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ABSTRACT

While regulators generate and advocate the use of through the cycle (TtC) probabilities of default (PDs) for regulatory capital calculations, accounting 
standards (such as IFRs9) require organisations to use point in time (PiT) PDs. TtC PDs are based on long-term average conditions and do not adequately 
capture current credit risk conditions, underestimating credit losses during economic downturns or periods of financial stress. PiT PDs reflect the 
specific risk conditions prevailing at a given moment in time and provide a more granular assessment of credit risk. While many techniques measure 
PiT PDs directly, mathematical approaches also exist which convert TtC PDs into PiT PDs. PiT PDs are also routinely forecasted, projected into the 
future to allow estimation of the present value of future possible credit-related losses. Vasicek’s (1987) model is in common use for this purpose. 
Using a stylistic range of possible input values for Vasicek’s model, loan credit quality is found to be differentially affected (improving for some and 
deteriorating for others) for some of these values. This is counterintuitive and reflects a functional flaw in the model.

Keywords: Vasicek, Point-in-time, Through-the-cycle, Probability of default, IFRS9 
JEL Classifications: C3, C5, G1, M41.

1. INTRODUCTION

The International Financial Reporting Standards 9 (IFRS 9) 
accounting standards, introduced by the International Accounting 
Standards Board (IASB) in 2014 and effective from 2018, 
require banks to account for provisions based on the principle of 
anticipated or expected credit losses (ECL). This principle is both 
forward-looking and point-in-time (PiT), mandating that financial 
institutions use all available information on obligor exposures, 
including data on current and expected macroeconomic conditions 
to manage the provision procyclicality. With the installation of 
IFRS 9, measuring the ECL has become the basis for determining 
the amount that a financial institution must hold to act as a buffer 
to protect against potential impairments (IASB, 2003; 2014).

Loan exposures are allocated to one of three stages. Stage 1 
comprises performing loans (low-risk exposures at valuation 

which have not experienced material credit quality deterioration 
since their origination), Stage 2 exposures have experienced 
a (loosely defined) significant increase in credit risk (SICR) 
since origination, and Stage 3 loans include all non-performing 
exposures. For Stage 1 exposures, the ECL is calculated over a 
1-year horizon, while Stage 2 and 3 exposure ECLs are measured 
over the remaining lifetime of the loan. Allocating loans to stages 
requires an understanding of the evolution of macroeconomic 
variables and economic conditions for the full life of the loan which 
may extend significantly beyond 1 year. This forward-looking 
information (FLI), sometimes incorporated through judgment and 
expert credit assessments, must thus be included in the modelling 
methodology (Rhys et al., 2016). IFRS 9 also mandates that 
financial institutions consider two additional scenarios (in addition 
to the baseline, or expected, scenario); one pessimistic and one 
optimistic, with the final ECL calculated as a probability-weighted 
average of the ECLs determined under each scenario.
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Measuring ECL requires an assessment of loan credit quality. This 
is accomplished through the estimation of a loss given default 
(LGD), an exposure at default (EAD), a suitable discount rate and 
the loan’s probability of default (PD) at origination, at the reporting 
or valuation time, and its expected path over the loan’s lifetime, to 
measure the present value of the ECL. Among the approaches to 
estimate not only the 1-year but also lifetime PDs include survival 
analysis (Witzany, 2017) and rating transition matrix modelling 
(Miu and Ozdemir, 2017) with the latter regarded as being more 
practical as it accounts for not only outright defaults but also rating 
transitions (upgrades or downgrades) and hence permitted loan 
allocation into the various IFRS 9 stages.

IFRS 9 encourages the use of both historical and forward-looking 
information to estimate PDs, but the specific method used varies 
depending on the availability and reliability of data, the complexity 
of the financial instrument, and the institution’s risk management 
practices. IFRS 9 also requires regular monitoring and updates 
to PD estimates based on new information and changes in 
circumstances.

The IFRS 9 framework deliberately avoids a prescriptive 
determination of PDs, but common approaches estimate these 
based on historical data on credit losses and default rates associated 
with similar financial instruments. These are used to derive credit 
rating transition matrices that quantify the likelihood of default for 
different categories of borrowers or financial instruments. Such 
analyses are typically also regularly conducted by credit rating 
agencies (CRAs) such as Fitch Ratings and Moody’s and lending 
institutions are allowed to make use of these historical PDs. The PDs 
thus determined take a broad, and more stable, view of credit risk 
and are intended to represent the average credit risk of a borrower 
or financial instrument over a complete economic cycle, comprising 
both upturns and downturns. TtC PDs are less influenced by short-
term fluctuations and focus on capturing the long-term credit 
performance of the borrower. They provide a more smoothed-out 
estimate of credit risk and are less sensitive to immediate changes 
in economic conditions. As such, these are not suitable for use in 
the IFRS 9 framework which requires the incorporation of FLI 
(macroeconomic indicators, industry trends, and specific borrower 
circumstances) into the PD estimation, to assess the potential for 
default in the future. PDs which include FLI are forward-looking 
estimates that reflect the current credit quality of a borrower or 
financial instrument known as PiT PDs. They embrace the unique 
macroeconomic conditions at points in time by incorporating both 
historical data and FLI and as such are more sensitive to short-term 
fluctuations and changes in economic conditions.

Mathematical techniques exist for transforming TtC PDs into PiT 
PDs: a common approach is that introduced by Vasicek (1987). The 
methodology converts a TtC PD into a PiT PD by considering the 
current level of TtC PD (i.e., at the valuation date), the forecasted 
macroeconomic conditions at relevant future intervals and the 
degree of correlation between loan credit quality (TtC PD) and 
the prevailing macroeconomic circumstances. The technique is 
operationally relatively straightforward to implement, and it has 
been widely adopted in the industry. Using the Vasicek (1987) 
approach, this article explores the transformation of TtC to PiT 

PDs under both different macroeconomic conditions, different 
correlations between TtC PD levels and these macroeconomic 
values.

This remainder of this article proceeds as follows: Section 2 
provides insight into previous work on the transformation of TtC 
PDs to PiT PDs as well as a background of the Vasicek model 
approach. The data used and the methodology employed (including 
the mathematical structure of the Vasicek model approach) are set 
out in Section 3, while Section 4 presents the results and provides 
a discussion of consequences for-inter alia-provision estimation. 
Section 5 concludes.

2. LITERATURE REVIEW

The methodology for calculating expected ECL is based on a 
decomposition of expected losses into three components: the PD, 
the LGD, and EAD. The PD component is driven by internal ratings 
and plays a crucial role. Several approaches exist for estimating 
not only the 1-year PD but also the lifetime PD, including survival 
analysis and the use of rating transition matrices (Witzany, 2017; 
Miu and Ozdemir, 2017). The latter approach, which involves 
modelling the probabilities of transitions between IFRS 9 stages, 
is more practical because it estimates lifetime PDs in addition to 
the probabilities of transitions between stages (Witzany, 2022).

Organisations generally estimate a TtC transition matrix (usually 
1-year) based on historical data that records migrations between 
internal rating grades, including the state of default. The objective 
is then to adjust the TtC transition matrix such that it reflects 
the relevant prevailing (or future) macroeconomic scenario-
not the long run average. This involves adjusting for future 
periods to obtain a sequence of conditional transition matrices, 
driven by the nature of historical data reporting frequency. If the 
rating transition process satisfies the Markov chain property or 
“memoryless property” (in which the probability of a future state 
(PD) depends only on the current PD state not on any previous 
observed PDs) matrix multiplication of the 1-year transition matrix 
by itself generates PDs over longer time horizons. This approach 
assumes that transition matrices are relatively stable (Malik and 
Thomas, 2012).

Vasicek’s (1987) approach makes use of a single-factor 
Gaussian model, in which default is driven by a latent standard 
normal variable decomposed into systematic and idiosyncratic 
components (Belkin et al., 1998; Yang, 2015). Past systematic 
factors and their loadings (default correlations) are derived from 
historical default rates and then predicted using a macroeconomic 
model. FLIs are used to stress product-level PDs and associated 
transition probabilities.

TtC PDs (which are not procyclical1) are used (instead of PiT 
PDs, which are procyclical) for regulatory credit risk capital 

1 During adverse economic times, financial institutions are compelled to raise 
capital requirements, resulting in reduced lending. Such cycles reinforce 
themselves leading to market procyclicality. Several approaches have 
been proposed to mitigate the effect, although none has (2023) garnered 
universal acceptance to 1987 (BCBS 2021).
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requirements. These capital amounts provide a safeguard against 
unforeseen losses resulting from rare but potentially severe loss 
events. The magnitude of this safeguard is mandated by the BCBS 
to be the worst-case default rate with 99.9% confidence, (Vasicek, 
2002). These unexpected losses are measured as the difference 
between losses at the 99.9th percentile worst loss scenario, and 
expected losses (defined as PD LGD EAD), as shown in Figure 1.

TtC PD estimates are calculated using long-term averages, 
resulting in a stable estimate that remains consistent throughout 
the business cycle and credit cycle (Novotny-Farkas, 2016; Rhys 
et al., 2016). In contrast PiT PD estimates are based on current 
economic conditions and incorporate all available information 
and forecasts. As a result, PiT estimates are more reflective of 
real-time conditions and are influenced by the business cycle and 
credit cycle (Novotny-Farkas, 2016; Rhys et al., 2016). Empirical 
findings suggest that PiT estimates provide a more precise method 
for estimating PD, LGD and EAD (Heitfeld, 2004). Nevertheless, 
one drawback of PiT compared to TtC is that PD, LGD, and EAD 
are more volatility prone (Maria, 2015; Rhys et al., 2016).

The BCBS strives to limit the influence of economic conditions on 
regulatory capital amounts for capital ratios (BCBS, 2006; Gordy 
and Howells, 2006), so volatility in this context is undesirable. 
Using PiT PD estimates during economic downturns result in 
lower net income for financial institutions and this effect is further 
exacerbated if the institution is required to hold more capital due 
to the use of other PiT variables, since PiT PD, PiT LGD, and 
PiT EAD all generally increase during such periods (Catarineu-
Rabell et al., 2005). Existing literature has identified three primary 
techniques for incorporating macroeconomic factors to convert 
TtC estimates to forward-looking PiT estimates. These methods 
include macroeconomic adjusted Markov chains (Vanek et al., 
2017), Vasicek’s one-factor model (Carlehed and Petrov, 2012), 
and the KMV-Merton model (Bharath and Shumway, 2004).

Vaněk and & Hampel, 2017 introduce a methodology for 
transforming TtC PD into PiT PD utilising Markov chains. The 
approach is grounded in the average characteristics of rating grades 
over time, which bear a close resemblance to TtC and may be 
expressed in the form of a migration matrix. The migration matrix 
is influenced by macroeconomic factors, thus including them in 

the migration probabilities. These probabilities reflect the chances 
of obtaining a certain rating at a specific time, given the influence 
of macroeconomic factors (Malik and Thomas, 2012).

Carlehed and Petrov (2012) utilise Vasicek’s one-factor model to 
compute PiT PD using TtC PD, default rate, and correlation, if the 
default rate represents the current state of the economy. However, 
this model has a limitation in that it cannot determine PiT over 
multiple periods. Nonetheless, Vasicek’s one-factor model is an 
analytical approach that can be repeated annually per rating, and 
thus, it is less computationally intensive compared to a Markov 
chain with macroeconomic adjustments, which is beneficial for 
model running time. Csaba (2017) capitalises on this benefit by 
adjusting the migration probabilities of a two-rating Markov chain 
with the results of Vasicek’s one-factor model. In contrast, García-
Céspedes and Moreno (2017) propose an extension of Vasicek’s 
one-factor model to enable its use for multi-period purposes by 
giving a weight to the most recent default rate observation of the 
explanatory model and a certain weight to a random error term.

The KMV Corporation developed the KMV-Merton model, a 
default forecasting model based on Merton’s debt pricing model 
(Merton, 1974). The model applies the debt pricing model to a 
company’s balance sheet, in which the company’s equity is viewed 
as a call option, and the strike price the face value of the company’s 
debt (Bharath and Shumway, 2004). The PD is determined using 
the corporate debt face value, as well as its underlying value and 
volatility, neither of which are directly observable (Bharath and 
Shumway, 2004). However, the KMV-Merton model has the 
advantage of not requiring historical data for a specific company to 
determine a forward-looking PiT PD. Although the KMV-Merton 
model is not representative of a company’s underlying value (since 
it assumes that a company’s value follows Geometric Brownian 
motion) it is beneficial for specific company analysis. This article 
does not make use of this model further, as it focuses on a different 
method for PiT PD determination.

Frei and Wunsch (2018) present a new nonparametric estimator 
for credit risk modelling that corrects underestimated latent 
asset return correlations due to autocorrelation and short time 
series, resulting in more accurate correlation estimates. The 
method is based on convergence and approximation principles 

Figure 1: The relationship between expected loss (EL), unexpected loss (UL) related to the capital requirements for financial institutions 
(BCBS, 2005)
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for autocorrelated time series and offers an easily implementable 
solution.

Wunderer (2019) explores the impact of assuming homogeneity 
in exposure pools on asset correlations calculated from default 
time series data, finding that underestimation of asset correlations 
occurs when homogeneity with respect to the probability of default 
is incorrectly assumed. This underestimation is amplified when 
considering negative correlations between asset correlation and 
probability of default, providing a potential explanation for the 
tendency of asset correlations from default data to be lower than 
those from asset value data.

Pfeuffer et al. (2020) enhance the parameterisation of correlations 
in the Vasicek credit portfolio model by providing analytical 
approximations for value-at-risk and expected shortfall standard 
errors based on intra-cohort correlations, The authors introduce 
a new copula-based maximum likelihood estimator for inter-
cohort correlations with derived standard errors, and demonstrate 
how these contributions address bias and improve uncertainty 
quantification (essential for regulatory requirements).

Jakob (2022) discusses the literature governing the inception of 
credit portfolio models in the late 20th century, (like CreditMetrics 
and CreditRisk+) in the context of correlation parameter 
estimation methods, many of which assume unrealistic infinite 
portfolio sizes and homogeneity. To address these limitations, 
Jakob (2022) introduces more flexible maximum likelihood 
estimation techniques capable of accommodating finite portfolios, 
limited default data, and time-varying, nonhomogeneous default 
probabilities, aligning with financial institutions’ rating system 
philosophies and mitigating misspecifications and double-
counting. Simulation results demonstrate that these new estimators 
often outperform established methods in practical applications, 
providing improved accuracy and adaptability for correlation 
parameter estimation.

Cho and Lee (2022) introduce a new time-varying credit risk model 
that captures cyclicality and asymmetry in asset correlations within 
credit portfolios, combining GJR-GARCH volatility modelling 
and copula-based conditional dependence. The authors find that 
the model’s superiority over regulatory models in representing 
U.S. credit portfolios, showcasing its ability to address cyclical and 
asymmetric asset correlations and suggesting potential limitations 
of Basel’s correlation criteria during economic downturns.

The primary objective of this work is to compare the implication 
of PiT PD to TtC PD conversion using the Vasicek single-factor 
model. Using Vasicek’s mode, the impact of TtC PD to PiT PD 
conversion under a wide range of different macroeconomic 
conditions and correlations is explored. The consequences of 
the output on required IFRS 9 institutional provisions are also 
explored and reported.

3. DATA AND METHODOLOGY

Financial institutions typically employ a proprietary master rating 
scale (MRS) to facilitate the management of credit risk in its 

lending activities. The MRS is a standardised system for assigning 
credit ratings to borrowers based on their creditworthiness, and 
it provides a consistent and objective basis for assessing credit 
risk across the financial institution’s lending portfolio. A well-
designed MRS allows financial institutions to quantify credit 
risk and make informed credit decisions based on the level of 
risk associated with each borrower. This is essential for effective 
credit risk management, as it helps the financial institution to 
identify and mitigate potential losses in its lending activities. 
The MRS may be based on a combination of quantitative (e.g., 
financial ratios, industry trends) and qualitative factors (e.g., 
the borrower’s financial history, extenuating circumstances). 
Ratings assigned to borrowers using the MRS reflect the financial 
institution’s assessment of the borrower’s creditworthiness, 
facilitating portfolio management by grouping obligors based 
on their assigned ratings, identifying credit risk concentrations, 
and triggering appropriate mitigation measures. In the absence of 
up-to-date CRA TtC PD data, the institution’s MRS is frequently 
used instead.

3.1. Data
Because organisational borrower information is highly sensitive 
and proprietary, it is impossible and unethical to make use of 
empirical data for the purposes of this work. Instead-and without 
any loss of generalisation-input TtC PDs spanning a wide 
range of values may be used instead. This enjoys the benefit of 
encompassing the full range of possible TtC PDs, rather than 
(potentially) small TtC PD subranges.

Similar logic is applied for the single macroeconomic factor 
values. The Vasicek model requires the macroeconomic factor to 
be standard normal, so a range of ±4 (representing ±4 standard 
deviations from the average value of the macroeconomic factor) 
is considered appropriate to embrace all stylistic, realistic 
possibilities. In the Vasicek single-factor model, PDs are estimated 
based on a single common factor, typically a macroeconomic 
variable. The model assumes that the PD of an entity is influenced 
by the systematic factor and can be modelled as a function of that 
factor.

3.2. Methodology
Vasicek’s one-factor model is characterised by its ability to 
transform a PiT PD into TtC PD. The model estimates the state 
of the economy by using a correlation-dependent weight to the 
long-term average (TtC) PD and another correlation-dependent 
weight to a macroeconomic factor, specifically the default rate. 
To obtain a forward-looking PD, an estimate of the future state 
of the economy is needed, which necessitates an estimation of 
future default rates. As the future default rate cannot be directly 
observed, it is estimated using a regression that relates the default 
rate to a macroeconomic factor.

It is posited that an economic cycle exists, whereby systemic 
factors exert an influence on all participants in a particular 
segment, such as an industry or country. Under this premise, the 
risk of default for an individual counterparty can be attributed to 
a combination of systemic factors and idiosyncratic risks that are 
specific to that counterparty (Figlewski et al., 2012).
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The concept of PiT PD for a counterparty refers to the likelihood 
that the counterparty will experience default within the subsequent 
12 months. It is evident that the PiT PD is contingent upon the 
information available at the time of estimation. The information 
can be bifurcated into two components theoretically: the status 
of systemic factors and any other pertinent details about the 
counterparty available. The TtC PD is the average PiT PD, average 
here is over all the systemic factors.

The model estimates the relationship between the systematic factor 
and the borrower’s PD and uses this relationship to project the 
borrower’s PD over the economic cycle. In summary, the Vasicek 
single factor model provides a useful framework for estimating TtC 
PD from PiT PD estimates. By incorporating the cyclical changes 
in the credit environment, the model provides a more accurate and 
stable measure of credit risk, which is crucial for making informed 
credit decisions and managing credit risk in a portfolio.

This paper undertakes a mathematical derivation of Vasicek’s 
one-factor model. The model, as defined by Belkin et al. (1998), 
is the focus of this study. A key assumption of the single-factor 
Gaussian model is that an obligor i’s default event is driven by a 
standard normal variable:

Y Zi i� � �� ��1  (1)

Where Z~N (0,1) is the systematic factor and ξi~N(0,1) is an 
obligor-specific factor. The variable Yi may be interpreted as the 
quantile-to-quantile transformed time-to-default variable or as 
the standardised asset return (Vasicek, 1987; Witzany, 2017). The 
parameter ρ represents the asset return correlation between the 
default factors of different obligors. The unconditional probability 
of default of the obligor over a given time horizon (e.g., 1 year) 
may in this context be expressed as PDi = Pr[Yi≤bi] = Φ(bi) 
where bi is a default threshold. Thus, if the probability of default 
PDi is given, bi=Φ-1 (PDi). This model allows to condition the 
probability of default on the systematic factor value Z and obtain 
the well-known Vasicek’s formula used by Basel II regulation 
(BCBS, 2006):
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The conditional probability of default can be used as a proxy 
of the future default rate driven by the unknown systematic 
factor on a large homogenous portfolio, i.e., on a portfolio with 
many exposures with the same unconditional PD and the same 
correlation parameter ρ. In practice, this may apply to a retail 
product portfolio of exposures with the same rating grade, and so 
with approximately the same probabilities of default. By stressing 
the latent systemic variable Z~N(0,1) one may obtain quantile 
estimates of the future possible default rate, which is the goal of 
the regulatory capital calculations.

If a realised default rate p on a specific homogenous portfolio 
with the known parameters PD and ρ is given, then the latent (not 
observable) systemic factor Z may be derived from (2) as

Z
PD p

�
� � � � � �� �� �1 11 �

�
 (3)

If a time series of historical default rates, pt for t = 1… T, is 
observed, the parameters PD and  can be estimated, even if they 
are unknown. To achieve this, the model (2) may be formulated as 
pt = Φ (a − bZt), where Zt = (a – Φ–1 (pt))/b represents the latent 
systemic factor that has been realised. Assuming that the Z-factors 
are independently drawn from the standard normal distribution, the 
unknown parameters can be estimated by maximising the likelihood 
function. The maximum likelihood estimates can be obtained from 
the mean (a) and standard deviation (–b) of the transformed series 
Φ–1 (pt), for t = 1,…, (Yang, 2013). The correlation and long-term 
PD can be calculated using the following methods:
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The assumption of the Gaussian independent realisations of zt 
is questionable, and it is important to observe the default rates 
over non-overlapping time intervals to address the issue of 
independence. However, even in such cases, the autocorrelation 
of the series of systematic factors may be present, necessitating a 
more general specification as discussed in Witzany (2011).

To address the probability distribution of the systematic and 
idiosyncratic factors, a generalised model can be proposed where 
Z~F1, ξi~F2, and Yi~F3, with F3 being a mixture of the independent 
distributions F1 and F2, given by the parameter ρ in (1). The 
resulting formula (2) can be expressed as follows:
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For a time series of historical default rates, the parameters in 
the model pt =F2 (a − bZt) can be estimated through maximum 
likelihood estimation (MLE) from the transformed latent factors:
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After calculating the correlation parameter  as in (4), the resulting 
mixed distribution F3 can be utilised to obtain the unconditional 
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probability of default, PD F� � �3 � � . Witzany (2013) suggests 
using the logistic distribution as it has become an industry standard 
for credit risk modelling through the Logit model (logistic 
regression). Empirical studies have revealed that the impact of the 
logistic distributional assumptions, compared to the Gaussian 
model, can be dramatic when estimating unexpected default rates 
on high probability levels (such as 99.9% as used in the Basel 
regulation). Alternatively, the Student t-distribution, proposed by 
Perederiy (2017), is another candidate distribution.

To stress rating migration matrices conditionally on economic 
scenarios, it is necessary to further generalise the single factor 
model described above, as stated in the introduction. Assuming 
there are K rating grades, denoted as u = 1,…,K, where K represents 
the absorbing state of default, the objective is to estimate the 
probabilities of future rating transitions.

In (7), rat (i,t) = u represents the rating grade assigned to exposure 
i at time t. If the transition probabilities are modelled on a 
homogeneous portfolio, the index i can be omitted. Assuming 
there are historical default and rating transition observations for 
periods t = 1,…,T, the objective is to estimate the forward-looking 
transition probabilities PDuv (t|Xt) conditional on a scenario defined 
by a vector series of macroeconomic variables Xt for t = T + 1,…,T 
+ M (where M is the maximum maturity for which the transition 
probabilities must be modelled).

PDuv(i,t) = Pr[rat(i,t) = v[rat (i,t–1) = u] (7)

Initially, we describe an uncomplicated generalisation of the 
single-factor model, which is frequently employed in the banking 
sector for IFRS 9 modelling purposes (Rubtsov and Petrov, 2016). 
The primary assumption of the generalised single-factor model 
is that, in addition to the event of default, transitions are also 
influenced by the factors (1). Removing the time parameter t, the 
unconditional probability of transitioning from u to v is considered.
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The decreasing transition thresholds for bu,v+1 = 1,…,K are 
defined, with bu, K + 1 = –∞. To express the thresholds from the 
probabilities, cumulative transition probabilities are introduced:
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Assuming the standard normal distribution of Yi, the decreasing 
transition thresholds can be expressed as bu,v+1 = Φ-1 (PDuv+). 
Conditional transition probabilities may be represented similar 
to (2):
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Knowing conditional cumulative transition probabilities, obtaining 
the standard transition probabilities is a straightforward task. 

Standard transition probabilities are defined using (10) which, in 
an ECL context, may be rewritten as:

PD Z
PD Z

PIT
t

TTC
t

( ) �
� � � �
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�

�

�
��

�

�

�
��

�

�
� 1

1
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Where Zt is a representation of the status of the economic 
conditions as well as thereafter.

To estimate expected credit losses under different scenarios, a 
five-step process can be followed. First, a time series of historical 
default rates is used to estimate the correlation ρ and calculate the 
historical Z-factors Zt. Next, the historical rating transitions are 
used to estimate a TtC transition matrix. Then, a macroeconomic 
model is built by selecting appropriate predictors that link Zt and 
the predictors. For stress-testing or IFRS9 scenarios, the model is 
used to estimate the forward-looking values of economic indicators 
Xt
scen  and the implied factors Zt

scen  for t = T + 1,…,T + M. The 
TtC PD transition matrix is then adjusted conditional on Zt

scen  
using (10) for t = T + 1,…,T + M. Finally, the adjusted transition 
matrices are multiplied through to estimate the migration 
probabilities over longer periods, which allows for the estimation 
of overall expected credit losses conditional upon the scenario.

In this paper, the limitations of a simple yet effective approach are 
investigated. Specifically, several weaknesses in the single-factor 
default model with the correlation parameter ρ are identified. 
Firstly, the model assumes credit risk homogeneity in the portfolio, 
which is not the case for portfolios aimed at modelling rating 
transition probabilities (such as mortgage, consumer, or corporate 
loans). Exposures with varying ratings violate the theoretical 
credit risk homogeneity assumption, and the estimation of a single 
correlation for all initial ratings in Step 1 is unsuitable. To address 
this, a possible solution is to estimate correlations ρu based on 
time series of default rates conditioned on the initial rating u, or 
by using observations of transitions from u to another rating v.

While IFRS9 does not mandate the use of specific formulae, it 
requires the provisions to be equivalent to the ECL. The ECL is 
calculated using the variables PD, LGD, and EAD, which are not 
known by a financial institution and therefore require estimation. 
The ECL for a loan is:

ECL
PD LGD EAD

EIRT
t

T
t t t

t�
� �

��
�
1

1( )

 (11)

In the context of loan portfolio risk assessment, the PD between 
time t – 1 and t is denoted as PDt. Additionally, LGDt represents 
the percentage of loss given that a default occurs within the 
same time interval, and EADt signifies the exposure in the event 
of default between time t – 1 and t. The effective interest rate 
(EIR) is the discount rate used to evaluate the present value of 
future cash flows over the expected life of the loan, relative to the 
principal of the loan (IASB, 2003). T denotes the remaining time 
until loan maturity. For stage 1 loans (Performing loans), T = 1 
always. However, if a stage 2 (distressed) or stage 3 (defaulted 
loans) loan is set to mature in, for example, 10 years, the financial 
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institution will estimate ECL10. The portfolio ECL is the aggregate 
ECL over all loans:

ECL
PD LGD EAD

EIRT
n

N

t

T
t n t n t n

t�
� �

�� �
��
1 1

1

, , ,

( )

 (12)

In the loan portfolio analysis, the PD of loan n between time t – 1 
and time t is denoted as PDt,n. Furthermore, LGDt,n represents the 
loss percentage if loan n defaults between the same period, while 
EADt,n signifies the exposure given a default for loan n between 
time t – 1 and t. N represents the total number of loans within 
the portfolio. (11) and (12) are TtC models and thus are formally 
incorrect as per the requirements of IFRS9. Banks must estimate 
PD, LGD, and EAD on a PiT basis (for IFRS 9 requirements). 
To determine the PiT PDs, PiT LGDs, and PiT EADs, a financial 
institution must consider all available information. Accounting 
for all relevant information, (12) can be restated as:

ECL
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The availability of all information at time t is denoted as i, which 
facilitates the calculation of PD, LGD, and EAD on a PiT basis, 
thus making them compliant with IFRS9 standards. IFRS9 does 
not provide a mathematical framework for computing the ECL. In 
practice, the ECL is often estimated using (14) as other regulatory 
frameworks may require unadjusted PiT values for PD, LGD, 
and EAD.

The Vasicek model provides a framework for estimating the PD 
component of ECLs by modelling the borrower’s credit risk as 

a function of a systematic factor that follows a mean-reverting 
process (Perederiy, 2015). The model estimates the relationship 
between the systematic factor (11) and the borrower’s PD and uses 
this relationship to project the borrower’s PD over the economic 
cycle. The projected PDs are then used to calculate the expected 
credit losses for each borrower in the portfolio.

The Vasicek model also provides a robust and flexible approach for 
estimating credit risk and calculating ECLs under IFRS9. It enables 
financial institutions to make informed credit decisions, quantify 
credit risk, and manage their lending portfolios to minimise 
potential losses. By incorporating macroeconomic factors and 
projecting credit risk over the economic cycle, the Vasicek model 
provides a more accurate and stable measure of credit risk, which 
is crucial for complying with IFRS9 requirements.

4. RESULTS AND DISCUSSION

It is not unreasonable to expect all TtC PDs to be transformed into 
worse PiT PDs if macroeconomic conditions are unfavourable and 
correlations are high and vice versa. Under certain circumstances 
the Vasicek approach suggests that favourable (low) TtC PDs 
transform into worse PiT PDs while poor quality (high) TtC 
PDs transform into better PiT PDs for the same macroeconomic 
conditions and correlations. This is counterintuitive: unfavourable 
market conditions should always produce worse PiT PDs (i.e., 
worse than the TtC PDs from which they originate) across all TtC 
PDs, and vice versa.

These empirical results are shown in Table 1 for a fixed 
� � �0 34. . Columns show the systematic factor (Zt) over a 

range of stylistically possible values (in this case, –0.45≤ Zt 
≤ –0.20). The rows represent TtC PDs, again over a stylistically 
possible range of “good” obligor PDs (in this 0.01%≤ PDTtC 
≤3.62%). Note here that the lowest TtC PD is assigned a value of 

Table 1: PDPiTs calculated over a range of PDTtCs and systematic factors, Zt using (11) at a fixed �� �� ��0 34. . Shaded cells 
indicate PDPiT≤PDTtC and white cells PDPiT≥PDTtC

PDTTC Zt (%) −0.45 (%) −0.40 (%) −0.35 (%) −0.30 (%) −0.25 (%) −0.20 (%)
0.010 0.010 0.010 0.009 0.009 0.009 0.008
0.014 0.015 0.014 0.013 0.013 0.012 0.012
0.020 0.021 0.020 0.019 0.018 0.018 0.017
0.028 0.030 0.028 0.027 0.026 0.025 0.024
0.040 0.043 0.041 0.039 0.038 0.036 0.035
0.057 0.061 0.059 0.056 0.054 0.052 0.050
0.080 0.086 0.083 0.080 0.077 0.074 0.071
0.113 0.123 0.118 0.114 0.110 0.106 0.102
0.160 0.175 0.169 0.163 0.157 0.151 0.146
0.226 0.248 0.240 0.231 0.223 0.216 0.208
0.320 0.353 0.342 0.330 0.319 0.308 0.298
0.453 0.503 0.487 0.471 0.456 0.441 0.427
0.640 0.714 0.692 0.670 0.649 0.629 0.609
0.905 1.013 0.983 0.954 0.925 0.898 0.871
1.280 1.438 1.397 1.357 1.319 1.281 1.244
1.810 2.039 1.984 1.930 1.878 1.827 1.777
2.560 2.890 2.816 2.744 2.673 2.605 2.537
3.620 4.091 3.993 3.897 3.803 3.710 3.620
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Figure 2: (a) PiTPD versus PDTtC for 0.01% ≤PDTtC ≤0.16% and (b) PiTPD versus PDTtC for 0.20% ≤PDTtC ≤25.00%. The dashed line is the line on 
which PiTPD = PDTtC and the two graphs are necessary to illustrate different PD scales.

Figure 3: (a) Dependence of the difference between PDTtC and PDPiT as a function of the systematic factor, Z for � � �0 20.  

and constant PDTtC=2.5%. (b) Dependence of the difference between PDTtC and PDPiT as a function of the systematic factor, Z for � � �0 20.  and 

constant PDTtC = 50.0%. (c) Dependence of the difference between PDTtC and PDPiT as a function of the systematic factor, Z for 
� � �0 20.  and constant PDTtC = 95.5%

ba

c

b

a



Basson and Vuuren: Through-the-cycle to Point-in-time Probabilities of Default Conversion: Inconsistencies in the Vasicek Approach

International Journal of Economics and Financial Issues | Vol 13 • Issue 6 • 202350

Figure 4: (a) Dependence of the difference between PDTtC and PDPiT as a function of PDTtC for � � �0 20.  and constant Zt << 0. (b) Dependence 

of the difference between PDTtC and PDPiT as a function of PDTtC for � � �0 20.  and constant Zt ≈ 0. (c) Dependence of the difference between 

PDTtC and PDPiT as a function of PDTtC for � � �0 20.  and constant Zt = +3.0 

0.01% and these then scale by 2  for every subsequent TtC PD. 
Hence, the next grade’s TtC PD is 0 01 2 0 014. % . %� �  and the 
next 0 01 2 0 020

2

. % . %� �  and so on. The elements which 
populate Table 1 are the calculated (transformed) PiT PDs 
using (11). Cells shaded in light grey reflect the situation where 
PDPiT ≤ PDTtC while white cells indicate PDPiT ≥ PDTtC. Thus, for 
Zt≤–0.45 all PDPiT ≥ PDTtC s and for Zt ≥–0.20 all PDPiT ≥ PDTtC s 
for a constant � � �0 34. . For –0.40≤ Zt ≤ –0.25, however, PDPiTs 
are lower for good (low) PDTtCs but higher for bad (higher) PDTtCs 
for the same ρ . This means, for any fixed macroeconomic 
condition, Zt, such that –0.40≤ Zt ≤ –0.25 and for a fixed 
dependency (given by the fixed ρ ) of PDPiTs on this systematic 
factor-the resulting PDPiTs can deteriorate or improve relative to 
the associated PDTtC from which it was derived.

The situation presented in Table 1 is illustrated in Figure 2. The 
dashed line indicates the line on which PDPiT = PDTtC so markers 
below this line in (Figure 2a) indicate better PDPiTs for 0.01% 
≤PDTtC ≤0.16% and markers above the line in (Figure 2b) indicate 
worse PDPiTs for 0.20% ≤PDTtC ≤25.00%.

(Figure 3a-c) shows three scenarios of differences between PDTtC 
and PDPiT as a function of the systematic factor, Z, spanning the 
full range of possible PDTtC (2.5%, 50% and 97.5%) for a positive 
� � �0 2. .  It is reasonable to expect that for bad economic 

conditions (Z < 0), PDTtC–PDPiT <0 and vice versa for good 
economic conditions: i.e., for Z > 0, PDTtC–PDPiT >0 as shown in 
(Figure 3a) for low PDTtC (=2.5%), (Figure 3b) for PDTtC (=0) and 
for high PDTtC (=97.5%).

(Figure 4a-c) shows three scenarios of differences between PDTtC 
and PDPiT as a function of PDTtC, spanning a wide range of possible 

c

b

a
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economic conditions (Z = –3.0,0.0 and +3.0) for again a positive 
� � �0 2. . It is again reasonable to expect that for bad economic 

conditions (Z < 0), PDTtC–PDPiT < 0 and vice versa for good 
economic conditions: i.e., for Z > 0, PDTtC–PDPiT > 0 as shown in 
(Figure 4a and c) for good and bad economic conditions 
respectively. However, for “average” economic conditions 
(Z ≈ 0.0), the difference between PDTtC and PDPiT counterintuitively 
changes sign.

Figure 5 shows the difference between PDTtC and PDPiT over the 
full range of Z and PDTtC for a constant � � �0 2. .

5. CONCLUSION AND 
RECOMMENDATIONS

This article explores Vasicek’s approaches to convert TtC PDs 
into PiT PDs by considering the relationship between TtC PDs 
and a relevant macroeconomic factor (or factors in the multifactor 
model). This model for forecasting PiT PDs exhibits a functional 
flaw possibly in its assumptions of stationary, a linear relationship 
between TtC and PiT PDs, and the constancy of underlying factors 
driving credit risk over time. By employing a range of input 
values for Vasicek’s model, the study demonstrates empirically 
counterintuitive results, with PiT loan credit quality improving 
for some TtC PDs and deteriorating for others (for the same 
macroeconomic conditions and the same dependency on that 
macroeconomic factor of the TtC PDs).The study’s empirical 
analysis, which incorporates a range of input values for Vasicek’s 
model, reveals counterintuitive results whereby PiT loan credit 
quality improves for some TtC PDs while deteriorating for others, 
despite identical macroeconomic conditions and dependencies on 
the macroeconomic factor of the TtC PDs.

The research underscores the need for improved models and 
methodologies to accurately estimate PiT PDs and assess credit 
risk. Addressing the functional flaws in existing models will enable 
organisations to make more informed decisions about credit-
related losses and ensure regulatory compliance while adhering 
to accounting standards. Improved models and methodologies 

will provide greater transparency to regulators, stakeholders, 
and investors, instilling confidence in the credit risk assessment 
processes employed by banks.

Future work could focus on the flaw in the relationship between 
TtC PD and PiT PD using Vasicek’s approach. This research could 
involve using advanced statistical techniques, such as machine 
learning algorithms or nonparametric regression models, to capture 
the complex interactions between TtC PDs and macroeconomic 
variables. By identifying and incorporating nonlinear relationships, 
more accurate PiT PD estimates can be obtained, leading to 
improved credit risk assessment and allocation of provisions.
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