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ABSTRACT

Value at Risk (VaR) estimates the maximum loss a portfolio may incur at a given confidence level over a specified time, while expected shortfall (ES) 
determines the probability weighted losses greater than VaR. VaR has recently been replaced by (but remains a crucial step in the computation of) ES 
by the Basel Committee on Banking Supervision (BCBS) as the primary metric for banks to forecast market risk and allocate the relevant amount 
of regulatory market risk capital. The aim of the study is to introduce a more accurate approach of measuring VaR and hence ES determined using 
loss forecast accuracy. VaR (hence ES) is unobservable and depends on subjective measures like volatility, more accurate (loss forecast) estimates of 
both are constantly sought. Modelling the volatility of asset returns as a stochastic process, so a Kalman filter (which distinguishes and isolates noise 
from data using Bayesian statistics and variance reduction) is used to estimate both market risk metrics. A variety of volatility estimates, including 
the Kalman filter’s recursive approach, are used to measure VaR and ES. Loss forecast accuracy is then computed and compared. The Kalman filter 
produces the most accurate loss forecast estimates in periods of both calm and volatile markets. The Kalman filter provides the most accurate forecasts 
of future market risk losses compared with standard methods which results in more accurate provision of regulatory market risk capital.

Keywords: Kalman Filter, Value-at-Risk, Expected Shortfall 
JEL Classifications: C3, C6, G21, G28

1. INTRODUCTION

Risk which arises from the activities of any given institution 
has historically required the use of metrics such as VaR and ES 
(or CVaR) to effectively identify and evaluate the potential losses 
a portfolio may face over a given time horizon and at a given 
confidence level. VaR defines the minimum expected loss for a 
given portfolio under normal market conditions, resulting in a 
frequency measure for losses beyond a certain confidence interval. 
Using a hypothetical daily portfolio VaR of $1 million at a 97.5% 
confidence level, there is a 97.5% chance that the portfolio will 
not exceed $1 million in losses for the specified day. Calculating 
the ES for the same portfolio requires a few additional steps to 
quantify the magnitude of losses beyond the VaR threshold. Put 

simply, it provides an average of the losses that exceed the loss 
level, at a prescribed confidence, determined by VaR (Acerbi and 
Tasche, 2002).

The application of accurate VaR estimates, particularly in banking 
institutions and investment firms, is of considerable importance. 
Capital allocation for market risk may be misaligned with the 
appropriate structures if the underlying risk is not adequately 
estimated, jeopardising the stability of the institutions that rely 
on these metrics. Several approaches, both non-parametric and 
parametric, have been established to better understand and manage 
the varying forms of risk (credit, operational, liquidity, and market) 
a firm may face (Manganelli and Engle, 2001). Economic reforms 
are often witnessed in a country, and markets can be susceptible to 
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internal and external shocks, such as currency movements, credit 
rating changes, inflation, and shifts in risk premiums. Higher 
volatility during turbulent periods can result in financial returns 
having more distorted distributions than normal, making it difficult 
to assess VaR using standard methods (Miletic and Miletic, 2015). 
Krause and Tse (2016) highlight how recent empirical findings 
corroborate the earlier theoretical claims in existing literature 
that risk management leads to increased firm value and returns, 
while simultaneously decreasing return and cash flow volatility.

Although VaR has gained significant popularity in modern 
finance, it is plagued by some limitations and assumptions. ES has 
emerged as a preferred risk measurement tool in certain scenarios, 
offering advantages over (but still dependent upon) its progenitor. 
In 2013, the BCBS replaced VaR with ES as the new primary 
measure for banking institutions to forecast market risk (BCBS, 
2013). The estimation of VaR and ES can be accomplished using 
various methods, each varying in popularity and complexity. In 
this article, a selection of these popular methods implemented in 
modern financial markets will be referred to and matched against 
the Kalman filter (Kalman, 1960), an algorithm which provides 
estimates of unknown variables and unobservable parameters 
through dynamic system estimation. While originally applied 
primarily in the field of engineering, the Kalman filter has more 
recently found applications in finance and economics. It has 
exhibited competence in estimating various factors, such as 
inflation expectations, commodity futures prices, and hedge ratios 
for interest rate contracts (Arnold et al., 2008). The objective is 
for the Kalman approach to serve as an alternative, and potentially 
more effective, method for financial analysts to quantify market 
risk.

The literature governing the application of the Kalman filter to 
financial risk is relatively scarce as the approach is still reasonably 
novel. This work is one of the first to provide robust, extensive 
results of comprehensive back-testing.

The remainder of this article proceeds as follows: Section 2 
reviews the literature surrounding existing VaR and ES estimation 
methods, the Kalman filter, and its application in financial risk 
management. Section 3 sets out the underlying data and provides 
a summary of the relevant mathematics used to estimate VaR 
and ES as well as a detailed description of the workings of the 
Kalman filter. Section 4 presents and discusses the results of the 
subsequent analysis while Section 5 provides recommendations 
for further research and concludes.

2. LITERATURE REVIEW

Precise quantification of overall risk for a given institution 
or portfolio exposed to several systematic and unsystematic 
influences can be challenging. The coverage of risk detection 
in financial markets has historically focused on broad statistical 
concepts in standard deviation or variance. Since its introduction 
by 1994, VaR has undergone several adaptations, iterations, and 
additions in its rise to prominence as a suitable risk management 
tool. Its effectiveness has been validated by its ability to 
consolidate various com-ponents of market risk within a firm into 

a single quantitative measure. This attribute received substantial 
endorsement from industry and regulatory bodies, particularly in 
the late 1990s when the methodologies associated with the tool 
first became widely accessible (Marshall and Siegel, 1997).

Early contributions to VaR can be attributed to Markowitz 
(1952) and Roy (1952), who both emphasised the incorporation 
of covariances among risk factors to reflect diversification and 
hedging effects. However, due to limited processing power during 
subsequent decades, VaR remained primarily a theoretical concept. 
It was only when financial institutions began adopting VaR as a 
routine tool for assessing market risk and establishing risk limits 
that the Markowitz (1952) methodology gained widespread 
usage. In the late 1980s, JP Morgan developed RiskMetrics, a 
system capable of modelling numerous risk factors and employing 
various VaR metrics (JP Morgan, 1996). Prior to the introduction 
of VaR, commercial banks primarily focused on “desk by desk” 
risk assessment rather than considering overall company exposure 
(Chen, 2014).

Despite its widespread adoption in industry, VaR has been subject 
to scrutiny since its inception due to the identification of certain 
limitations and flaws. Artzner et al. (1999) and Acerbi and Tasche 
(2002) have previously questioned the viability of VaR, citing its 
lack of coherence as a risk measure. The primary argument was 
that there will consistently be a probabilistic chance of an extreme 
event taking place which falls a significant distance away from 
the estimate that VaR produces. This implied that VaR should not 
be relied on as a sole risk management tool.

VaR generally does not meet the subadditivity requirement, which 
states that a combination of the given risks for hypothetical assets 
A and B ultimately will not lead to an aggregate risk that is higher 
than the total of the individual risks (Daníelsson et al., 2012). This 
is not the case with VaR, ultimately discouraging di-versification. 
Practical implications of VaR not meeting the subadditivity 
requirement have been highlighted in the management of credit 
portfolio risk, for example. Credit instruments frequently feature 
“fat” tails in their return distributions and generally exhibit 
asymmetric return characteristics related to default risk-there may 
be a higher concentration of credit risk due to VaR’s inability to 
meet the subadditivity requirement (Albanese, 1997).

In addition to subadditivity, three requirements for a coherent risk 
measure were defined by Artzner et al. (1999) as homogeneity, 
monotonicity, and translation invariance. Homogeneity implies a 
proportional level of risk relative to size, i.e., a twofold increase 
in an asset or a portfolio would equate to the same heightening in 
the level of risk. Monotonicity dictates that if a given portfolio (X) 
has a future value that exceeds another portfolio’s (Y) future value, 
then a “monotonic” risk measure will be lower for portfolio X than 
for Y, indicating that portfolio Y is riskier. Translation invariance 
refers to the proportionate decrease in risk as a certain quantity 
of cash, or a risk-free asset, is added to a portfolio.

The limitations of VaR were tolerated, despite being acknowledged, 
until certain events such as the credit crisis of 2007-2008 highlighted 
the understatement of potential losses prior to the crash. As a result, 
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these shortcomings could no longer be overlooked, leading to the 
introduction of ES in the “Fundamental Review of the Trading 
Book” overhaul by the BCBS (BCBS, 2013). The ability of ES to 
evaluate tail risk and its proven subadditivity are noted as reasons 
for its emergence as a preferred risk measurement tool (in certain 
scenarios) over VaR. For any given portfolio, ES measures the 
probability weighted losses beyond VaR (Taylor, 2019). Then, by 
definition, VaR remains a crucial step in its computation and retains 
its significance in estimating market risk and associated measures. 
When focusing on methods with asymmetrical risk profiles, such 
as writing option contracts, ES efficiently captures the lowest 
possibility of suffering larger losses than what is expected. VaR, 
on the other hand, erroneously lowers risk estimations since it 
overestimates the size of prospective losses for such methods 
(Jorion, 2007).

Despite its limitations, VaR is often preferred over sub-additive 
risk measures such as ES by both industry and regulators in 
the banking sector due to its practical benefits, which include 
smaller data requirements, ease of backtesting, and, in some 
cases, ease of calculation (Daníelsson et al., 2012). Orhan and 
Köksal (2012) contend that despite research highlighting the lack 
of sub-additivity and convexity in VaR, the measure is still the 
most effective way to quantify risk. More recently, the emergence 
of complex financial derivatives and associated volatilities has 
called for the development of an indicator capable of handling the 
highly unpredictable nature of these regularly changing products 
(Adamko et al., 2015).

There is no singular approach that banking institutions are 
encouraged to adopt for estimating VaR, primarily because 
research has not identified an optimal method that outperforms 
others on a consistent basis for conducting such estimates. The 
BCBS do not prescribe a preferred method and favour each of three 
mentioned approaches (variance-covariance matrices, historical 
simulations, or Monte Carlo simulations) equally. According to the 
Basel II Capital Accord, banking institutions may use any model, 
so long as each model implement-ed can capture all the material 
risks faced by the company (BCBS, 1996).

These approaches, along with others that have been developed 
more recently, differ in terms of their computational and modelling 
complexity. This has led to trade-offs between methods that 
may offer optimal performance but require more resources to 
implement. Among the most popular methods to estimate VaR 
are the Historical, Variance-Covariance (VCV), and Generalised 
AutoRegressive Conditional Heteroskedasticity (GARCH) 
approaches. Within the VCV framework, two common methods 
for estimation include the Equally Weighted (VCV EW) and 
Exponentially Weighted Moving Average (VCV EWMA) 
approaches. Monte Carlo simulation, a well-recognised method, 
was not included in this study as it does not replicate the actual 
distribution of risk factors for a portfolio or index. The use of Monte 
Carlo simulation primarily relates to portfolios characterised by 
a significant concentration of derivatives, wherein the absence 
of pre-existing historical data necessitates the generation and 
simulation of historical prices. For instance, when considering an 
Over the Counter (OTC) derivative contract executed between two 

counterparties, the absence of a recorded price history necessitates 
the simulation of plausible historical price scenarios.

Storti and Wang (2022) proposed a new semi-parametric 
approach for estimating and forecasting expected shortfall (ES) 
based on quantile time series regressions and a parsimoniously 
parameterised β weight function. Their approach was found 
to outperform other parametric and non-parametric models in 
forecasting studies, including during the 2008 Global Financial 
Crisis.

Effective measurement of the performance of the Kalman filter 
in estimating VaR must consider the existing methodologies, as 
well as their associated assumptions and logical flaws. Most like 
this study was that of Berardi et al. (2002), who used the Kalman 
filter to calculate VaR by estimating portfolio βs, treating the β 
parameter as if it were unobservable and followed a first order 
autoregressive process.

Das (2019) introduced advancements in Adaptive Kalman Filters 
(AKFs) to address parameter inconsistency issues by incorporating 
adaptive noise covariances for estimating asset β and VaR. The 
empirical performance of the proposed filters was compared 
with the standard least square family and Kalman Filters, based 
on VaR backtesting, ES analysis, and in-sample forecasting. 
Results showed that the Modified AKFs perform on par with the 
benchmark methods, even when considering the adaptive noise 
covariance assumptions, suggesting that the proposed techniques 
offer a viable and effective approach for estimating β and VaR in 
financial applications.

Saidane (2022) presents a computationally efficient Monte Carlo-
based latent factor modelling approach for estimating portfolio 
VaR using a Kalman filter with maximum likelihood estimation. 
The methodology allows for the calculation of model parameters 
and inferences about unobservable factors, their volatilities, and 
the hidden state sequence of the Markov process. The methodology 
is applied to real-world data and the results indicate that this new 
specification provides a good fit, leading to improved accuracy in 
predicting VaR. The model also demonstrates a reduction in the 
number and average size of back-testing breaches during financial 
crises, highlighting the potential of the proposed approach to 
enhance VaR estimation and risk management in financial markets.

Abbara and Zevallos (2023) introduce a novel approach for 
estimating and predicting asymmetric stochastic volatility models 
using dynamic linear models with Markov switching formulated 
as state space models. The likelihood is computed using Kalman 
filter outputs, and the parameter estimates are obtained through 
maximum likelihood estimation. The accuracy of the estimation 
is evaluated through Monte Carlo experiments and the proposed 
method is applied to real-life time series data in a backtesting 
exercise. The authors found it provided a fast and reliable 
alternative for forecasting VaR.

2.1. Historical Simulation
Historical estimation represents the simplest method of chosen 
approaches, assuming prices of assets behave in a similar manner 
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to what has been witnessed in the past (Sharma, 2012). Current 
weights are applied to a time-series of historical asset returns, 
focusing on reconstructing the history of a hypothetical portfolio 
based on its current position (Adamko et al., 2015). The simplicity 
of the Historical approach, its ability to easily incorporate stress 
scenarios, the logical time horizon measurement period (based on 
length of holding time), and the omission of standard deviation 
or correlation requirements (stemming from an empirical loss 
distribution rather than an imposed one) have established the 
method as a compelling choice in industry. However, several 
key limitations are evident-older returns which are potentially 
irrelevant to the context of the current market are weighted the 
same as recent returns, and there is an increased requirement for 
historical data coupled with an inability to isolate short term data 
in contrast with other methods. Underlying changes in implicit 
volatility can also take longer periods of time to be realised with 
this approach (Adamko et al., 2015).

To address the limitations of the historical approach, Žiković and 
Filer (2009) compared the effectiveness of VaR and ES models 
using a hybrid Historical simulation. This analysis spanned the 
period before and after the 2008 financial crisis, encompassing 
both developed and emerging markets. The hybrid model 
employed a combination of nonparametric bootstrapping and 
parametric GARCH volatility forecasting. Through backtesting, 
the hybrid approach was found to offer equivalent protection to 
extreme value (EV) models, but with significantly lower capital 
reserve requirements. The hybrid approach was found to yield the 
smallest error statistics for ES, particularly in developed markets.

2.2. VCV EW Estimation
The general VCV method operates under the assumption that the 
risk factors influencing the portfolio’s value follow a multivariate 
normal distribution. As a result, the fluctuations in the value of a 
linear portfolio follow a normal distribution (de Raaji and Raunig, 
1999). This implies that the VaR output is a multiple of the standard 
deviation, and is given by:

VaR w w= − '∑

Where α is a scaling factor representing a given confidence interval 
(usually 1.65 at 95%, 1.96 at 97.5%, and 2.33 at 99%), w and w’ denote 
a vector of absolute portfolio weights and its transpose respectively, 
and ∑ is a variance-covariance matrix (JP Morgan, 1996).

Compared to the historical approach and the previously 
mentioned Monte Carlo simulation, the VCV method offers a 
distinct advantage in allowing for the prediction of volatilities 
in financial returns (JP Morgan, 1996). Moreover, the method is 
straightforward to implement and has demonstrated satisfactory 
precision and accuracy, requiring fewer data compared to the 
Historical approach.

To apply the VCV method, an approximation of the covariance 
matrix of the risk factors is required. In most cases, the variances 
(and covariances) are computed based on the daily historical time 
series of returns for the corresponding risk factors, employing 
equally weighted moving averages:
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Where  ijT2  is the variance (or covariance) at time T, n is the 

number of observations, and rit rjt are the corresponding risk factor 
returns.

2.3. VCV EWMA Estimation
VCV EWMA differs from VCV EW in that current values are 
weighted more heavily than past values. JP Morgan (1996) define 
the EWMA estimator in its recursive form by:
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Where  measures the declining weighting scheme of observations, 
 ijT

2  is the variance (or covariance) at time t–1, and rit–1 rjt–1 are 

previous day’s returns. This weighting tilt allows for a faster 
reaction to market crashes or significant changes in a given 
economy. The determination of a suitable  is non-trivial, 
involving calibration using many data from the relevant market. 
We used 10 years of daily share return data selected from stocks 
on the Dow Jones Industrial Average (DJIA - the same source as 
our data used for the VaR and ES calculations) using the recipe 
given in JP Morgan (1996). We found  = 0.935, well within the 
historical range.

For the stock prices of a well-known multinational firm, Galdi and 
Pereira (2007) investigated the effectiveness of VaR estimation 
techniques for VCV EWMA, GARCH, and stochastic volatility 
(SV) across a sampled 1 500-observation window. Relative to 
more “sophisticated” methods in GARCH and SV, VSV EWMA 
did not produce inferior violation test results. Additionally, the 
model required less computational effort to implement.

Although the VCV methods discussed above have straightforward 
implementation, nonlinear financial instruments such as 
derivatives containing non-normal distributions of profit or loss are 
problematic for VCV calculations (Best, 2000). If the underlying 
risk factors are not normally distributed, finding their associated 
distribution is challenging.

2.4. GARCH Estimation
Like VCV EWMA, the GARCH approach is non-linear, yet 
differs through its ability to account for asset volatility reverting 
to a long-term mean (Poon and Granger, 2003). The magnitude 
of standard deviation, a key component of VaR, is effectively 
tracked by GARCH in comparison to other models. The GARCH 
formulation, derived as a generalisation of the autoregressive 
heteroscedasticity model (ARCH) was proposed by Bollerslev 
(1986) and is as follows:
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Where the sum of αi and βi determines how persistent “shocks,” or 
unexpected deviations, to volatility will be. A significant shock to 
volatility in a previous period (i.e., yesterday) raises the likelihood 
of a shock to volatility today, which is a helpful representation 
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for the clustering in volatility that is typically seen in series of 
returns (Tsay, 2010). A limitation of this model is that it does not 
distinguish between the effects of positive and negative shocks, 
which frequently have different effects (Restrepo, 2012).

Like VCV EWMA, GARCH models imply serial correlations in 
the returns of financial assets. More recent results are favoured 
over earlier ones and as a result, both models estimate volatility 
based on the most recent return data (Best, 2000). So and Yu (2006) 
applied seven variations of the GARCH model to four foreign 
exchange rates and 12 market indices to evaluate VaR at varying 
confidence intervals. The findings suggest that both fractionally 
integrated and stationary GARCH models are more effective than 
RiskMetrics in predicting VaR at a 1% level.

Chinhamu et al. (2022) proposed a robust modelling framework 
using long memory models with specific distributions for precious 
metal prices to improve market risk management and assessment. 
The findings suggest that certain ARFIMA-GARCH models with 
heavy-tailed distributions are suitable for accurately estimating 
VaR and forecasting future volatility for effective risk management 
and portfolio strategies in the highly volatile metals market.

Letmathe et al. (2022) introduced new semiparametric GARCH 
models with long memory and applied these to obtain forecasts for 
VaR and ES for market risk assets. The results suggest that these 
models are a meaningful alternative to conventional, parametric 
models according to regulatory tests and model performance 
evaluation.

Patton et al. (2019) looked to address the challenge of “elicitability” 
in ES estimation by employing a joint modelling approach that 
incorporates both VaR and ES. By applying this approach to daily 
returns on four international equity indices, the joint model was 
found to outperform GARCH models in terms of forecasting 
accuracy.

2.5. Kalman Filter Estimation
The Kalman filter, proposed by Kalman (1960) and with origins 
in autonomous navigation processes and trajectory tracking, has 
more recently been applied to financial markets. In mathematical 
finance, the issue of estimating unobserved latent variables from 
observable market data regularly occurs. Calibrated to solve 
similar issues in engineering and econometrics, the Kalman filter 
is employed in applications for data smoothing as well as the 
construction of time series models for variable forecasting (Date 
and Ponomareva, 2010).

Berardi et al. (2002) established that VaR estimation using a 
Kalman methodology was both feasible and suitable. The authors 
employed a first-order autoregressive process to estimate portfolio 
βs in their approach. The sequence of values for βi,t could be 
estimated and the final βi,T was then calculated to derive the VaR 
for the portfolio. A portfolio comprising ten stocks traded on the 
Nasdaq stock market was examined. Initially, an equal percentage 
of investment was assumed for each asset, followed by a random 
simulation of 5 000 portfolio compositions. In both scenarios, the 
portfolio composition remained unchanged over time. Backtesting 

analysis revealed that the Kalman filter-based approach exhibited 
sensitivity to changes in market volatility, yielding notable and 
significant results.

Previous studies, such as the work conducted by Bernales et al. 
(2014), have demonstrated the effectiveness of the Kalman filter 
in calculating market risk measures. The Kalman methodology 
was applied to a thinly traded fixed income portfolio to assess its 
ability to provide appropriate risk measures for a market where 
the portfolio is traded infrequently. The methodology employed a 
three-stage process. Firstly, the Kalman filter was used to extract 
a complete price dataset, even in situations where there were 
only a few price observations available, allowing for prices to be 
estimated on days with limited price information. In the second 
stage, market risk measures, specifically VaR, were estimated using 
the complete price dataset obtained from the first stage. Finally, 
a back-test was conducted to verify the reliability of the Kalman 
approach in estimating the price model. The empirical evidence 
presented suggests that the Kalman filter approach provided 
reliable measures of VaR for securities that are traded infrequently. 
The Kalman approach also outperformed the conventional method 
of simply replicating the last traded price in calculating the chosen 
risk measure (Bernales et al., 2014).

Date and Bustreo (2015) proposed the Kalman filter as a method 
to measure VaR for sovereign debt portfolios by simulating bond 
prices with a two-factor short rate model. The Kalman approach 
only required a simulation of a vector of two random variables for 
one-step ahead forecasts, resulting in computational “cheapness” 
in comparison to principal components analysis which utilises 
more than two principal components. The results indicated an 
arguably more transparent and accurate reflection of market 
conditions associated with highly liquid government securities.

Fundamental Sharpe ratios were estimated by Gatfaoui (2016) 
using a Kalman filter approach. The Sharpe ratio is a measure of 
risk-adjusted performance for a portfolio or individual security, 
defined as follows:

SR E R R
a

a b

a

=
−[ ]



Where Ra is the asset return, Rb is the riskless asset return, and σa 
is the asset’s excess return standard deviation. Contrary to risk 
measures of loss in VaR and ES, this research focused on assessing 
the accuracy of risk-adjusted performance estimation using the 
Kalman filter. To account for the time variation, idiosyncratic 
risk, and market trend bias, the Sharpe ratios were adjusted into 
filtered Sharpe ratios (FSRs). The FSRs were designed to isolate 
the fundamental component of the Sharpe ratio on a time series 
basis. By applying the Kalman filter methodology, the time 
varying FSRs were captured, thereby excluding any previous 
biases inherent in the metric. Thereafter, a comparative analysis of 
various modelling techniques was performed, including GARCH 
and Monte Carlo simulations. Equally weighted portfolios were 
constructed, incorporating the highest performing equities 
identified by each measure. The FSR portfolio, when compared 
to the comparable portfolios, demonstrated reduced VaR forecasts 
and higher expectations of gains. This research showcases the 
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capabilities of the Kalman filter in extracting fundamental Sharpe 
ratios, which are free from bias and serve as pure performance 
indicators, distinct from the traditional Sharpe ratios.

Thomson and van Vuuren (2018) decomposed the time series of 
hedge fund returns into market timing and stock selection factors 
using the Kalman filter. Representing the first application of 
Kalman in this manner, the model was used to determine whether 
statistically significant abnormal profits are truly generated by 
hedge fund managers, in accordance with popular belief. Through 
an extension of the capital asset pricing model (CAPM) equation, 
stock selection, market timing, and market exposure components 
may be separated from hedge fund results. The authors conclude 
that one could use the Kalman filter, which employs Bayesian 
variance reduction, to get the parameters required for this 
enhanced CAPM. The paper found that top-performing hedge 
funds obtained the majority of their α from consistent stock 
selection and somewhat from market timing. These funds also 
showed less fluctuation in return. The worst-performing funds 
had variable market timing α and greater volatility, implying that 
attempts to time the market frequently cause volatility and reduce 
long-term returns.

Das (2019) employed an adaptive Kalman filter approach to 
effectively track and estimate the market risk β and VaR in 
the Indian market. This approach did not rely on assuming the 
noise covariance (i.e., uncertainties). The adaptive Kalman filter 
demonstrated similar performance to an ordinary filter, reinforcing 
previous observations that sector β estimates are dynamic and 
not constant in nature. Das (2019) presents recent findings that 
highlight the efficacy of utilising the mathematical principles of 
Kalman in accurately estimating VaR.

Van Rooyen and van Vuuren (2022) explored asset allocations 
using the Kalman filter, estimating α and β parameters as they 
appear in the CAPM to forecast asset returns. Two approaches in 
Tactical Asset Allocation (TAA) and Strategic Asset Allocation 
(SAA) were examined in the paper. To forecast asset returns, 
TAA uses quantitative methods, notably the CAPM framework 
and estimations using the Kalman filter. By dynamically altering 
asset class weights based on the anticipated returns, this strategy 
seeks to enhance portfolio performance and risk characteristics. 
The results indicate that, when compared to a “static” SAA 
allocation, the TAA strategy, which makes use of the Kalman filter 
and dynamic asset allocation, can improve portfolio performance 
and risk characteristics.

Claver et al. (2023) used the Kalman filter to develop a dynamic 
system for predicting price movements of a single equity. By 
simulating the equity’s movement using the filter, price levels 
were forecasted with greater accuracy relative to more traditional 
approaches.

3. METHODOLOGY AND DATA

3.1. Kalman Filter
The Kalman filter is a Bayesian updating method designed to 
optimise the accuracy of estimating unknown parameter values 

(Koch, 2006). This filter deals with the broader issue of estimating 
the state x n∈ R  of a discrete, time-controlled process that 

follows a linear stochastic difference equation as follows:

x Fx Bu wt t t t= + +− − −1 1 1  (1)

With a measurement x n∈ R :

z Hx vt t t= +  (2)

Where F denotes the state transition matrix responsible for 
transitioning between states, B represents the control matrix that 
maps control variables to state variables, and H represents the 
measurement matrix responsible for mapping measurements onto 
the state.

The random variables w and v denote process white noise and 
measurement white noise, respectively. It is assumed that these 
variables are independent of each other, meaning there is no 
correlation between them. Both w and v are assumed to follow 
normal probability distributions: w(.)~N(0,Q) and v(.)~N(0,R).

In practical applications, the covariance matrices Q and R, which 
represent the process noise and measurement noise respectively, 
may vary at each time step. However, in this context, they are 
assumed to remain constant, as stated by Koch (2006), estimated 
using maximum likelihood methods.

The state transition matrix F, with dimensions 2 × 1 in this case, 
connects the state at the previous time step t–1 to the current state 
at step t, assuming the absence of any driving function or process 
noise. On the other hand, the control matrix B, with dimensions 
2 × 2, establishes the relationship between the optional control 
input uϵRl and the state x. Additionally, the 2 × 1 matrix H in the 
measurement describes the relationship between the state and the 
measurement zk. Although in practice, F and H may vary with 
each time step, in this scenario, both matrices are assumed to 
remain constant.

The intended procedure for the mechanical process is as follows:

Predict
Project state  
1 time step ahead | 1 1| 1ˆ ˆt t t t t t tx F x B u− − −= + (3)

Project error  
covariance 1 step ahead

P FP F Qt t t t t t
T

t| |− − −= +
1 1 1

(4)

Update
Compute Kalman gain K P H H P H Rt t t t

T
t t t t

T
t= +( )− −

−

| |1 1

1 (5)

Update estimate with 
measurement yt ( )| | 1 | 1ˆ ˆ ˆt t t t t t t t tx x K y H x− −= + − (6)

Update error covariance P I K H Pt t t t t t| |
= −( ) −1

(7)

Where x̂  represents the estimated state, F denotes the state 
transition matrix responsible for transitioning between states, u 
represents the control variables, B represents the control matrix 
that maps control variables to state variables, P represents 
the state variance matrix, Q represents the process variance 
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matrix that captures errors caused by the process, y represents 
the measurement variables, H represents the measurement 
matrix responsible for mapping measurements onto the state, K 
represents the Kalman gain, and R represents the measurement 
variance matrix that accounts for errors originating from 
measurements.

Subscripts represent:
t|t: Current time
t–1|t–1: Previous time, and
t|t–1: Intermediate steps.

The observation equation is the VaR, which can be expressed as 
follows:

VaR t t t N CI t

t N
CI
d1 1

2
0

( ) = ( ) + ⋅ ( ) +
( )

−µ σ

σ

( ) ( )

~ ( , )



 

 (8)

Where μ represents the average of daily returns over the previous 
period, σ denotes the daily standard deviation of the portfolio or 
security return, CI is the confidence interval, and ϵ represents a 
noise term. The noise term ϵ is assumed to be independently and 
identically distributed (i.i.d.) with a normal distribution ~ ( , ),N 0

2  
where 0 2

,  represents the variance of ϵ.

The specific form of the transition equation depends on the 
stochastic process assumed for the time-varying αs and βs. It can be 
modelled using either an autoregressive, mean-reverting (AR[1]) 
model or a random walk process. Research has shown that the 
random walk model provides a more robust characterisation of 
time-varying βs (Denrell, 2004). On the other hand, AR(1) forms 
of the transition equation may encounter convergence issues, 
which can indicate misspecification of the transition equation, 
particularly for certain return series (Faff et al., 2000).

The random walk model (RWM) assumes that both α and β 
follow a random walk process. In other words, the current market 
exposure is considered a normally distributed random variable, 
with its mean being the exposure of the previous period. The 
uncorrelated system noises, including the evolution of α and β, 
are also assumed to be normally distributed.

The state variables x t( )∈R2  are the time-varying coefficients:

x t
t
t

( ) = ( )
( )











µ
σ

At each time t. Both are assumed to follow the random walk model. 
The state equation is:

µ
σ

µ
σ

γ
δ

t
t

t
t

+( )
+( )









 =









 ⋅

( )
( )









 +











1

1

1 0

0 1
 (9)

Where

� ~ ,
γ
δ

σ
σ

γ

δ


































N

0

0

0

0

2

2

And the measurement equation is:

VaR t CI t
t
t

tCI
d1 1( ) = ( ) 

( )
( )









 + ( )µ

σ
  (10)

3.2. ES
The ES at a selected quantile, q, denoted as ESq, is computed as 
the probability-weighted average of values in the tail below q, 
such that:

ES E L L VaRq q= <( )|

For a normal distribution,
ES

f VaR
qq

q=
( )

where
f x x( ) =

⋅
−






1

2 2

2

2π σ σ
exp

In other words, the probability density of the normal distribution 
is used to calculate ESq, where σt is the volatility. The function f(x) 
refers to the probability density function of the normal distribution 
N(0,σ2), and it is assumed that μ = 0.

To calculate ESq for any volatility, σ, and at any significance level, 
q, the function below must be integrated:

ES x f x dxq

q
= ⋅ ( )

−∞∫

=
⋅

⋅ −




−∞∫

x x dx
q

2 2

2

2π σ σ
exp

= − ⋅ −






σ
π σ2 2

2

2
exp

q

The observation that the distribution of asset price returns has fatter 
tails compared to a normal distribution has led to the introduction 
of the student’s-t distribution. This distribution is employed to 
more accurately model the excessive kurtosis observed in asset 
returns (Fama, 1965; Bekaert et al., 1998). When calculating the 
ES for a portfolio using the student’s-t distribution, the integration 
process follows a similar procedure as with the normal distribution.

ES t f t dtq

q
= ⋅ ( )

−∞∫
In this case, f(t) is the probability density function of the 
t -distribution, which is (for μ = 0 and standard deviation, σ):

f t t( ) = +( )
⋅ 




⋅

+






− +



Γ

Γ

ν

νπ ν σ σ ν

ν

1

2

1

2

2

1

2

Where v counts the degrees of freedom, calculated using 

k =
−

+
6

4
3


 and where k is the kurtosis of the data (Rozga and 

Arnerić, 2009)
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For v even: Γ

Γ

ν

νπ ν
ν ν
ν ν ν

+( )
⋅ 



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=

−( ) ⋅ −( ) ⋅
−( ) ⋅ −( ) ⋅

1

2

1 3 5 3

2 2 4 4 2





And for v odd: Γ

Γ

ν

νπ ν
ν ν

π ν ν ν
+( )

⋅ 



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=

−( ) ⋅ −( ) ⋅
−( ) ⋅ −( ) ⋅

1

2

1 3 4 2

2 4 5 3





To calculate ESq for any volatility, σ, any number of degrees of 
freedom, v, and any significance level, q, the integral below must 
be determined:

ES t t dtq

q
= ⋅

+( )
⋅ 



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⋅ +




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− +



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−∞∫
Γ

Γ

ν

σ νπ ν σ ν
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2

1

2

2

1

2

=
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⋅
−
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

⋅ ⋅ +







−

Γ

Γ

ν
ν

σ
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ν
π σ ν
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2

1
1

2

2
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2q

3.3. Data
The data-sourced from Bloomberg-comprised daily returns of 30 
liquid ($400 bn ≤ market capitalisation ≤ $200 bn) companies 
selected from the DJIA, covering the period from January 2012 to 
April 2023. These individual stocks were assembled into a single 
portfolio (on whose returns the results are based). Data from the 
same period were sourced from three other indices: two from 
developed economies (UK FTSE 100 and German DAX 40) and 
one from a developing economy (South African Johannesburg 
All Share top 40). Because the results were like those produced 
from the DJIA, we have excluded them from this article for the 
sake of brevity.

This time frame was selected to reflect roughly two US business 
cycles which are ≈5.5 years (National Bureau of Economic 
Research, 2023) and to encompass the pre-Covid-19 period 
(financial stability), the Covid-19 period (considerable market 
turbulence) and then a post-Covid period of growth and recovery. 
Other significant global events having recent influence on financial 
markets have been included, such as the Russian invasion of 
Ukraine, which began in February 2022 and continues at the time 
of writing (August 2023) with no resolution pending. The first 
6 years (2012-2018) were used to train and calibrate the Kalman 
filter model to estimate parameters required for the remaining 
(out of sample) period.

Daily returns are used to create a daily estimation of VaR, as 
recommended by the Bank for International Settlements (BIS), 
for back testing analyses focused on assessing the differences in a 
VaR model output and the selected portfolio value on an ex-post 
basis (BIS, 2019). Using a 97.5% confidence interval, the analysis 
measures whether daily losses beyond VaR are experienced 2.5% 
of the time - in accordance with the Basel II Capital Accord 
requirements. Rather than extracting data on individual equities, 
this approach used data on the prices of a single popular index (the 
DJIA). An index is frequently recalculated, and its composition 

varies constantly over time, which eliminates inactive equities and 
reduces the likelihood of survivorship bias in equity selection. To 
conform with its goals as an index, the DJIA also changes and 
redistributes weights accordingly.

This procedure was applied, and estimates were computed for 
the Historical, VCV EW, VCV EWMA, GARCH, and Kalman 
filter methods.

4. RESULTS

Figures 1 and 2 illustrate the rebased index prices and daily returns 
for the DJIA over the period from Jan-17 to Apr-23 (prices rebased 
in Jan-17 to 100) respectively. Figure 1 displays elevated volatility 
between Jan-20 and Jul-20, which can largely be attributed to the 
influence of the Covid-19 pandemic on global financial markets. 
This period may be classified as an “extreme” event, wherein 
risk measures such as VaR and ES hold significant potential in 
mitigating substantial losses for given institutions and banks. The 
daily returns of the DJIA have fluctuated within a range of 10% 
(comprising a 5% positive return and a 5% negative return) both 
preceding and following the aforementioned period of pronounced 
volatility. The focus will thus be on the effectiveness of each 
measure compared with the Kalman filter.

The different methods selected to estimate the VaR and ES for 
the DJIA over the period were compared against the Kalman 
estimation approach. The results of these estimations are presented 
in Figures 3-6, respectively. Each figure plots the different VaR 
and ES estimation approaches at the 97.5th percentile. Each point 
represents a negative daily return on the DJIA over the period, 
as VaR and ES are only concerned with downside risk. A return 
that falls below a line indicates that the estimation technique was 
unsuccessful in forecasting market risk and this point reflects an 
“exceedance.”

Throughout the period, the trajectory of Historical VaR aligns with 
that of Kalman VaR in Figure 3. The Kalman approach takes an 
additional step by using variance reduction techniques to mitigate 
noise and produce instantaneous measures (Thomson and van 
Vuuren, 2018).

All approaches respond rapidly to the market downturn; however, 
they fall short in capturing the most severe losses that transpired, 
especially during the specific period from Mar-20 to Aug-20. 
The Historical approach performs equally as well as the Kalman 
approach during this isolated period, while exhibiting slightly 
more sensitivity.

The VCV EW approach exhibits a comparatively lower level of 
sensitivity to the “extreme” event. Like the Historical VaR, the 
VCV EW VaR fails to capture as many negative returns as the 
Kalman approach, both in the post-Apr-21 period and the pre-
Jan-20 period.

Contrary to the Historical and VCV EW approaches, the VCV 
EWMA and GARCH techniques exhibit a pronounced increase in 
VaR estimation sensitivity in response to fluctuations in returns. 
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Figure 2: Daily return series of the DJIA

Figure 1: Times series of the DJIA, rebased to 100 in Jan-17

Figure 3: Comparison of VaR estimation approaches using Historical and VCV EW tech-niques with the Kalman filter method

Figure 4: Comparison of VaR estimation approaches using VCV EWMA and GARCH tech-niques with the Kalman filter method
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Figure 5: Comparison of ES estimation approaches

Figure 6: Comparison of ES estimation approaches (truncated y axis)

This effect is prominent during the period of high impact caused 
by the Covid-19 pandemic: both methods show a more pronounced 
reaction compared to the Kalman approach. The simultaneous 
perturbations, evident with GARCH, indicate a heightened 
sensitivity to extreme events compared to the Kalman estimation. 
While this sensitivity can be advantageous in highly volatile 
circumstances, it noticeably leads to inadequate forecasts and 
captures of market risk, as evidenced by the respective timeframes 
before and after the most volatile Covid-19 market period where 
the methods failed to capture exceedances.

Comparing Figure 3, which illustrates the Kalman filter alongside 
Historical VaR and VCV EW VaR, the positioning of Historical 
ES has moved downwards in relation to Kalman ES in Figure 5. 
Historical ES is computed by averaging VaR values, meaning 
that the average only changes when the VaR value changes. 
Consequently, a new set of returns is averaged until the VaR 
changes again. The VCV EW approach demonstrates a relatively 
lower sensitivity to extreme events.

Figure 6 presents a comparison of Kalman ES, GARCH ES, 
and VCV EWMA ES, which exhibits a similar pattern to their 
respective VaR counterparts in Figure 4, albeit on a larger scale. 
Once again, both the VCV EWMA and GARCH techniques 
demonstrate a more noticeable increase in sensitivity when 
estimating ES in response to returns fluctuations. However, in this 
case, all ES approaches have captured a greater number of returns 
before and after the volatile Covid-19 period.

Figure 7 shows VaR measured during high volatility and low 
volatility periods, respectively. The sensitivities of the VCV 
EWMA and GARCH methods are evident.

Figure 8 provides a summary of all VaR estimation approaches 
used over the entire period in relation to the Kalman estimation 
method while Figure 9 provides a summary of all ES estimation 
approaches used over the entire period in relation to the Kalman 
estimation method.

Figure 10 presents a cumulative count of VaR exceptions for each 
method. To determine these exceptions, the VaR forecast from the 
previous day is compared with the current day’s return using the 
time series of VaR outputs and DJIA daily returns. If yesterday’s 
forecast, which represents the amount set aside based on the VaR 
estimate, is smaller than the current day’s return, it is recorded as 
an exception. The values obtained for and used in Figure 10 were 
tested using approaches detailed in Zhang and Nadarajah (2018) 
such as Kupiec’s POF (1995) test, the binomial distribution test, 
the generalised Markov test (Pajhede, 2015) and the multivariate 
autocorrelations test (Hurlin and Tokpavi, 2006). All were found 
to be significant at the 99% confidence level.

Where the graph of a given model crosses above the 2.5% 
horizontal line over time, the number of exceptions has surpassed 
the anticipated level at that specific moment. This is unexpected 
considering that the computed VaR is designed to capture losses 
with a 97.5% confidence level. Ideally, a model should accurately 
achieve this, but during periods of significant volatility, models 
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Figure 8: Efficiency comparison of popular VaR estimation techniques (truncated y axis)

Figure 9: Efficiency comparison of ES estimation techniques (truncated y axis)

Figure 7: VaR comparison during high volatility (left panel) and low volatility (right panel) period

Figure 10: Cumulative count of VaR exceptions in relation to the Kalman method
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Figure 11: Comparison of VaR estimation inaccuracies relative to the Kalman method

Figure 12: Comparison of ES estimation inaccuracies relative to the Kalman method

do not adjust rapidly enough, leading to significant increases in 
the number of exceptions. Models reflecting greater sensitivity 
(or conservativeness) are therefore those with fewer instances of 
exceeding the 2.5% threshold; the higher the number of exceptions, 
the less conservative the model’s forecasting performance. Kalman 
and Historical VaR methods exhibit superior performance, 
with Kalman outperforming the Historical method during the 
Feb-19 to Aug-19 period. The VCV EW VaR, although briefly 
dipping below the 2.5% threshold between Mar-21 to Nov-21, 
demonstrates significant volatility before and after this period of 
relative stability.

Figure 11 provides an overview of the percentage of unsuccessful 
VaR forecasts by each method (i.e., the number of times the VaR 
forecast was insufficient to protect against the return (losses) the 
following day. Recall that for a perfect model, 2.5% accuracy 
is assumed. The Kalman filter estimation outperformed all 
approaches, followed closely by Historical VaR.

Figure 12 provides an overview of the percentage of unsuccessful 
ES forecasts by each method.

The ES forecast replaces the old VaR forecast level and as 
such represents the best guess for capital required over the 
next day (as per the BCBS backtesting requirements). If that 
amount is exceeded, the ES was insufficient, representing a 
“failure.” The lowest percentage of failures thus reflects the 
most accurate approach. Among all the approaches considered, 
the Kalman filter method exhibited the fewest inaccuracies, 
i.e., the Kalman filter ES forecast was only insufficient 1.21% 

of the time. This finding is promising and highlights the robust 
performance of the Kalman approach in estimating both VaR 
and ES measures. The Kalman approach stands out for its 
ability to achieve such accuracy while imposing minimal 
limiting assumptions as discussed in Section 3 in relation to the 
other approaches, further enhancing its appeal and robustness 
in risk estimation.

5. CONCLUSIONS AND SUGGESTIONS FOR 
FUTURE STUDY

5.1. Practical Conclusions
The Kalman filter approach shows superior performance compared 
to commonly used approaches when assessing VaR and ES risk 
measures. This implies that financial institutions and risk managers 
could consider adopting the Kalman VaR approach to improve 
their risk assessment methods (Koch, 2006).

The Kalman estimation method is responsive to changes in 
market volatility, indicating that it can adapt well to dynamic 
market conditions. This responsiveness is a desirable feature for 
risk models as it allows them to capture the changing nature of 
financial markets accurately.

The Kalman filter is deemed reliable and robust in the context 
of volatility modelling. Its capacity to enhance the precision of 
estimating unknown parameter values makes it a valuable tool in 
financial risk management.
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5.2. Policy Conclusions
Regulators and policymakers in the financial sector should be 
aware of the advancements in risk assessment methodologies, such 
as the Kalman VaR approach. Encouraging the adoption of more 
accurate and sophisticated risk models can contribute to better risk 
management practices within financial institutions.

When formulating risk management guidelines and regulations, 
policymakers should consider incorporating approaches that 
account for changes in market volatility. This can help create 
more adaptive risk frameworks capable of dealing with various 
market conditions.

5.3. Theoretical Conclusions
The study supports the existing literature that highlights 
the superiority of Expected Shortfall (ES) over VaR in 
accurately forecasting market losses. This adds to the theoretical 
understanding of risk measures, emphasizing the importance of 
ES as a more robust tool for capturing tail risk (Albanese, 1997; 
Artzner et al., 1999; Acerbi and Tasche, 2002; Jorion, 2007; 
Daníelsson et al., 2012).

The research demonstrates the applicability and efficacy of 
the Kalman filter in the context of financial risk measurement. 
This contributes to the body of knowledge regarding volatility 
modelling techniques and may inspire further research on 
advanced statistical methods for risk assessment.

5.4. Suggestions for Future Work
To better understand the effectiveness of the Kalman filter 
approach in different market environments, further research could 
extend this methodology to various financial markets. Each market 
is exposed to unique risks stemming from factors such as currency 
fluctuations, political landscapes, and market compositions.

Other volatility estimation approaches could be considered, such as 
GARCH (specifically GJR-GARCH). Also, alternate distributions 
could be considered, such as returns which follow t-distributions 
or skewed t-distributions.

Application of the Kalman filter in risk management can also be 
extended to other popular measures, an example of which being 
extreme value theory. In addition to traditional volatility estimation 
approaches, the evaluation of the Kalman filter approach can be 
extended to more advanced machine learning techniques. Models 
comprised of deep learning, support vector machines, random 
forests, and many others have gained prominence in recent 
years. Assessing the performance of the Kalman filter against 
these modern methodologies would provide a comprehensive 
comparison and highlight the relative strengths and weaknesses 
of each approach in volatility estimation and risk management.
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