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ABSTRACT

This paper aims to directly denoise option price while adhering to the no–arbitrage conditions. To achieve our goal, we propose the Gaussian Process 
(GP) method that entails training the GP on noisy data of option prices as a linear function of the pair of maturity and strike. Utilizing the GP approach 
not only allows for removing noises on the option price surface by verifying the no–arbitrage conditions but also is a probabilistic approach that allows 
quantifying the uncertainty on the quantity of interest by constructing confidence bands around the estimate. The GP further permits forecasting out-
of-the-sample prices without needing to compute the risk-neutral density of the option price surface. To investigate the efficiency of GP in removing 
the noise from option prices, we tested it on a simulated dataset. The overall MSE between the computed Black–Scholes prices and the GP denoised 
is 0.10, and between the Black–Scholes prices and the noisy prices is 2.21 - a 95.33% noise removal. The curves of the graphs for the denoised prices 
are all convex and non–increasing in strikes, upholding the no–arbitrage conditions. To our best knowledge, the challenge of directly denoising option 
prices has led to little interest in this area, and our work is the first to undertake this task.

Keywords: Gaussian Process, Denoising, Wavelet, Arbitrage, Option Price 
JEL Classifications: C1, G1

1. INTRODUCTION

The options market is noisy, with large bid/ask spreads, making 
determining a fair price for any given option extremely difficult. 
Noise in the prices arises from errors in the recording and 
reporting process and also from price discreteness, liquidity, and 
non-synchronicity.

The literature on denoising noisy raw data is populated with the 
application of the wavelet method. Due to its multi-scaling property, 
the efficiency of the wavelet method in dealing with noisy data series 
has resulted in its adoption as a cross-disciplinary tool (Averkamp and 
Houdr´e, 2003; Lada and Wilson, 2006; Asgharian, 2011; Capobianco, 
2001; Sun and Meinl, 2012; Jammazi et al., 2015; Liu et al., 2019, etc.)

To obtain the filtered (denoised) price, implied volatilities (IV) 
for each option are computed and then denoised. The denoised 

volatility and stock price are plugged into an option model 
to get cleaner option prices. Haven et al. (2012) used this 
approach to denoise option prices applying the wavelet method. 
The wavelet denoising procedure involves decomposing the 
noisy data series by computing the discrete wavelet transform 
at a given level to obtain the wavelet coefficient vectors and 
the scaling coefficient vector. Appropriate thresholding is 
performed so that wavelet coefficients with magnitudes less 
than the threshold are set to zero or shrunk towards zero by 
the amount of the threshold using the hard or soft thresholding 
rule, respectively. We reconstruct the entire series to obtain the 
denoised series by replacing the wavelet coefficient vectors 
with the thresholded wavelet coefficient vectors (Haven et al., 
2012for detailed procedure).

However, by using the wavelet method for denoising implied 
volatility, Haven et al. (2012) did not consider the corresponding 
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option price to avoid arbitrage opportunities. The denoised implied 
volatility is used as input to price those financial derivatives, 
but using the implied volatility should be made consistently 
considering the no-arbitrage conditions. In addition, the wavelet 
method is deterministic, and its use does not allow quantifying 
the uncertainty of the estimated implied volatility.

Given the drawbacks of the wavelet approach, the paper aims to 
contribute to the literature on denoising option prices by directly 
denoising the option price while honoring the no–arbitrage 
conditions. We propose the Gaussian Process (GP) for denoising 
option prices.

Our approach consists in training the GP on the noisy option 
prices and considering it as a linear function of the pair maturity 
strike. In order to take into account the no–arbitrage conditions 
of the market, we use the constrained GP developed in Cousin 
et al. (2016). Thus, the filtered option prices and the associated 
noises appeared respectively by the most probable response price 
surface and the most probable noise vector corresponding to the 
Maximum a Posteriori (MAP) of the GP and that of the noise 
presented in Chataigner et al. (2021). Using the GP approach 
not only contributes to the construction of the option price 
surface verifying the no–arbitrage conditions but also, being a 
probabilistic approach, allows quantifying the uncertainty on 
the quantity of interest by constructing confidence bands around 
that estimate. Furthermore, the GP allows for forecasting out-
of-the-sample prices without computing the RND, unlike the 
wavelet method.

Let’s recall that the GPs regression known also as kriging is 
basically used in geostatistics for estimating the distribution 
of mineral resources in the ground given the relatively small 
set of boreholes, (Matheron, 1963; Cressie, 1990; Krige and 
Magri, 1982) and has for some years begun to gain popularity 
in quantitative finance. These works concern, among others the 
paper of Sousa et al. (2012) for calibrating the Vasicek interest 
rate model under the risk-neutral measure, Asgharian et al. (2013) 
in the analysis of stock market linkages, Ludkovski (2015) for 
improving the Monte Carlo Least square method for the valuation 
of Bermuda, De Spiegeleer et al. (2018) comparing to Monte 
Carlo method for pricing options and approximating implied 
volatility, Dixon and Crepey (2018) in derivative portfolio 
modeling, Gonzalvez et al. (2019) for fitting the yield curve, the 
recent paper of Ludkovski and Saporito (2021) for approximating 
the option Greeks.

It is only thereafter the paper of Cousin et al. (2016) that 
constrained kriging has been applied in actuarial science where 
authors constructed the term structure of interest rate by imposing 
market no–arbitrage conditions. Their technique has been used 
in Cousin and Gueye (2021) for implied volatility surface and 
by Chataigner et al. (2021) who compared constrained GPs and 
Neural Networks for local volatility construction.

Compared to previous work on options such as that of Ludkovski 
and Saporito (2021), we set ourselves a double objective. On the 
one hand, we take into account the no–arbitrage conditions in the 

approximation of the option prices. On the other hand, we seek to 
determine the associated noise, focusing on the MAP of the noise 
vector combined with the GP.

Our approach is not so far from that of Chataigner et al. (2021), 
except that we exploit the noise MAP to contribute to the 
literature of noise removal on option prices which, to our best 
knowledge, remains a challenge until now and that there are 
few articles that are interested in it, which is the novelty of our 
technique.

Throughout the paper, we restrict our attention to European calls on 
a stock (or index) S in an economy with a constant interest rate r.

The remainder of this paper is organized as follows. Section 2 
focuses on the methodology of denoising option prices using GPs. 
We briefly recall GPs modeling with linear inequality constraints 
and emphasize the solution to the denoising problem. Section 3 
is devoted to numerical experiments.

2. MATERIALS AND METHODS

We consider at time 0 the market call price C (T, K) on the 
underlying S as a 2D surface in the pair (T, K) where T represents 
its maturity and K its strike price. Given n noisy observations 
ŷ = [ŷ1,…,ŷn]

T of the function C at input points X = [x1,…,xn]
T, 

where xi = (Ti, Ki) represents the observed maturities and strikes, 
we aim at removing the noise ε = [ε1,…,εn]

T associated to ŷ to obtain 
the denoised prices y that respect the no–arbitrage conditions of 
the market. In others terms, we aim at estimating C at the input 
points y based on the model ŷ = C (X) + ε such that C verifies the 
no–arbitrage conditions. These conditions are interpreted by a finite 
number of linear inequalities constraints such as the convexity of C 
in the strikes and the increase of C in the maturities. Furthermore, 
in addition to these points, C should also be non–increasing in 
strikes. That is the call price surface C should fulfill the following 
conditions,

 2
2 ( , )  0,  ( , )  0,  ( , )  0∂ ≥ ∂ ≥ ∂ ≤T KKC T K C T K C T K  (1)

For this purpose, we consider the call price function C to be a 
zero-mean bivariate GP with a 2-dimensional isotropic covariance 
kernel function k and assume the noise term e to be a zero-mean 
Gaussian vector, independent from C (X), and with a covariance 
matrix given as 2ς nI , where In is the identity matrix of dimension n. 
The covariance kernel function κ is defined for any x = (T, K) and 
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Where represents the length scale hyper-parameter of κ and s 
corresponds its the variance hyper-parameter, RT and RK are kernel 
correlation functions. For instance, in our numerical experiments 
we use some mate’rn correlation functions which can be written, 
for example in the maturity direction, by
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To handle the condition (1) in the estimation, we approximate the 
Gaussian prior C by a finite-dimensional GP CN presented in the 
following subsection (e.g., Chataigner et al., 2021; Cousin and 
Gueye, 2021 for more details).

2.1. Approximation of the Bivariate GP C
Let Ω the rectangular domain in time and space of the GP C, we 
consider a discretized version of Ω as a N=(NT+1)×(NK+1) regular 
grid ΩN = {(ui, vj) | ui = ihT, vj = ihK, i = 0,…,NT, j = 0,…,nK} where 

h
NT
T

=
1  and h

NK
K

=
1 . For each knot (ui, vj), we introduce the 

hat basis function φ (T, K) over Ω, as the following tensor product

,

      
( , )   (1 ,  0)  (1   ,  0)

υ
φ

−−
= − −

ji
i j

T K

kT u
T K max max

h h

So that supp (φi,j) = [Ki−1, Ki+1] × [Tj−1, Tj+1]

The finite-dimensional approximation CN of C is the piecewise-
bilinear quadrilateral interpolation of C at the knots (ui, vj)i,j so that

 
, ,

0 0

( , )  ( , ) ,      ( , )  φ β
= =
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Where 0,0 ,,..., ,...,β β β β =  T K

T
ij N N , with β = (ui, vj) is a zero-

mean Gaussian vector with N × N covariance matrix ΓN such that 

1 211 2 2 ([ , ],  [ , ])κ ν νΓ =N
i j i ju u , for any two grid index pairs (i1, j1) 

and (i2, j1) corresponding to global indices I1 and I2 respectively. If 
we denote 0,0 , ,( , )  ( , ), ..., ( , ), ..., ( , )φ φ φ φ =  T Ki j N NT K T K T K T K , 
one has the matrix form of the equality (2) given as CN (x) = Φ 
(x) β, where CN (x) = [CN (x1),…,CN (xn)]

T and Φ (x) denotes the 
n×N matrix of basis function in which, each row ι corresponds to 
the vector φ (Tt, Kt).

The advantage of using the approximation (2) is the fact that 
since C converges to CN when N goes to infinity, no-arbitrage 
conditions (by means condition [1]) could be verified on CN. 
However, using CN leads to a finite number of inequality 
constraint checks unlike using the original GP which is infinite-
dimensional. By consequence, we may restate the condition (1) 
as follows

(i) ∂T (T, K) ≥ 0 if and only if βi,j+1 ≥ βi,j ∀(i,j),

(ii) 2
2

, 2

, 1 , 1 ,

( , ) 0  if and only if  

 ,  ( , ), 

β

β β β
+

+ +

∂ ≥

− ≥ − ∀
i jK

i j i j i j

C T K

i j

(iii) ∂T (T, K) ≤ 0 if and only if βi,j ≥ βi,j+1, ∀(i,j)
 Of course, in order to better adjust the GP to real market 

prices, it is necessary to also take into account certain market 
evidence such as the following equalities,

(iv) C (0, K) = max (S0 − K, 0), for all K,
(v) C (T, 0) = S0, for all T.

This choice would be judicious since these two relations will 
behave as being equality constraints of the GP type interpolation 
model.

By denoting M set of inequality constraints ((i), (ii), (iii)), i.e., M 
is the set of 2D continuous functions that are non–decreasing in 
T, convex in K, and non–increasing in K, our problem consists 
in estimating β and the noise ε associated to CN conditionally to,

 . 
  

β ε
β

= Φ +



y
Mò

Given the inequality constraints, the best estimator of the denoised 
price is the MAP of CN and the one of the noise is the MAP of ε.

2.2. The Solution of the Denoising Problem
As we mentioned above, the best approximators of the filtered 
price and the noise are given by the joint MAP ( , )ˆCm eN   of the 
truncated Gaussian CN and the Gaussian noise vector ε. Note that 

 ˆ= . ΦNCm J  where ϑ̂  is the MAP of β. Hence the solution to the 
denoising problem is to find the joint MAP )ˆ( , ˆϑ e   of the truncated 
Gaussian coefficient β and the Gaussian noise vector which is a 
solution of the problem

[ ] [ ], (  , , ,  |  . = , )ϑ  β ϑ ϑ ϑ β ε β∈ + ε ∈ + Φ + ∈max d e e de y Me     

Since (β, vε) and is Gaussian centered with block-diagonal 
covariance matrix with blocks ΓN and 2

nς I  the MAP ( ˆ ˆ, )ϑ e  
satisfies

      ( ) 1 2 1
. , ( ( ) ( )ˆ ˆ )ϑ ϑϑ ϑ ϑ ς− −

Φ + = ∈= Γ +
 n,e min e I eT N T

e y     (3)

With this, we reduced the denoising problem to a quadratic 
problem.

3. NUMERICAL EXPERIMENTS

In this section, we propose to illustrate the behavior and the 
efficiency of GP to remove the noise of option prices on a simulated 
dataset. These data come from the simulation of the Black–Scholes 
model for 512 call options with 32 different strikes ranging from 
30 to 100 and, 16 maturities ranging from 0.02 to 3 years listed 
on t = 0 with S = 70. The risk-free interest rate is set at 0.05 and 
the volatility at 0.2. To measure the effectiveness of the GP, we 
propose to disturb the call option prices obtained with a given 
noise. Of course, the efficiency and behavior of the model chosen 
to remove noise will depend on the level of these noises. 
Considering this last aspect, it is natural to train the GP on different 
noisy data characterized by their noise level. To do this, for a call 
price vector C = [c1,…,cn] of size n obtained from the Black–
Scholes model, we choose a spread of δ%C from the initial prices 
and we define the noise vector covariance matrix (assumed to be a 

zero-mean Gaussian vector) as ς 2 � In  with ς δ= ∑1 2

n
c

i

n

i( % ) . 
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This choice of deviation for the prices is completely natural although 
that of the noise level δ is arbitrary. As we will see later, the interest 
in this noise level will allow us, during the calibration phase of 
the GP on real data, to characterize with precision the nature of 
the noise linked to any data set and to be able to locate the 
robustness of the GP in removing such noise.

Once the noise level has been chosen, we adjust the GP on 
each set of data comprising n = 512 noisy call prices obtained 
after disturbance using a mat´ern 5/2 covariance structure. The 
estimation of the GP parameters is performed using the Maximum 
Likelihood (MLE) method implemented in the R package 
Dicekriging developed by Roustant et al. (2012). The results of 
this estimation are summarized in Table 1 where we have chosen 
different levels of noise δ∈{2,3,5,8,10,15,20}. To better adjust the 
GP on the call price surface, we added the prices with maturities 
0 and strike prices 0 on the equality constraints of the GP since 
these are always accessible on the market regardless of the types 
of data. Regarding the basic functions of the finite-dimensional 
approximation, we choose 30 subdivisions in the direction of the 
maturities and 20 in the direction of the strikes, which will make a 
number of 20 × 30 nodes of subdivision. To study the performance 
evaluation of the behavior of the model, we propose to present 
the quantitative results on the mean square error (MSE) metric.

The analysis of this metric for the different retained noise levels 
δ was first carried out on the entire surface and then constructed 
on certain maturities. In Table 2, we represent the MSE (named 
MSE Denoised Price) between the true call option prices and 
the prices estimated by the GP, the MSE (named MSE Noised 
Price) between the true prices and the noised prices as well as the 
percentage reduction of MSE Noised Prices compared to MSE 
Denoised Prices in the Reduction column. Table 3 illustrates the 
same quantities as Table 2 with a much more detailed study by 
searching the MSEs by maturity. A wide range of low MSEs is 
usually noted, which leads to strong noise reduction.

For the convenience of the reader, we present the case where 
δ = 7%. In that case, the overall MSE between the true prices and 
the GP estimated ones is 0.10 while that between the true prices 
and the noisy prices is 2.21 (Table 2), which corresponds to a 
reduction of the latter by 95.33% after estimation by using the GP. 
Such an observation on the performance of the reduction can also 
be done in Table 4. These results also correspond to the Figure 1 
representing the estimated prices according to the strikes for the 
maturities {0.02, 0.22, 0.62, 1.41, 2.01, 3.00} and where one 
can observe a good correspondence between the GP and the real 
prices of the call by Black–Scholes. In addition, all these curves 
are convex and non–increasing in strikes, which means that the 
no–arbitrage conditions are being fulfilled by them.

We also tested the behavior of the GP on out-of-sample forecasts, in 
particular on the strike set {10.15, 20.25} and the maturity T = 0.5. 
The results represented in the table 4 reveal a good behavior of 
the GP in the forecast with a low MSE equal to 0.03.

To show the effectiveness of our method, we follow the approach of 
Haven et al. (2012) to denoise the option prices. It is worth noting 
that the main objective of Haven et al. (2012) was to improve the 

Table 1: Hyperparameter estimates using the maximum 
likelihood estimator for different noise levels δ
δ (%) θ̂K θ̂ σ̂ ς̂ ς̂
3 43.1337 5.7651 15.6026 0.6942 0.7082
5 49.0177 5.9600 17.1289 1.1185 1.1803
7 50.0195 5.9600 17.1847 1.5596 1.6525
10 51.6419 5.9600 17.2343 2.1807 2.3607
15 53.7653 5.9600 17.4755 3.1706 3.5410
20 54.8400 5.9600 17.6194 4.0880 4.7213

Table 2: The global mean square error given a noise 
level δ between the noised prices and the true ones, and 
the mean square error between the Gaussian process 
estimated prices (the denoised prices) and the true prices
δ (%) MSE noised price MSE denoised price Reduction (%)
3 0.43 0.04 90.54
5 1.13 0.07 93.71
7 2.21 0.10 95.33
10 4.36 0.19 95.59
15 9.31 0.59 93.61
20 15.73 2.24 85.79
He last column compute the reduction the MSE after denoising. MSE: Mean square error

Table 3: Mean square error on the noised and denoised prices
Noise
Level 
(δ)

Maturities MSE 
noise 
price

MSE 
denoised 

price

Reduction 
(%)

δ=3% 0.02 0.72 0.00 99.51
0.22 0.21 0.04 78.47
0.62 0.49 0.03 93.23
1.41 0.28 0.04 84.84
2.01 0.29 0.02 91.87
3.00 0.36 0.05 85.86
0.02 2.01 0.00 99.76
0.22 0.60 0.09 84.46

δ=5% 0.62 1.39 0.05 96.15
1.41 0.81 0.09 88.52
2.01 0.87 0.03 96.43
3.00 1.10 0.09 91.74
0.02 3.95 0.01 99.85
0.22 1.21 0.15 87.40

δ=7% 0.62 2.74 0.05 98.26
1.41 1.62 0.14 91.58
2.01 1.76 0.02 98.68
3.00 2.22 0.13 94.11
0.02 8.08 0.01 99.91
0.22 2.56 0.27 89.38

δ=10% 0.62 4.74 0.17 96.47
1.41 3.23 0.31 90.38
2.01 3.70 0.01 99.73
3.00 4.64 0.27 94.24
0.02 15.91 0.01 99.93
0.22 6.17 0.80 87.03

δ=15% 0.62 11.17 0.88 92.12
1.41 7.61 0.84 89.01
2.01 7.25 0.22 97.00
3.00 11.08 0.66 94.03
0.02 28.19 0.03 99.91
0.22 10.95 2.67 75.62

δ=20% 0.62 16.22 4.23 73.95
1.41 14.43 2.71 81.24
2.01 12.75 1.75 86.29
3.00 20.25 2.36 88.33

MSE: Mean square error
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Figure 1: Slices of GP with noise level δ = 7%. The red curve denotes the denoised prices, the green one represents the Black–Scholes prices and 
the black points denote the noisy prices.

underlying. The volatility smile or the implied volatility for options 
on equities and stock indexes becomes sufficiently asymmetrical 
over time, with higher implied volatility for low-exercise price 
options. Implied volatility is also affected by the valuation model 
used to calculate it. The presence of volatility smile in Black-
Scholes implied volatility indicates that option market prices are 
not completely consistent with that model.

Using the wavelet method to denoise implied volatility does not 
guarantee the positiveness of implied volatility, meaning that we can 
get negative implied volatility, which will result in a negative denoised 
price. We also observe that when the noise is huge, the wavelet method 
uses the mean of the noisy series as the denoise series. Furthermore, 
the wavelet method does not work with data, not in the power of 2. 
Figure 2 shows the denoised prices for different maturities using the 
wavelet approach. In panel (a), the wavelet method denoised the 
noisy series for a short maturity of 0.02 years. The MSE between the 
computed Black–Scholes price and the denoised price is 0.0021. For 
panel (b-f), we see that the wavelet-denoised price violates the no–
arbitrage constraints. We see a curve that is both convex and concave. 
The concavity of the curves is a violation of the structural form of 
the option price. Excluding the maturities of 0.02 and 1.4107 years, 
the denoising process resulted in negative IV. These negative values 
result in a negative price. For a maturity of 3 years, the MSE of the 
denoised price is larger than that of the noisy price. The MSE of the 
denoised price is 36.7285, while the noisy price is 1.1754.

4. EMPIRICAL RESULTS

The panel (a) of Figure 3 displays European data for MSFT call 
options traded on November 24th, 2022 with spot price S0 = 248.03. 
This market data contains several available strike prices and 
maturities ranging from 105 to 400 and from 0.156 to 2.150 
respectively. There are violations of the no–arbitrage conditions 

Table 4: Out of sample forecast with δ=7 for the maturity 
0.5 year
TTM 
forecast

Strike 
forecast

Denoised 
price forecast

Black–
Scholes Price

0.50 10.00 60.33 60.25
0.50 15.00 55.50 55.37
0.50 20.00 50.68 50.49
0.50 25.00 45.85 45.62
TTM: Time to Maturity

performance of the smoothed implied volatility smile method in 
estimating the implied RND. They applied the wavelet method to 
denoise option prices to allow better estimation of the risk-neutral 
densities.

The option-implied RND, derived from option prices, provides 
relevant data for pricing additional complicated derivatives written 
on the same underlying asset. Additionally, the implied RND in 
market prices exhibits substantial abnormalities, such as negative 
probability, due to microstructure noise from several sources. 
Shimko (1993) was the first to propose converting option prices 
into IV to interpolate and smooth the curve, then transform the 
smoothed IVs back into price space and proceed with the extraction 
of RND from the resulting set of option prices.

Shimko (1993) cubic spline or a low-order polynomial procedure 
does not assume that the Black–Scholes model holds for 
these option prices but uses the Black–Scholes equation as a 
computational tool for transforming the data into an appropriate 
space for smoothing. Following the method of Bliss and 
Panigirtzoglou (2002), Haven et al. (2012) applied the wavelet 
denoising technique on IV first and obtained option prices based 
on the denoised volatilities using the Black–Scholes model. One 
issue with implied volatility is that it varies significantly depending 
on” moneyness” when computed for options written on the same 
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Figure 2: Slices of Wavelet with noise level d = 7%. The red curve denotes the denoised prices, the green one represents the Black–Scholes prices 
and the black points denote the noisy prices

for certain maturities, in particular on the low maturities of deep-
in-the-money options. These violations would certainly be due to 
an error related to pricing. Given this remark, we aim at removing 

that error without violating the no–arbitrage constraints and at 
constructing the entire call price surface which also respects these 
conditions.

Figure 3: The observed market prices in panel (a), the Gaussian Process MAP estimate in panel (b), and the associated noises of the MAP in panel (c)

a

c

b
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Figure 5: Slices of Gaussian Process (GP) MAP (red curve), observed prices (black points) and 1000 paths of the GP’s posterior (grey envelop)

Figure 4: Slices of Gaussian Process (GP) MAP (red curve), observed prices (black points) and  
1000 paths of the GP’s posterior (grey envelop) for maturities T = 0.2328 and T = 0.4053.
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In this regard, we train the constrained GP on the grid of basis functions 
obtained by discretizing the grid of observation data by means of 50 
nodes in the direction of strikes and 30 nodes in the direction of 
maturities. The GP is based on a mat´ern 5/2 covariance structure whose 
hyperparameters  3. 89ˆ 9 0θ =T ,  206.6507,    55 4ˆ 56,ˆ . 2θ θ= =K  as 

well as the noise variance 2 1 8 34ˆ .76ϑ = , are estimated using 
the maximum likelihood estimator (MLE) developed in the 
Dicekriging R package. To solve the MAP quadratic program (3), 
we have used the function quadprog of the pracma R package of 
Borchers and Borchers (2022) which is developed for solving 
quadratic programming problems with linear and box constraints. 
The corresponding MAP surface as well as the associated noise 
vector are respectively given by panels (b) and (c) of Figure 3. 
Notice that the constructed call price surface is non–decreasing 
in maturities, and convex and non–increasing in strikes, hence 
respects the condition (1).

Of course, a major advantage of using GP for denoising option 
prices is its ability to interpolate prices in areas where there is little 
observation, as we saw in panel (a) of Figure 3 which constitutes a 
lot of missing data between the points of the input grid. This feature 
of GP gives it a special status that other denoising methods, such 
as the wavelet, do not have, but it is reinforced by its ability to 
quantify uncertainty by constructing confidence intervals around 
the estimated quantity. By way of illustration, we have represented 
the slices of the surface estimated call prices at the maturities 
T = 0.2328 and T = 0.4053 in Figure 4 (other slices are presented 
in Figure 5). The red line denotes the GP MAP estimate, the grey 
shaded envelopes represent the posterior uncertainty bands under 
1000 samples per observation and the black points denote the 
observed noisy prices. As we mentioned above, most of the noises 
are concentrated in the deep-in-the-money options. However, the 
bands deviate a little more for the deep out-of-money options. By 
looking at Figure 5, we observe, for certain maturities (e.g., 
T = 1.533, T = 1.5751, T = 2.1506), that the envelope captures most 
of the observation data which implies low noise in these areas. For 
others where there are very few observations (e.g., T = 0.6546), we 
see that the envelope deviates more. Regarding the noise level of 
the surface in the observed prices, given the most likely call price 
surface (i.e, the MAP of the GP) mCN  and the estimated variance 

of the noise ˆ, ς  we have computed the noise level δ̂  considered 

by the model which is a solution of 21ˆ ( ˆ% )
2

ς δ= ∑ N

n

C
i

m . The 

results show a noise level of around 7% treated by the model.

5. CONCLUSION

The aim of this paper was to contribute to the literature on denoising 
option prices by directly denoising the option price while honoring 
the no-arbitrage conditions. We proposed the GP framework for 
this purpose. Using the GP approach not only contributes to the 
construction of the entire option price surface verifying the no–
arbitrage conditions but also allows quantifying the uncertainty on 
the quantity of interest. Furthermore, the GP permits forecasting 
out of the sample prices without computing the risk-neutral density.

To investigate the efficiency of GP in removing the noise from 
option prices, we tested it on a simulated dataset. The overall MSE 
between the computed Black–Scholes prices and the GP denoised 
is 0.10, and between the Black–Scholes prices and the noisy prices 
is 2.21 – a 95.33% noise removal. The curves of the graphs for 
the denoised prices are all convex and non–increasing in strikes, 
upholding the no–arbitrage conditions.

We test the effectiveness of our method following the approach of 
Haven et al. (2012) to denoise the option prices. They applied the 
wavelet method to denoise option prices to allow better estimation 
of the risk-neutral densities. This method involves using the Black–
Scholes model to extract the implied volatility from the option, 
then denoise it, and then use the denoise price to recalculate the 
noise-free option price.

Our analysis showed that using the wavelet method to denoise 
implied volatility does not guarantee the positiveness of implied 
volatility, meaning that we can get negative implied volatility, 
which will result in a negative denoised price. We also observe 
that when the noise is huge, the wavelet method uses the mean of 
the noisy series as the denoise series. Furthermore, the wavelet 
method does not work with data, not in the power of 2. The wavelet 
denoised prices failed to honor the no–arbitrage condition.

For the empirical application of our method, we used Microsoft 
(MSFT) call options traded on November 24, 2022, with a spot 
price of S0 = 248.03. This market data contains several available 
strike prices and maturities ranging from 105 to 400 and from 0.156 
to 2.150, respectively. We observed violations of the no–arbitrage 
conditions for low maturities of deep-in-the-money options. 
These violations would be due to an error related to pricing. We 
used the GP to correct these pricing errors without violating the 
no–arbitrage constraints and constructed the entire call price 
surface, which also respects these conditions. To achieve this, 
train the constrained GP on the grid of basis functions obtained by 
discretizing the grid of observation data by means of 50 nodes in 
the direction of strikes and 30 nodes in the direction of maturities.
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