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ABSTRACT

Future natural gas (FNG) price is a collected data over the years and is a volatile movement in the market. In other words, FNG price is categorised as a 
time series data with volatility in both variance and mean, as well as most likely in some cases having heteroscedasticity problem. To come up with an 
estimated prediction model, some analysis tools, such as autoregressive integrated moving average (ARIMA) and generalised autoregressive conditional 
heteroscedasticity (GARCH), are introduced to find the best-fitted model having the smallest error value with high significance of probability value. 
This study aims to examine the best-fitted model that allows us to forecast FNG prices more accurately in the near future. There are 2842 observed 
data of daily FNG prices from 2009 to 2019 as the input of study objects. The finding suggests that the first measurement model of ARIMA (1,1,1) 
does not fit the model as having a non-significant probability value. Thus, it is required to check its heteroscedasticity by conducting an ARCH effect 
test. It is concluded that a data set has an effect of ARCH, so AR (p)–GARCH (p,q) model is then tested. AR (1)–GARCH (1,1) model is believed 
to be a best-fitted model having a significant P < 0.0001 with significantly small mean squared error and root mean squared error values, indicating 
that it has a very accurate prediction model. The forecasting model is to adjust the offered recommendation of policy for the government regarding 
the issue of high volatility of daily FNG prices in the future. We then offer a best-suited policy for some certain governments like Indonesia to give 
subsidy for targeted users in order to keep increasing their use of FNG that will expectedly affect their marketable product innovation and expansion, 
so economic growth in Indonesia is maintained.

Keywords: Future Natural Gas Price, Autoregressive Integrated Moving Average, Autoregressive Conditional Heteroscedastic Effect, Generalised 
Autoregressive Conditional Heteroscedasticity, Subsidy 
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1. INTRODUCTION

Currently, natural gas massively needed among communities, 
particularly Indonesia. Gas is basically needed in almost every 
aspect, both in domestic and businesswise. However, gas prices 
are frequently changed, affecting its consumption level and quality. 
This issue can be the most risky issue on the natural gas market. 
Whitcomb Jr. (1988) mentioned in his empirical study that future 
natural gas (FNG) prices can be affected by the uncontained 
number of its supply. Therefore, in some emerging countries 

like Indonesia, there is a wise solution as a policy of subsidy to 
lower the cost in civil society as the impact of price volatility in 
the gas global market. Subsidy is launched into communities due 
to some factors, including an increase of population and society 
consumption, immediately challenging the government to produce 
FNG; other factors might be a lack of renewable energy sources as 
well as development and penetration of alternative energy sources 
(Azadeh et al., 2013).

In making decision of subsidy-based policy application, the 
government is necessarily required to allocate their budgeting for 
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subsidy. The government then accurately needs to early calculate 
the amount of subsidy to be launched in societies. If the daily 
prices of FNG are one of basic assumptions of subsidy policy, 
forecasting time series data of FNG is highly required, because 
bear in mind that an error in prediction model of FNG prices 
could be an anomaly of budgeting need for subsidy. An accurate 
prediction model might use proper mathematics assumptions to 
reduce error. Autoregressive integrated moving average (ARIMA) 
and generalised autoregressive conditional heteroscedasticity 
(GARCH) are simply two analysis tools to construct a model of 
estimated FNG prices. Some related studies have been conducted 
such as the new hybrid-forecasting model studied by Zhang 
and Zhang (2017) that applied HMM, EGARCH and LSSVM. 
However, this model has not been widely used in seeing their better 
performance in future values prediction compared to other related 
methods. Other studies focusing on more real-time forecasting 
models with short time in financial data such as daily price, interest 
rates and business cycle have been conducted by Skiadas et al. 
(2017) and Azhar et al. (2020).

2. DATA AND MODELLING PROCESS

In accordance with the data analysis tested by applying the proper 
method, this study follows some important steps. First, the method 
in both ARIMA (p,d,q) and GARCH (p,q) models is to form an 
equation model. This equation then is used as a foundation in 
doing the whole study, as it can be led the study into econometrical 
considerations, which are discussed as follows.

2.1. Stationary Transformation
The first econometric to satisfy is to check the stationarity of 
the data set. Stationary data set is required to make them more 
stable in mean and variance. There are some ways to check the 
stationarity of data set both statistically and non-statically. Statistic 
measurement of stationary data can be tested by considering the 
results of the augmented Dickey–Fuller (ADF) test, autocorrelation 
function (ACF), partial autocorrelation (PACF) and distribution 
of normality data (Azhar et al., 2020). A visual graphical data set 
can also be one way to see whether a data set is stationary or not. 
The following is mathematical equation of the ADF test (Dickey 
and Fuller, 1979):

 1
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The rejection area of H0 is DFτ < −2.57, and the probability value 
is <0.05 (Brockwell and Davis, 2002). To ensure statistic tests of 
stationarity from the data set, white noise test is run to check the 
indication of autocorrelation (Ljung and Box, 1978). In the Ljung 
and Box test, if Q statistic is indifferent significantly around zero, 
then it is a sign of white noise, and the model can fit the data very 
well (Enders, 2010).

From those tests, if the data set is determined as a non-stationary 
data, then the next step is to conduct differencing, which is to 
stabilise its mean by eliminating changes in a time series data 
(Hyndman and Athanasopoulos, 2013).

2.2. Adequacy Model
Given the data set has been stationary for its mean and variance, 
the next step is to select the appropriate forecasting model. In this 
study, we will examine two available models of ARIMA (p,d,q) 
and AR (p)–GARCH (p,q).

2.2.1. ARIMA (p,d,q) model
Wold (1938) was the first man to introduce the combination of 
autocorrelation (AR) and moving average (MA) with a selected 
order of differencing. The prime condition of which is to have 
stationary data set to ARIMA (p,d,q) model. The following is an 
equation of ARIMA (p,d,q) model:
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where μ is the constant of AR (p); ϕi is the regression coefficient; i 
is 1,2,…, p.; p is the order of AR; λk is the parameter estimation of 
MA; k is 1,2,…., q.; q is the order of MA; and εt is error at time t.

Furthermore, time series data might show a correlation among 
them with the errors correlating with each other due to factor 
of time correlation. The Durbin–Watson (DW) test was then 
introduced to solve the issue to hypothesise zero conditional of 
non-residual autocorrelation. More specifically, the null hypothesis 
of DW test is a coefficient of autocorrelation such that the first 
order of p is all zero, where p is a chosen variable. The following 
is statistic equation of the DW test:
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Statistic test reports of DW test are as follows:
•	 DW equals 2 is no autocorrelation.
•	 DW equals between 0 and <2 is positive autocorrelation.
•	 DW equals between >2 and 4 is negative autocorrelation.

2.2.2. ARCH effect tests
If the first model in this study, which is ARIMA (p,d,q) model, 
does not fit the data set, indicating a non-significant result of its 
probability value on estimated parameters, then it can be concluded 
that a presence of heteroscedasticity is available on the data set. 
It is therefore necessary to run another test, that is, autoregressive 
conditional heteroscedasticity (ARCH) effect test (Azhar et al., 
2020). Virginia et al. (2018) argued that the effect can be tested 
using the Lagrange multiplier (LM) test, as heteroscedasticity is 
an issue in modelling time series data (Engle, 1982). In the LM 
test, a significant probability value indicates that ARCH test has 
a high effect order, so heteroscedasticity needs to be modelled 
(Wong and Li, 1995).

2.2.3. AR (p)–GARCH (p,q) model
Having ARCH effect, the data set having a heteroscedasticity effect 
can be modelled by applying the GARCH model. This model is 
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applicable in processing a long memory, where the current variance 
is estimated by all past squared residuals (Tsay, 2005).

The order of p in AR (p) is denoted for the lag order of mean 
model, whereas the order of p and q in GARCH (p,q) are the 
order of conditional variances and squared residuals, respectively. 
Mathematically, they can be shown follows:

 1
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= + +∑ p
t i t i ti

FNG FNG  (4)
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Equations (4) and (5) can be considered the best-fitted model in 
forecasting model if its statistical descriptions show a significantly 
small root of mean squared error (MSE) and root mean squared 
error (RMSE) (Virginia et al., 2018).

3. FINDINGS AND SUGGESTED MODEL

In this empirical study, the data collected is the daily prices of 
FNG during the last decade, from 2009 to 2019. The number of 
observed data is 2842 which is then analysed to find the fitted 
model in forecasting its future prices in the next 30 days.

It is argued that the first thing to do in forecasting model is to 
ensure that the observed data is in a stationary form (Becker et al., 
2006). Some measurements, such as checking the behaviour of 
visual plotting graph of the data series, statistical test of ADF unit 
root test, ACF and PACF test, as well as white noise inspection, 
are conducted to examine its stationarity.

Figure 1 presents a picture of daily FNG prices that is visible to 
conclude as non-stationary series data, because its movement of 
mean and variance is not stable around zero.

It starts with a much-fluctuated data where in about the 300th data it 
has almost 6 basis points and in the 800th drops to <2 basis points. 
The series then reaches its peak on the 1300th data to more than 6 
basis points. The FNG price significantly drops to approximately 
1.5 basis points at the 1800th data. Afterwards, the data series is 
back to having an upward slope up to around the 2500th data to 
reach back almost 5 basis points. Nevertheless, the decline trend 
is not evidently avoided until the end of period that drops to two 
basis points.

This non-stationary data is affirmed statistically by first studying 
the ADF unit root test. Table 1 approves what has been shown in 
Figure 1, as the probability value for mean of zero in lags of 3 
exceeds the critical value of alpha (0.05). Further investigation is 
verified by the inspection of white noise (Table 2), of which its 

Figure 1: Daily FNG prices plot graph

Table 1: Statistical analysis of ADF unit root test
Type Lags Rho Pr<Rho Tau Pr<Tau F Pr>F
Zero mean 3 −2.4096 0.2866 −1.5716 0.1096
Single mean 3 −24.2170 0.0044 −3.7561 0.0036 7.2953 <0.0010
Trend 3 −36.5817 0.0018 −4.4376 0.0019 9.9405 <0.0010

Table 2: White noise inspection
To lag Chi-square DF Pr>ChiSq Autocorrelations
6 9999.99 6 <0.0001 0.990 0.981 0.971 0.963 0.954 0.946
12 9999.99 12 <0.0001 0.939 0.931 0.924 0.918 0.911 0.905
18 9999.99 18 <0.0001 0.899 0.892 0.886 0.879 0.873 0.866
24 9999.99 24 <0.0001 0.860 0.853 0.847 0.842 0.835 0.831
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autocorrelations for any given lags are close to one, suggesting 
that we can reject its null hypothesis to have a non-stationary data.

The following figures support both Tables 1 and 2 statistically. 
Figure 2a depicts the normal distribution of the daily FNG prices 
data, which can be said as not normally distributed. On the basis of 
autocorrelations, the ACF graph, as shown on Figure 2b, is moving 
down very slowly, indicating a non-stationary data. However, 
PACF (Figure 2c) has already shown a little good shape of 
autocorrelations, depicting that after lag of 1, the autocorrelations 
are around zero mean. Therefore, from the statistical graphs on 
Figure 2, the stationarity of daily FNG prices is justified as a 
non-stationary data.

3.1. Stationary Transformation
After guaranteeing that the daily FNG prices are not stationary, 
for the sake of further analysis, it is then suggested to transform 
them into stationary series data. The first test is to run differencing. 
Differencing 1 is selected to statistically convert the stationarity 

data. The following graphs imply the series data having stationary 
data already after differencing 1 was conducted.

Figure 3a has visually proved that after examining differencing 1, 
the spread of mean and variance for series data of daily FNG prices 
is everywhere of zero, which means that the stationary condition is 
now satisfied. This graph also supports Figure 1 where its fluctuation 
occurs, which in its first 300th data, the variance exceeds 1 standard 
deviation. In addition, on around 1300th data, the variance also 
exceeded more than 0.5 standard deviation, confirming the peak 
of data on Figure 1. Similarly, at the end of the period, the standard 
deviation also deviates to almost 1 that upholds what have been on 
Figure 1 at the same period. Next, the ACF graph (Figure 3b) now 
shows the fast movement after lag of 1, revealing it as stationary 
data. This is also confirmed by Figure 3c, in which the PACF graph 
shows the autocorrelations inside the circle of zero.

Furthermore, Table 3 establishes the stationary data statistically by 
testing unit root test of ADF. Here it is shown that the probability 

Table 3: Statistical analysis of ADF unit root test after differencing 1
Type Lags Rho Pr<Rho Tau Pr<Tau F Pr>F
Zero mean 3 −3023.07 0.0001 −27.10 <0.0001
Single mean 3 −3027.93 0.0001 −27.10 <0.0001 367.32 0.0010
Trend 3 −3029.71 0.0001 −27.10 <0.0001 367.26 0.0010

Figure 2: (a) Distribution of normality data; (b) ACF; (c) PACF graph

a b c

Figure 3: (a) Plotting; (b) ACF; (c) PACH graph after differencing 1

a

b

c
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value of the series data is significantly <0.05, making it now 
stationary. White noise inspection as shown on Table 4 also verifies 
the argument, in which autocorrelations providing any lags are 
adjacent to zero; thus, we cannot reject the null hypothesis. In 
conclusion, those proofs make clear that after testing differencing 
1, the daily FNG prices data are stationary. This stationary 
condition then enables us to conduct the next steps in having the 
best selected model for forecasting FNG prices.

3.1.1. ARIMA (p,d,q) model
The first model to forecast the stationary data set in this study is 
ARIMA. The conditional assumption is that the model should have 
been in differencing 1 as the lag of transformation into stationary. With 
differencing 1 from the output of estimation, as shown in the following 
Tables 5 and 6, we can construct the model of ARIMA (p,d,q).

1 10.00173 0.29544 0.20744   − −= − − − +t t t tFNG FNG

However, the model is not that significant as shown on Table 5 
the probability value of both AR(1) and MA(1) with q=1 are more 
than 5%. Thus, we cannot rely on such this model to predict daily 
FNG prices.

3.1.2. ARCH effect inspection
ARIMA (1,1,1), as previously elaborated, is not significantly fitted 
to model the data set. This might be suspected that the presence of 
instable homoscedasticity error in the model of ARIMA (1,1,1). 
What this means that the model has an issue of heteroscedasticity, 
making the application of ordinary least square (OLS) as the basic 
assumption of estimation model is not efficient and effective. 
Therefore, such this problem is required to solve by first running 
the inspection of ARCH effect before continuing to test another 
model as the best selection. In this study we test ARCH-LM to 
identify the presence of heteroscedasticity in the data set.

Table 7 measures the calculations of both portmanteau Q and 
Lagrange model (LM) for diagnosing the involvement of ARCH 
effect on data set. Probability values for both Q and LM test in 
any orders show the significance of computations. In other words, 
it suggests us to reject the null hypothesis, and the stationary data 
set is confirmed to have ARCH effect. Thus, we can go further to 
another model the data set as comparison model as ARIMA (1,1,1) 
for prediction by applying AR (p)–GARCH (p,q).

3.1.3. Model comparison of AR (p)–GARCH (p,q)
Because the ARIMA (1,1,1) model does not fit the data set to 
be a prediction model, the next step is to find another model 
that fits the data sets wherein the condition of heteroscedasticity 
problem is generalised. Having p order equal to one and q order 
equal to one with differencing 1 in the ARIMA model, we can 
then analyse them to have mean model of AR (1) and variance 

model of GARCH (1,1) as the following statistical descriptive 
and parameter estimation.

Table 8 explains to us the statistic description for the model that 
we analyse. It is argued statistically that the AR (1)–GARCH (1,1) 
model fits the data because an MSE value of 0.012 is significantly 
small, indicating that the error in means of the model is also very 
small. From this MSE, we can then estimate its root MSE (RMSE), 
which is 0.108. This value implies a very small RMSE, indicating 
that the variance of the model is very close to the variance of the 
observed data. The total R-square also indicates a very good value, 
which is 98.38%, giving a very strong explanation for the model. In 
other words, the model has a good accuracy as forecasting model.

Furthermore, as it is found that the model has a good ability and 
accuracy for forecasting data set, we can then be able to construct 
the model estimators as presented in Table 9. Here, both models 
for its mean and variance are presented.

Mean model of AR (1): FNGt = 5.9645–0.9997 FNGt−1 + Et

Variance model of GARCH (1,1): 

2 2 2
1 10.0000775 0.0954 0.9030  − −= + +t t t

As can be seen in Table 9, the AR (1)–GARCH (1,1) model is 
statistically significant, in which the probability value of <0.0001 
is significantly small. Additionally, the sum of both ARCH and 
GARCH coefficient is argued as the GARCH model. If the value 
of the GARCH model is approaching one, the disturbances to the 
conditional variance will be significantly constant. Because GARCH 
coefficient is significant, it can be said that GARCH is a better-fitted 
model in forecasting compared to the ARCH or ARIMA model.

The AR (1)–GARCH (1,1) model is then applied to predict the 
FNG prices accurately for next 30 days. The following graph 
shows the forecast results.

Figure 4 shows the forecasted data of FNG prices for the following 
1 month with its upper and lower confidence level of 5%. It is 
suggested that the prediction of data series experiences a modest 
increase or even seems level visually from the start. Nevertheless, 
it is worth noting that the confidence interval increases its variance 
over time. Thus, the AR (1)–GARCH (1,1) model fits to only a 
short period to predict the data set.

4. POLICY IMPLICATIONS

Given the forecasted series data of FNG prices, some implications 
exist for policymakers, particularly in such emerging countries 
like Indonesia where daily consumption of gas is very high. 

Table 4: White noise inspection after differencing 1
To lag Chi-square DF Pr>ChiSq Autocorrelations
6 36.37 6 <0.0001 −0.090 0.024 −0.009 0.003 −0.061 −0.018
12 65.50 12 <0.0001 0.077 −0.054 −0.009 0.002 −0.027 0.024
18 68.19 18 <0.0001 0.019 0.002 0.001 0.010 −0.002 −0.022
24 102.35 24 <0.0001 0.016 −0.014 −0.045 0.042 −0.087 −0.004
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Figure 4: Predicted data of FNG prices for 30 days 

Table 7: Test of ARCH-LM for daily FNG prices data set
Order Q Pr>Q LM Pr>LM
1 2621.6961 <0.0001 2587.3209 <0.0001
2 5066.1916 <0.0001 2590.4023 <0.0001
3 7314.2977 <0.0001 2591.1861 <0.0001
4 9392.8918 <0.0001 2591.2274 <0.0001
5 11317.6964 <0.0001 2591.3035 <0.0001
6 13126.6999 <0.0001 2592.4229 <0.0001
7 14837.0434 <0.0001 2592.8032 <0.0001
8 16432.4736 <0.0001 2593.5335 <0.0001
9 17956.5007 <0.0001 2595.4009 <0.0001
10 19422.8776 <0.0001 2596.3590 <0.0001
11 20842.6013 <0.0001 2596.5880 <0.0001
12 22196.5141 <0.0001 2597.1836 <0.0001

Table 5: Estimation parameters of ARIMA model
Parameter Estimate Standard 

error
t value Approx 

Pr>|t|
Lag

MU −0.0013336 0.0018832 −0.71 0.4789 0
MA1,1 −0.20744 0.19383 −1.07 0.2846 1
AR1,1 −0.29544 0.18925 −1.56 0.1186 1

Table 6: ARIMA statistical estimation
Constant estimate −0.00173
Variance estimate 0.011597
Standard error estimate 0.10769
AIC −4596.94
SBC −4579.08
Number of residuals 2841

Table 8: Statistics description for the AR (1)–GARCH 
(1,1) model
Observations 2842 SSE 33.1928013
Uncond var 0.04888977 MSE 0.01168
Total R-square 0.9834 MAE 0.07368252
AIC −5641.8241 MAPE 2.14942225
AICC −5641.803 Log likelihood 2825.91207
HQC −5631.0896 Normality test 666.2739
SBC −5612.0628 Pr>ChiSq <0.0001

Table 9: Estimation of parameters for the AR (1)–GARCH 
(1,1) model
Variable DF Estimate Standard 

error
t value Approx 

Pr>|t|
Intercept 1 5.9645 1.6060 3.71 0.0002
AR1 1 −0.9997 0.000502 −1992.3 <0.0001
ARCH0 1 0.0000775 0.0000192 4.04 <0.0001
ARCH1 1 0.0954 0.006270 15.21 <0.0001
GARCH1 1 0.9030 0.005938 152.07 <0.0001

High price economically can affect low demand as stated on an 
empirical study by Liviu and Claudia (2011) that theoretically, 
demand and supply are a linear function evolving from inelastic 
to elastic perfectly and vice versa. This condition applies to supply 
and demand of FNG usage. The higher prices will result in the 
suffering of its end users, lowering their consumption.

In addition, Indonesia’s industries are very dependent to FNG 
supply, in which Data and Information Centre Ministry of Industry 
Indonesia (Pusdatin Kemenprin (2018) argued that almost 90% 

of the manufacturing sector uses FNG domestically. In addition, 
they use FNG to expand their products and increase their added 
economic value. These phenomena should be a high consideration 
for the policymakers.

Subsidy as the offered implication as stated on Trinomics’ working 
paper (2018) argued that it affects negatively and positively both 
industries and domestic households’ purchasing power, which 
can directly be connected to economic growth ratio. In the case 
of natural gas, subsidy should be regulated wisely, as this might 
become a drawback instead. Thus, the highlight of this policy is 
to give it to end users most needing of natural gas, as there might 
be a possible opportunity to abuse it by exporting natural gas in 
some different products, such as using it in a form of industrial 
products with high value.

Therefore, to conduct and maintain the economic growth, analysis 
before determining subsidy policy is essential. On the basis of 
government budgeting, the accurate calculation should be a top 
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priority; thus, the predicted AR (1)–GARCH (1,1) model can be 
a good foundation in making a wise policy.

5. CONCLUSION

Daily prices, as they are time series data, from certain commodities 
have sometimes high volatility. In fact, daily FNG prices experience 
vicissitude trends over the years. The mean and variance volatility 
in time series data are predictable as long as they are stationary. 
This study aims to find the fitted selection model to predict both 
mean and variance of one data set, and for this observation, we 
use daily FNG prices. After the series was stationary in mean and 
variance with differencing 1, we first constructed the ARIMA 
(p,d,q) model to forecast data set. As the model is not significant 
with p-value above t-statistic of 5%, then another forecasting 
model was introduced. We formulate AR (p)–GARCH (p,q) as 
the second trial model in condition with the same order of p and 
q as with the previous model, and the finding indicates the AR 
(1)–GARCH (1,1) model is significant with p-value under 5% as 
well as relatively small MSE and RMSE values.

The purpose of the selected model is to forecast daily FNG prices 
in the future. The expected data for the next 30 days shows an 
upward trend, although it only increases moderately. This urges 
policymakers to consider the better policy regarding this matter. 
A strategy of subsidy allotment in FNG prices will impact on an 
increased use of FNG, and industrial businesses as the end and 
most users of FNG are expected to create and expand their products 
for economic growth.
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