Organizing 
Feature Maps (SOFM) and SVM to predict power produced and 
compared the results. Al-Dahidi et al., proposed the exploitation 
of ELM for faster computational speed and better generalization 
capability and compared the performance of the model with the 
traditional BP-ANN of literature.

Some other common weather variables used for prediction 
purposes were the relative humidity and wind speed with the 
aforementioned variables. For example, Lin et al.,; proposed a 
unique hybrid prediction model combining improved K-means 
clustering, Grey Relational Analysis (GRA) and Elman NN 
(Hybrid improved K means-GRA-Elman, HKGE) for forecasting 
the PV power output. The proposed model was implemented 
using multiple meteorological conditions and history files of 
PV output.

The main weather variables have been irradiation and ambient 
temperature. The following research works substituted the 
ambient temperature with the cell temperature. For example, 
Ba et al., implemented a statistical approach using Weibull 
probability distribution function and obtained an accurate 
relationship for power output between irradiation and the cells’ 
back temperature. The calculated power output was compared 
to the measured and they obtained a high correlation coefficient. 
Bouzerdom et al., combined two models: the Seasonal Auto-
Regressive Integrated Moving Average method (SARIMA) and 
the SVM. The hybrid model showed better prediction results. In 
(Paulescu et al., 2017), two advanced models for predicting the 

Figure 1: Energy generation capacity since 2014
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power output of PV cells were analyzed: a black-box Takagi-
Sugeno fuzzy model and a physically inspired, semiparametric 
statistical model (Generalized Additive Model, GAM) based 
on smoothing splines. In (Baharin et al., 2016), a Support 
Vector Regression (SVR) method was used as well as ANN 
(nonlinear autoregressive), and these methods were compared to 
a benchmark model using persistence method. In (Yu and Chang 
2011), a NN method was implemented using BP algorithms. Al-
Bashir et al., employed a Multivariate Linear Regression (MLR) 
to forecast power output. Moslehi et al., examined various data 
collection and modelling scenarios for the prediction of the PV 
power production. In particular, the effect of exploiting measured 
(or calculated) cell temperatures on the predictability of the PV 
power production was studied.

So far, the temperature of the module has been underutilized, and 
few efforts have been made to implement it into the data-driven 
prediction model. In this work, the cell temperature is derived 
from ten physics-based models and each result is correlated with 
the power output, so that the best models will be determined. 
Afterwards, a validation of the results is carried out and the Root 
Mean Square Error (RMSE) will be compared to choose the best 
model. Finally, this model will be implemented in developing the 
Multiple Linear Regression (MLR) and ANN models for the PV 
power production prediction and evaluating their performances.

The performance of the prediction models is verified with 
respect to two standard metrics, namely RMSE and Coefficient 
of Determination (R2).

The remaining of this paper is organized as follows. Section 2 states 
the PV power production prediction problem. Section 3 presents 
the ASU solar PV system case study. Section 4 describes the 
methodology proposed for investigating the effect of incorporating 
the cell temperature instead of the ambient temperature. Section 
5 discusses the obtained results. Finally, some conclusions are 
drawn in Section 6.

2. PROBLEM STATEMENT

Let us consider the availability of the weather data (W) and the 
corresponding power productions (



P ) of a solar PV system for 
Y years. The former is assumed to combine the hourly values of 
three main variables: the global solar radiations 



Irr( ) , the ambient 
temperature 



Tamb( ) , and the wind speed ( v ). The time stamp in 
terms of the corresponding hour ( hr

���
) and day (



d ) number from 
the beginning of each year data is also considered. Thus, we can 
establish an overall matrix X = [ ]hr d I T v Prr amb

��� � � � � �
 that will be used 

to build/develop models for the prediction of the power output of 
the solar PV system.

In this work, the objective is to substitute the aforementioned 
ambient temperature 



Tamb( )  with the more realistic PV cell 
temperature 



Tcell( ) , whose values are not measured and, thus, not 
available during the study period Y, and to investigate its 
importance when predicting the PV power output. To this aim, 
existing physics-based models have been adopted to determine 

the cell temperature, and their results have been compared to some 
cell temperature values measured for a short period of time for 
validation purposes: the model with the lowest RMSE has been 
adopted and the 



Tamb  values are replaced with the realistic best 
obtained cell temperature values 



Tcell
best( ) . The updated matrix (X′) 

will be, then, used to build/develop prediction models and the 
built-models are in need to be evaluated to verify the effectiveness 
of such a substitution.

The proposed prediction model is to use the Artificial NN (ANN) 
whose prediction capability is to be compared with the well-known 
benchmark MLR from the literature.

3. CASE STUDY

The solar PV power grid-connected system of the Applied Science 
Private University (ASU) of a capacity 264 kWp is presented in this 
Section. A brief introduction on the site is in order. ASU is a private 
university located in Amman (Capital of Jordan) at the coordinates 
32°2’24.0324” N and 35°54’1.4328” E, latitude and longitude, 
respectively. The location of the PV cells are found atop the Faculty 
of Engineering building (Figure 2). The PV array was at an angle 
of 36° pointing in the direction of southeast, and have a tilt angle 
of 11°. The inverters connected to the PV panels are of the SMA 
SUNNY TRIPOWER type and consist of 13 17000W inverters and 
one 10000 W inverter. The solar panels are of the Yingli Solar: YL 
245P-29b-PC type, and those consist of polycrystalline structure 
(Applied Science Private University, 2019).

The existing weather station in the ASU campus located around 
171 m from the Faculty of Engineering helped by tabulating 
and recording the weather conditions experienced by the PV 
system, and classifying them into 45 different variables (e.g., 
solar radiation, ambient temperatures, wind speeds), and gave 
values for these weather variables every hour for the past Y~3.5 
years (i.e., May 16, 2015 to December 31, 2018), whereas the 
inverters connected to the PV panels recorded the corresponding 
power output delivered by the system (Applied Science Private 
University (ASU) 2019).

Among the available weather variables, some of them have 
been excluded from the analysis due to the facts that either their 
behaviour is constant during the Y~3.5 years study period, such as 
precipitation amounts, or they are irrelevant to the delivered PV 
power, such as soil surface and subsoil (−10 cm) temperatures, 
whereas the global solar radiation, ambient temperature at 1m 
level, and the wind speed at 10 m level have been recommended 
and utilized for building the prediction models as they have the 
large influence on the solar PV power productions (Al-Dahidi 
et al., 2019). In addition to the before-mentioned considered 
weather variables, the time effect in day hour and number in a 
year has been also considered while building the prediction models 
because they represent the diurnal cyclic and the seasonal effects, 
respectively (Al-Dahidi et al., 2019).

All of the considered hourly weather variables together with 
the time stamp and the corresponding power productions are 
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stored in the dataset matrix X that is used later on in Section 5 
for the purpose of calculating the cell temperature, validating the 
calculated cell temperatures, building/developing the MLR and 
ANN prediction models, and comparing their performances.

The whole inputs (weather variables and the time stamp)-outputs 
(power productions) patterns are divided into (i) training dataset 
(Xtrain) (it contains Ntrain = 15115 patterns (i.e., 50%) randomly 
selected from the 30229 inputs-outputs patterns available in the 
overall dataset matrix), (ii) validation dataset (Xvalid) (it contains 
Nvalid = 7557 patterns (i.e., 25%) randomly selected from the 
remaining patterns available in the overall dataset matrix), and 
(iii) test dataset (Xtest) (it contains Ntest = 7557 patterns [i.e., the 
remaining 25%]). 

The three datasets will be used to build/develop the prediction 
models, optimize the models’ architectures, and test/evaluate the 
effectiveness of the predictability of the two prediction models and 
compare their predictability when the ambient temperature is being 
replaced with the best obtained cell temperature, respectively.

4. METHODOLOGY

In this Section, we describe the methodology proposed for 
predicting the solar power productions of the ASU PV system. The 
proposed methodology is structured in three phases and is sketched 
in Figure 3. The proposed methodology amounts to calculate the 
ASU cell temperatures by using different physics-based models 
and validate the calculated values (Phase I – Section 4.1), build/
develop two different prediction models (Phase II - Section 4.2), 
and evaluate the built-prediction models (Phase III - Section 4.3).

4.1. Phase I: Calculating and Validating the Cell 
Temperatures
4.1.1. Calculating the cell temperatures
Ten different physics-based models (HOMER Pro. 2019; 
Schwingshackl et al., 2013) are investigated to estimate the PV 

cell temperatures (Tcell), hereafter denoted as T T Tcell cell cell
1 2 10

, ,..., . 
The models characterize the inherent relationship between the cell 
temperature, relevant weather variables, such as global solar 
radiation, wind speed, wind direction, and ambient temperature, 
and some other characteristics which depend on the PV cell 
technology under study (i.e., in our case study the polycrystalline 
silicon (p-Si)).

The different physics-based models adopted in this work are 
hereafter summarized. For more details on the PV cell temperature 
physics-based models, the interested reader may refer to (HOMER 
Pro. 2019; Schwingshackl et al., 2013).

• Standard PV cell temperature model
This is the simplest physics-based model developed for estimating 
the PV cell temperature (Markvart, 2000). It calculates the cell 
temperature Tcell

1( )  as a function of the ambient temperature (Tamb), 

solar radiation (Irr), and other PV technology dependent 
characteristics (Eq. (1)).

 T T I
I

T Tcell amb
rr

NOCT
cell NOCT amb NOCT

1 = + −.( ), ,  (1)

where Tcell,NOCT is the Nominal Operating Cell Temperature that 
depends on the PV technology under study whose value is taken 
at the solar radiation INOCT = 800 W/m2, the ambient temperature 
Tamb,NOCT = 20°C, and wind speed v = 1 m/s. This model is denoted 
as Model 1.

•	 Skoplaki PV cell temperature model
This model estimates the cell temperatures T T T Tcell cell cell cell

2 3 4 5
, , , and( )  

by integrating the wind speed and other specific solar cell 
properties into the standard PV cell temperature model (Tcell

1  
obtained by Eq. (1)) (Schwingshackl et al., 2013; Skoplaki 
et al., 2008):

 T T
h

h vcell cell
w NOCT

w

STC2 3 4 5 1

2 3 4 5

2 3 4 5
13 1

, , , ,
, , ,

, , ,
. .

.
=

( )
−

η
τ α

ββSTC amb STCT. ,( )







  (2)

where ηSTC and βSTC are efficiency and temperature coefficient of 
maximal power under Standard Test Conditions (STC), 
respectively, i.e., solar radiation of 1000 W/m2, ambient 
temperature Tamb,STC = 25°C, and air mass of 1.5. τ and α are the 
transmittance of the cover system and absorption coefficient of 
the PV cells [%], respectively. hw,NOCT is the wind convection heat 
transfer coefficient for wind speed measured at NOCT conditions, 
i.e. v = 1 m/s. h vw

2 3 4 5, , , ( )  are the wind convection heat transfer 
coefficients which are typically linear functions of the wind 
velocity (v) as defined in (Skoplaki et al., 2008):

Figure 2: ASU PV panels Figure 3: The proposed methodology for solar PV power production 
prediction
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h v vw f
2

8 91 2( ) = +.  (3)

h v vw w
3

5 7 2 8( ) = +. .  (4)

where vf is the wind speed whose values are measured at 10m 
above the ground, whereas vw is the wind speed whose values are 
measured close to the PV module. The vw can be obtained from 
the vf through vw = 0.68 vf – 0.5 (Loveday and Taki 1996; 
Schwingshackl et al., 2013). The cell temperatures T Tc cell ell

and 
2 3( )

obtained using the former equations (Eq. (3) and Eq. (4)) for the 
wind convection heat transfer coefficient are hereafter denoted as 
Model 2 and Model 3, respectively.

Other formulations of the hw (v) have been defined in (Sharples 
and Charlesworth, 1998) for the wind direction perpendicular 
and parallel to the PV module’s surface as follows, respectively:

 h v vw w
4

8 3 2 2( ) = +. .  (5)

 h v vw w
5

6 5 3 3( ) = +. .  (6)

The cell temperatures Tcell
4 5,( )  obtained using the former equations 

(Eq. (5) and Eq. (6)) for the wind convection heat transfer 
coefficients are hereafter denoted as Model 4 and Model 5.

•	 Kurtz PV cell temperature model
(Kurtz et al., 2009) estimated the cell temperature Tcell

6( )  as 

follows without distinguishing between the different PV cell 
technologies:

 T T I ecell amb rr
vw6 3 473 0 0594= + − −

.
. .  (7)

This model is denoted as Model 6.

• Koehl PV cell temperature model
This model calculates the cell temperature (Tcell

7  – hereafter 
denoted as Model 7) as a function of Irr, Tamb, local wind speed 
(vw), and other PV cell technology dependent constants (i.e., U0,U1) 
(Koehl et al., 2011):

 T T I
U U vcell amb

rr

w

7

0 1

= +
+ .

 (8)

• Mattei PV cell temperature model
(Mattei et al., 2006) estimated the cell temperature as follows:

 T
U v T I T

Ucell
PV amb rr STC STC amb STC

PV

8 9

8 9
1

,

,
,. .[ . . ]

=
( ) + − −( )τ α η β

88 9,
. .v ISTC STC rr( ) + β η

 (9)

where U vPV
8 9,

( )  are the heat exchange coefficients for the total 
surface of the PV module. Two different formulations for the UPV 
have been defined in (Mattei et al., 2006) for the U vPV

8 9, ( )  and 

adopted in this work, they are:

 U v vPV w w
8

26 6 2 3( ) . .= +  (10)

 U v vPV w w
9

24 1 2 9( ) . .= +  (11)

The obtained cell temperatures T Tcell cell
8 9

and ( ) using the former 

two equations for the heat exchange coefficient UPV are hereafter 
denoted as Model 8 and Model 9, respectively.

• Homer PV cell temperature model
Apart from the above-mentioned equations, another equation was 
used to determine the cell temperature Tcell

10( )  taken from (Duffie 

and Beckman, 1991; HOMER Pro. 2019) and is hereafter denoted 
as Model 10:

T

T T T G
G

cell

amb cell NOCT amb NOCT
T

T NOCT

mp

10
1

=

+ −( )








−

, ,

,

[
η ,, ,

, ,

,

.
]

( )(

STC p cell STC

cell NOCT amb NOCT
T

T NOCT

T

T T G
G

1

1

−( )

+ −

α

τα

))(
.

)
,α η

τα
p mp STC

 (12)

where Tcell,NOCT and Tcell,STC are the cell temperature under NOCT and 
STC, respectively, Tamb,NOCT is the ambient temperature at NOCT, GT 
and GT,NOCT are the solar radiations striking the PV array and that 
value at NOCT [kW/m2], ηmp and ηmp,STC are the efficiency of the 
PV array at its maximum power point in percentage and that value 
under STC [%], αp the temperature coefficient of power [%/°C].

Thereafter, the different investigated models are used to estimate 
the cell temperature of the ASU PV system and, then, correlated 
with the PV output power to determine the most promising model 
to be used later in the analysis (Section 4.2). The numerical values 
and the application results are fully reported in Section 5.

4.1.2. Validating the obtained cell temperatures
A field trip to the ASU was carried out to validate the former 
findings and find the best model that represents the real values 
of PV cell temperature. A K-type infrared sensor was initially 
calibrated and then the readings of the cell temperature were 
taken at a five-minute interval for two hours. Due to the large 
number of PV cells available, the cells selected were random 
and the temperature of the module was measured at the top and 
bottom to get the average. For each interval, two modules were 
selected and the average was taken. The 24 results obtained were 
then compared to the theoretical value based on the physics-based 
models by calculating the RMSE) (Eq. (13)):

 
( )224

1

24

ˆ
=

−
=
∑ k k

cell cellk
T T

RMSE  (13)

The lowest RMSE value indicates the goodness of the estimated 
cell temperature (hereafter denoted as Tcell

best ) obtained by most 
realistic physics-based model among the ten investigated models.

4.2. Phase II: Building the Prediction Models

Two different prediction models are here developed and later evaluated 
in terms of their prediction performances of the ASU PV power 
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production (i.e., MLR (Abuella and Chowdhury, 2015) and ANNs 
(Hornik et al., 1989; Rumelhart et al., 1986) to study the influence 
of the cell temperature on the solar PV power production prediction. 
The ambient temperature (Tamb) is replaced with the best obtained 
cell temperature Tcell

best( )  and the overall dataset X′ is established 

that will be used to build/develop the prediction models.

A problem arises when the data is directly used due to the presence 
of missing values, therefore the data are pre-proceeded as follows 
(Al-Dahidi et al., 2018):

1. There have been a few errors where the irradiation was 
measured with negative values during the late evening (6 
p.m.-11 p.m.) and early morning (12 a.m.-6 a.m.). These errors 
were due to an offset in the measurement sensors that measure 
the irradiation values, and/or inverter failures. These values 
and their respective power values have been made zeros;

2. Missing data were also found in the data for the Tamb, Irr, 
and power productions due to malfunctioning measurement 
sensors at the weather station, as well as failure in the inverters. 
These values have been excluded from the analysis;

3. The final step before being able to properly utilize the data is 
to normalize the values of time stamp, irradiation, temperature 
(whether ambient or cell), wind speed and power. These 
datasets are made to be in the range of [0-1]. The normalization 
formula is in the form of (Eq. (14)):

 X
X X
X Xnorm

min

max min
=

−
−

 (14)

where X, Xmax, Xmin are the actual, maximum, and minimum values 
of the considered variables to be normalized.

It is worth mentioning that the data patterns of the early morning 
and late evening of each day (i.e., power values available in 
these periods are zeros) have been used to train/develop the 
prediction models but, they have been excluded from the 
evaluation analysis of the prediction models’ effectiveness 
(Section 4.3). This is because the PV system owner is not 
interested in predicting the power output of PV cells during 
the early morning or night with no solar irradiance. The two 
prediction models adopted in this work are hereafter presented 
(Sections 4.2.1 and 4.2.2). 

4.2.1. MLR
The MLR employs a mechanism with which it attempts to model a 
relationship between the inputs (independent variables), i.e., time 
stamp and weather variables, with the output (dependent variable), 
i.e., PV power, by fitting a linear model as per Eq. (15). Each 
value from the independent variables is assigned to a value of the 
output. In the least-squares method, the best-fit line is calculated 
by reducing the sum of the squares of the vertical deviations from 
each data point to the line.

 P a a hr a d a I a T orTrr cell amb= + + + + +0 1 2 3 4. . . . ( )   (15)

where P is the hourly PV power production, hr and d are the hour 
and day number time stamp parameters from the beginning of each 

year data, Irr and Tcell (or Tamb) are the hourly solar global radiation 
and cell (or ambient) temperature, a0,a1,a2,a3,a4 are the regression 
coefficients, and ∈ is the mismatch between the actual (true) and 
the predicted hourly PV power production of the PV system.

The Minitab (Minitab LLC. 2013) is used to define the optimal 
relation between the inputs and the output by estimating the 
regression model intercept and coefficients associated with each 
variable (Eq. 15). Afterwards, the best regression model function 
is used to predict the hourly PV power production values of the 
test dataset (Xtest) based on the hourly inputs’ values. The obtained 
results will be compared to the predictions obtained by the ANN 
prediction model. 

4.2.2. ANNs
A brief explanation will be given for the inner workings of the 
ANN to aid in understanding the how it works. ANN is a method 
used for computers to mimic the real world behavior and make 
it learn by itself. Even though a computer on its own is fast and 
reliably solves our tasks, but it does not have the capability of 
solving if the user does not know the problem, or if the data used is 
incomplete or random. The ANN aids the computer in this regard. 
ANN was first proposed in 1958 by a psychologist and was meant 
to see how a human recognized objects and interpreted visual 
stimuli (Hornik et al., 1989; Rumelhart et al., 1986).

Just as the human brains are connected by the means of neurons 
where the dendrites take information from other neurons whereas 
the axon shares the information, so does the ANN function 
(Hornik et al., 1989; Rumelhart et al., 1986). The ANN is split 
into three main categories: input layer, hidden layer, and output 
layer (Muhammad Ehsan et al., 2017). Figure 4 shows a very basic 
architecture of the ANN.

The schematic above serves to explain the mathematics behind 
the ANN. The input layer are the I = 5 inputs available in the 
training dataset (Xtrain) used to predict the output, these inputs could 
be just one or many depending on the application (i.e. in this work 
for the PV power production prediction, time stamp ([ ]hr d

��� �
), 

hourly global solar irradiation 


Irr( ) , and hourly ambient 

temperature 


Tamb( )  or hourly cell temperature 


Tcell
best( ) , and the 

Figure 4: Basic architecture of the ANN
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hourly wind speed ( v ) are used as inputs, whereas the hourly 
power productions (



P ) are used as outputs). Each i-th input is 
then connected to each h-th hidden neuron in the hidden layer 
(h=1,…,H) with a different weight (wi,h,i=1,…,I,h=1,…H). Initially 
the weights assigned to the connections are random and are 
changed with each iteration. A multiplication operation is 
performed such that the input value is multiplied to the weight 
given to that connection and added to an additional weight (hidden 
bias [bh]) of the connection between the bias neuron and the 
corresponding hidden neuron, and then an addition operation gets 
carried out to add all the modified inputs that come to the neuron 
after they are multiplied with the weighted value. The hidden 
neurons are given an activation function g, which works by 
transforming the signal or the value coming from the input layer 
into another to be taken to the outer layer. Each activation function 
is more or less a graph where the value coming from the input 
layer is the x-value, and the value leaving the neuron is the 
respective y-value on the graph. Finally these values are sent to 
the output layer, multiplied with the weights of connections 
between the hidden neurons and the output neuron 
(wh,o,h=1,…,H,o=1), added to an additional weight (output 
bias [bo]) of the connection between the bias neuron and the output 
neuron, ultimately all added together to give the final value 
typically via a linear activation function. This value is then checked 
with the actual power output and an error value is measured. From 
this value, the weights that were initially randomly assigned are 
readjusted and the process is repeated to get a more accurate result 
(i.e., the so called error Back-Propagation (BP) optimization 
algorithm) (Rumelhart et al., 1986).

In this work, different candidate numbers of the hidden neurons 
hcandidate and different candidate hidden neuron activation functions 
gcandidate are explored to establish an optimum version of the ANN 
architecture.

4.3. Phase III: Evaluating the Built-prediction Models
Once the prediction models are built using the training dataset 
(Xtrain), the prediction models are, then, evaluated on the test dataset 
(Xtest), in terms of their prediction performances using two well-
known standard performance metrics from the literature, they are 
(Al-Dahidi et al., 2018; Al-Dahidi et al., 2019):

•	 RMSE [kW] (Eq. (16)) that computes the deviation between 
the actual (true) and the predicted power productions obtained 
by the two prediction models. The model with the smallest 
RMSE value means that it is effectively capable of capturing 
the hidden (unknown) mathematical relationship between the 
inputs and the output and, thus, of predicting the PV power 
productions accurately, and vice versa.

 
( )21

ˆ
=

−
=
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j jj

test

P P
RMSE

N
 (16)

•	 Coefficient of Determination (R2) [%] (Eq. (17)) that describes 
the variability in the outputs of the two prediction models 
caused by the considered inputs. A value of R2= 100% 
indicates that the variability in the prediction models’ outputs 

have been fully justified by the considered inputs used to build/
develop the corresponding prediction models, and vice versa: 
lower R2

 values indicate that, in addition to the considered 
inputs, other variables need to be taken into account during 
the development of the prediction models to fully justify their 
prediction outcomes.
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where Pj and P̂  are the j-th actual (true) and the predicted PV 
power production obtained by the two prediction models, 
j = 1,…,Ntest, Ntest is the overall test data patterns available in the 
test dataset (Xtest), and P  is the mean value of the obtained power 
production predictions.

The two considered metrics are calculated on the Ntest test data 
patterns for the two prediction models and the obtained values 
are, then, compared to each other. Furthermore, the performance 
gain (PGMetric) (Al-Dahidi et al., 2018; Al-Dahidi et al., 2019; Al-
Dahidi et al., 2019) of each prediction model for the two cases, 
i.e., when the Tamb and the Tcell

best
 are being used, is calculated for 

the two metrics, using Eq. (18). It highlights the improvements 
achieved by the prediction models when the Tcell

best
 is being used 

instead of the Tamb, as well as it compares the predictability of the 
prediction models to each other.

 PG
Metric Metric

MetricMetric
T T

T

amb cell
best

amb

=
−

×100%  (18)

where MetricTamb and MetricTcellbest  are the two considered 

performance metrics calculated for each prediction model when 
the Tamb and the Tcell

best
 are used in developing, optimizing, and 

evaluating the prediction models, respectively. Positive/negative 
values of the PGRMSE/PGR

2 indicate the benefits of exploiting the 
cell temperature instead of the ambient temperature, and vice 
versa. 

5. RESULTS

In this Section, the application results of the proposed methodology 
of Section 4 (Figure 3) on the ASU case study of Section 3 are 
here presented step-by-step.

5.1. Phase I: Calculating and Validating the Cell 
Temperatures
5.1.1. Calculating the cell temperatures
The ten physics-based models investigated in this work are used 
to calculate the cell temperatures of the ASU solar PV system 
for the Y~3.5 years (i.e., 16 May 2015 to 31 December 2018) 
study period. 

For p-Si modules of the ASU PV system under study, Table 1 
reports the models’ parameters values used to calculate the 
different cell temperatures (Duffie and Beckman, 1991; HOMER 
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Pro. 2019; Mattei et al., 2006; Schwingshackl et al., 2013; Skoplaki 
et al., 2008). The cell temperatures obtained by the ten models are 
denoted as Tcell

1  to Tcell
10 .

Once the cell temperatures values are obtained, the correlations 
of these values with the PV power productions are calculated for 
each season of each year and for each year of the study period as 
shown in Figure 5 (top and bottom, respectively).

Looking at Figure 5, one can easily recognize that:
•	 The correlations vary with season showing highest and lowest 

values in summer and autumn seasons, respectively (Figure 5 
[top]);

•	 The correlation values obtained by the ten different models 
can be grouped as follows (Figure 5 [bottom]):

• Correlation values > 0.85 obtained by Model 10 (i.e., 
0.868) and Model 1 (i.e., 0.862);

• 0.85 > correlation values > 0.80 obtained by Model 6 (i.e., 
0.839) and Model 7 (i.e., 0.814);

• Correlation values < 0.80 obtained by the remaining six 
models.

This variation can be justified by whether the wind speed (vw) 
is considered in the physics-based models to calculate the cell 
temperatures or not (Section 4.1.1). Specifically:
• Model 10 and Model 1 do not incorporate the wind speed to 

calculate the cell temperatures;
• Model 6 and Model 7 directly incorporate the wind speed to 

calculate the cell temperatures;

Table 1: The models’ parameters values for p-Si PV modules used in this work.

Parameters values
Standard PV cell temperature (Model 1) Tcell,NOCT= 46
Skoplaki PV cell temperature (Models 2-5) ηSTC =14.1%,βSTC = −0.45%/K,τ.α = 0.9
Koehl PV cell temperature (Model 7) U0 = 30.02, U1 = 6.28
Mattei PV cell temperature (Models 8-9) ηSTC =14.1%,βSTC = −0.45%/K,τ.α = 0.81

Homer PV cell temperature (Model 10)
T C G kW

m
Tcell STC T NOCT amb NOCT, , ,, . . , . ,= = = =25 0 9 0 8 20

2
º ºCτ α

Figure 5: Correlation between the ten cell temperatures with the power productions for each season (top) and for each year (bottom)
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• The remaining six models consider different formulations for 
the wind convection heat transfer coefficients (hw) and the heat 
exchange coefficients for the total surface of the PV module 
(UPV) to incorporate the wind speed in the calculations of the 
cell temperatures.

Considering the fact that the weather station is 171 m away from 
the ASU PV system under study, the available wind speed values 
might not be fully representative at the PV panels’ locations 
and, thus, the inclusion of the wind speed in calculating the cell 
temperatures might lead to non-accurate cell temperatures (as we 
shall see in Section 5.1.2).

For clarification purposes for the importance of calculating the 
correlation values, Figure 6 shows the hourly global solar 
radiations (Irr) (top left), ambient temperature (Tamb) (top middle), 
cell temperature obtained by the model that provides the highest 
correlation values with the power production Tcell

10( )  (i.e., 0.868 

by Model 10) (top right), wind speed (vw) (bottom left), and the 
corresponding power productions (P) (bottom right) for the four 
seasons in one arbitrary day.

Looking at Figure 6, one can notice that even though the 
irradiation was higher in Summer than in Spring, the power 
output in Summer was lower than that in Spring due to the higher 
ambient temperature in Summer with respect to that in Spring, 
and hence higher cell temperature. In addition, one can also 
recognize that the cell temperature Tcell

10( )  has a higher correlation 

to the power output than the ambient temperature Tamb( ) .

5.1.2. Validating the obtained cell temperatures
For the 24 measured cell temperatures of the ASU PV system, the 
corresponding weather variables are recorded from the weather 
station at the ASU for the estimation of the PV cell temperatures 
by using the investigated ten models discussed earlier. These 

variables were the solar irradiation, ambient temperature at 1 m, 
and wind speed at 10 m.

Finally, the RMSE value is computed for each method to display 
which model has more accurate results. From Figure 7 it can be 
inferred that Tcell

1  had the lowest RMSE (i.e., 2.834), and hence 
the best representation of the actual PV temperature Tcell

best( ) . This 

temperature will be used to substitute the ambient temperature 
and establish the updated dataset X′.

5.2. Phase II: Building the Prediction Models
Once the updated dataset (X′) is established, it is used to build/
develop the MLR and ANN prediction models.

5.2.1. Building the MLR Model
With respect to the MLR, the MLR model is built using the training 
dataset to provide the solar PV power production predictions. The 
obtained linear regression models using either the Tamb or the Tcell are 
given by Eq. (19) and Eq. (20), respectively. It is worth mentioning 
that the inclusion of the time stamp (i.e., the chronological order of 
the hour and day number) in the MLR would not be representative 
in this case. In fact, if one would manipulate the time stamp to 
be used in the MLR, it would be correlated (and thus, excluded) 
with the solar irradiation variable (i.e., Irr). However, in this 
case, the results obtained show that the predictability of the solar 
power production does not significantly change, which indicates 
that the MLR cannot capture the hidden “apparently non-linear 
relationship” between the inputs and the power output.

 P I T vrr amb= − + − +2 3564 0 1813 0 0078 0 731126. . . . . . .  (19)

 P I T vrr cell= − + − +2 3095 0 1849 0 0118 0 6347. . . . . . .  (20)

In fact looking at Eq. (19) and Eq. (20) one can notice that:
•	 As the Irr increases, the power production increases due to 

the increase of energy incident on PV system. This has been 

Figure 6: Irradiation (top left), ambient temperature (top middle), cell temperature (top right), wind speed (bottom left), and the corresponding 
power productions (bottom right) for the four seasons in one arbitrary day
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effectively represented by the positive regression coefficient 
associated with the Irr variable;

•	 As the Tcell (or Tamb) increases, the power production decreases 
due to the significant decrease in output voltage compared to 
marginal increase in output current (Al-Bashir et al., 2020; 
Ba et al., 2018). This has been effectively represented by the 
negative regression coefficient associated with the Tcell (or 
Tamb) variable;

•	 as the v increases, the power production increases due to 
the cooling of the PV panels, and hence, decreasing the cell 
temperature. This has been effectively represented by the 
positive regression coefficient associated with the v variable;

With respect to the ANN prediction model, the model is built 
(using the training dataset) and optimized (using the validation 
dataset) in the Matlab NN ToolboxTM (Demuth et al., 2009) in terms 
of number of hidden neurons, H and hidden neuron activation 
functions (g), to provide accurate solar PV power production 
predictions. Specifically, we follow an exhaustive search procedure 
by considering:
1. Twenty different numbers of hidden neurons that span the 

interval [2-40] with a step size of 2 for the ANN model 
development;

2. Twelve different activation functions, g = “Log-Sigmoid”, 
“Tan-Sigmoid”, “Linear”, “Triangular Basis”, “Radial 
Basis”, “Elliot Symmetric Sigmoid”, “Symmetric hard-limit”, 
“hard-limit”, “Positive Linear”, “Normalized Radial Basis”, 
“Saturating linear”, and “Symmetric Saturating Linear” 
functions available in the Matlab NN ToolboxTM (Demuth 
et al., 2009);

The effectiveness of each ANN architecture established by a 
combination of the above-mentioned corresponding choices, 
is examined by quantifying the predictions accuracy of the 
validation dataset (Xvalid), using the RMSE (Eq. 16) and R2 (Eq. 
17) performance metrics. Specifically, a 5-fold cross validation 
procedure is used to robustly evaluate the ANN prediction 
performance in terms of the RMSE and R2: the training and 
validation patterns are sampled randomly from the inputs-output 
patterns available in the updated dataset (X′) with fractions of 50% 
(i.e., Ntrain = 15115 patterns) and 25% (i.e., Nvalid = 7557 patterns), 

respectively. The cross validation procedure is then, repeated 5 
times, using different patterns for training and validation datasets. 
The final metrics values are then, computed by averaging the 5 
metrics’ values of the 5 different trials.

Table 2 reports the modelling parameters of the optimum ANN 
architecture found at the smallest RMSE value, i.e., RMSE = 
10.9784 kW (using the Tcell

best ) and 11.0150 kW (using the Tamb), 
and largest R2 value, i.e., R2 = 96.8593 % (using the Tcell

best ) and 
96.8112 % (using the Tamb) on the validation dataset. For 
completeness, the obtained metrics found at H = 25 when the Tamb 
is used are RMSE = 11.2532 kW and R2 = 96.7079 %. This assures 
the improvement obtained in the prediction accuracy when the 
Tcell
best  is being used instead of the Tamb.

5.3. Phase III: Evaluating the Built-prediction Models
To demonstrate the effectiveness of replacing the Tamb with the 
best obtained cell temperature Tcell

best  (i.e., the use of the updated 
dataset X′ which contains the Tcell

best  instead of the original dataset 
X which contains the Tamb in developing the prediction models), 
Table 3 reports the average performance metrics obtained by the 
5-fold cross validation using the prediction models for the case 
of using the Tcell

best  instead of the Tamb, on the test dataset, together 
with the computed performance gains.

Looking at Table 3 one can easily recognize:
•	 A small improvement in the prediction accuracy is gained by 

the ANN prediction model when the Tcell
best  is used instead of 

the Tamb. Specifically, an enhancement reaches up to ~1.93% 
and 0.11% on the RMSE and R2 performance metrics, 
respectively. Despite the fact that these improvements in the 

Figure 7: RMSE between the 24 estimated cell temperatures and their measured (actual) values

Table 2: The modelling parameters of the optimum ANN 
architecture obtained on the validation dataset

H g RMSE [kW] R2 [%]
Tamb 20 “Radial Basis” 11.0150 96.8112

Tcell
best 25 “Radial Basis” 10.9784 96.8593
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prediction accuracy might seem to be relatively small, but 
they can be considered relevant to the PV system owner;

•	 The MLR model cannot exploit the benefits of using the 
Tcell
best  instead of the Tamb and yield the same predictability 

results;
•	 The worse predictability obtained by the MLR compared to 

that obtained by the ANN is an indication of the existence of 
non-linearity relationship between the PV power production 
and the corresponding weather and time stamp variables 
that cannot be captured by the simple MLR, and nonlinear 
prediction models are required.

For completeness, possible sources of errors can be avoided 
in the future when using the PV cell temperatures to further 
enhance the obtained improvements in the prediction accuracy, 
they are:
•	 During the validation phase of the PV cell temperature models, 

the PV panels were measured randomly and due to the fact that 
the PV cells have different conditions (i.e., some are shaded, 
some have more access to wind, etc.), this could have led to 
taking a wrong model;

•	 The weather station is 171 m away from the faculty of 
engineering and, thus, the weather variables used in 
calculating the cell temperatures, such as the wind speed, 
could have contributed to the error.

6. CONCLUSIONS

In this work, the effect of the PV cell temperature for predicting 
power output has been investigated and the results have been 
compared to those when ambient temperature has been used 
instead. The case study was taken at the Applied Science Private 
University (ASU) where 264 kWp PV panels are installed on the 
roof of the faculty of engineering, Amman, Jordan. Two main 
prediction models have been utilized, namely MLR and ANNs. 
The best performance metrics (the RMSE and Coefficient of 
Determination) have been exhibited by the ANN and this is mainly 
due to its capability in capturing the hidden (unknown) nonlinear 
relationship between the inputs-output patterns of the ASU solar 
PV system. The results displayed the importance of adopting 
the PV cell temperature in the prediction models, however more 
research is needed to find a better way of measuring it.

Finally, some possible improvements for the future. Placing 
K-type infrared sensors on the back of the PV panels to 
constantly measure the temperature of the module. The 

use of ANN may be limiting and, therefore, using another 
Machine Learning (ML) approaches such as Long Short-Term 
Memory (LSTM) may aid in power prediction and improve the 
performance metrics.
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