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ABSTRACT

The minimization of the portfolio of financial assets has a particular interest in the field of finance. In this context, several approaches 
have been proposed to contribute to the solution of this problem which Markowitz approach is the most popular. In this paper, we propose 
a new approach to minimize the risk of portfolio that measured by a value at risk (VaR) using neural networks. The assets of this portfolio 
are invested in a market which the fluctuations follow a normal distribution. The minimization procedure is done after the calculation of 
mathematical explicit formula of VaR using the Black-Scholes stochastic process for these portfolios, which its structure remains constant 
over the considered time horizon.
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1. INTRODUCTION

The minimization of portfolio risk of financial assets is a subject 
that occupies a particular interest in the field of market risk.

Markowitz was the first that introduce a variance as a measure of 
portfolio risk of financial assets. But several criticisms were added 
to this measure because it requires the character of the quadratic 
objective function and the calculation of the variance-covariance 
witch making this approach little used in practice.

To remedy this problem several models have been proposed using 
new risk measures.

In this context, a new risk measure called value at risk (VaR) has 
been implemented to quantify the maximum loss that might occur 
with a certain probability, over a given period.

This risk measure is easy to interpret and to compare.

In this article we develop an explicit formula for calculating the 
VaR for a shares portfolio, then we use this formula to minimize the 

VaR of this portfolio using the neural network (NN) (Elhachloufi 
et al., 2012; Elhachloufi et al., 2012).

This work is organized as follows: Section 1 deals with the 
portfolio risk. In Section 2, we present the VaR of shares portfolio 
of normal distribution using Black-Scholes stochastic process. 
NN are presented in Section 3. Finally, we propose the portfolio 
minimization procedure.

2. RISK PORTFOLIO

The risk of a financial asset is the uncertainty about the value of 
this asset in an upcoming date. Variance, the average absolute 
deviation, the semi-variance, VaR and conditional VaR are means 
of measuring this risk. The portfolio risk is measured by one of 
the measuring elements mentioned above. It depends on three 
factors namely:
• The risk of each action included in the portfolio
• The degree of independence of changes in equity together
• The number of shares in the portfolio.
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The VaR is defined as the maximum potential loss in value of a portfolio 
of financial instruments with a given probability over a certain horizon. 
In simple words, it is a number that indicates how much a financial 
institution can lose with some probability over a given time. It depends 
on three elements (Rudd and  Rosenbeg 1979; Szergö  2002):
• Distribution of profits and losses of the portfolio that are valid 

for the period of detention
• Level of confidence
• The holding period of assets.

Analytically, the VaR in time horizon t and the probability 
threshold α is a number VaR(t,α) such that:

P [X ≤ VaR(t,α)] = α (1)

With:
• X represents the loss (“loss”), is a random variable which 

might be positive or negative
• t is associated with the VaR horizon which is 1 day for risk 

metrics or more than a day
• α the probability level is typically 95%, 98% or 99%.

If the distribution of the value of this portfolio is a multivariate 
normal, then:

VaR x x z x xα αµ( ) = − + ⋅' 'Ω  (2)

Where,

• ΔV(x) is the value variation
• μ = E(ΔV(x)) is mean of values
• Ω = σ(ΔV(x)) is standard deviation
• zα is the quantile of order of confidence α.

3. THE VAR OF SHARES PORTFOLIO OF 
NORMAL DISTRIBUTION USING BLACK-

SCHOLES STOCHASTIC PROCESS

We consider that the price of a share St at time t is modeled by 
a stochastic process of Black-Scholes defined by the following 
stochastic differential equation:

dSt = μ.Stdt + σ.Stdz (3)

Where,

• μ is the constant drift that indicates the expected return of the 
share price per unit time;

• σ is a constant indicating the annual volatility of the share price.

In discrete case we have 
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The VaR of a portfolio for a horizon t is noted VaR such as the 
loss on this portfolio during the [0,t] not fall below VaR with a 
fixed probability α, i.e.,:

P[−ΔV(t)≤VaR] = α (4)

Where,

ΔV(t) = V(t)−V(0) (5)

V(0) and V(t) are respectively the values of portfolio at the 
beginning and end of the period. More rigorously, the VaR can 
be defined as:

VaRα = max {B/P[−ΔV(t) ≤B] ≤ α} (6)

When the random variable ΔV(T) = V(T)−V(0) is distributed 
according to a normal distribution N(E[ΔV(t)], σ [ΔV(t)]), the 
VaR of probability level α is defined as follows:
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(0,1), we obtain;

VaRα = −E(ΔV(t)) + τασ(ΔV(t)) (7)

Let V(t) the value of the portfolio of n shares invested in a given 
market at time t.

We denote by xi the number of shares in the portfolio. Let Si(t) the 
price of stock i at time t. It follows that:

V t x S ti i
i

n

( ) = ( )
=
∑

1

 (8)

The portfolio value to the horizon T is characterized by the 
following equations:
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The relation (9) becomes:
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The disadvantage of the equation (6) is that both parameters require 
knowledge of the univariate parameters E(ΔSi) and var(ΔSi) for 
each title i (i = 1...,n) and the bivariate parameters cov (ΔSi, ΔS) 
for each pair of tracks, either in total 

n n+( )1

2
 parameters.

Hence the suggestion of the use of Black-Scholes stochastic 
process which the simplest and most widely used.
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We have:

r t t ti i i i( ) = +µ σ ε. .∆ ∆  (11)

For all i = 1...,n;
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4. NN

The NN are mathematical models inspired by the structure 
and behavior of biological neurons. They are composed 
of interconnected units called artificial neurons capable of 
performing specific and precise functions. Figure 1 illustrates 
this situation (Lepage and Solaiman 2003).

For a NN, each neuron is interconnected with other neurons to 
form layers in order to solve a specific problem concerning the 
input data on the network.

The input layer is responsible for entering data for the network. 
The role of neurons in this layer is to transmit the data to be 
processed on the network. The output layer can present the 
results calculated by the network on the input vector supplied 
to the network. Between network input and output, intermediate 
layers may occur; they are called hidden layers. The role of these 
layers is to transform input data to extract its features which will 
subsequently be more easily classified by the output layer.

4.1. Back-propagation Algorithm
The objective of this algorithm is to approximate a function y = f(X) 
where X is an input vector of returns (risk respectively) presented 
the input layer assigning each component of X to a neuron. These 
inputs are then propagated through the network until they reach 
the output layer. For each neuron, an activation ai is calculated 
using the formula:
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ö
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÷
÷å  (12)

Where,

• oj is the output of neuron j of the preceding layer,
• wij is the weight connecting neuron j to neuron i,
• F is the transfer function (or activation function) of the 

neuron i.
The output vector that the network is compared with the product 
of expected output.

An error E is calculated as follows:

E o ti i
i

= −( )∑ 2  (13)

• oi is the value neuron output of i  in the output layer
• ti is the i th output target value.

If the error value is not close to 0, the connection weights 
should be changed to reduce this error. Each weight is either 
increased or reduced by propagating the error back-calculated. 
The mathematical formula used by this algorithm is known as 
the Delta rule:

Δwij = ηδioj (14)

Where,

• Δwij is the variation weight wij
• η is the learning rate (set by user)
• δi is the error on the output of the neuron i of a layer.

The calculation depends on the type of neuron. If the neuron is a 
neuron output, then the error is:

δi = F′(ai)(ti−oi) (15)

else (hidden neuron)

δi = F′(ai)skδkwk (16)

Where, k neurons belonging to the next layer of the neuron i.

Figure 1: Black box of neural networks
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The algorithm is repeated for each pair of input/output and 
more passes are performed until the error has dropped below an 
acceptable threshold or a maximum number of passes is reached.

In our case, the NN architecture used is an architecture containing 
a single input layer, one hidden layer composed of n neurons where 
n is the number of xi where i = 1...,n and a layer of containing a 
single output neuron representing the value of VaRα, NN.

The learning algorithm used is the gradient back-propagation 
supervised. The error between the current output (obtained by 
NNs) and the desired output (observed) spreads, while adjusting 
the weights with the aim to correct the weights of the network to 
reduce the global error expressed by the following formula:

E f VaRi NN
i

n

= −( )
=
∑ α ,

2

1

 (17)

Where:

• fi represents the estimated value of f in ith iteration, 
• E is the overall error.

The operation of the network illustrated as follows by the Figure 2: 
Each neuron i (i = 1,…n) in the input layer receives a value 
of the βi to be weighted by the proportions of xi and the result 
transmitted to the output layer. In this case, the output f is given 
by the following formula:

f x x T T x x y xi i
i

n

i
i

n

i
( ) = - +

æ

è
çç

ö

ø
÷÷ = + ( )

= =
å åm t s ba

1

2 2

1

 (18)

Where,

• x = (x1, x2., xn)
• β =Tμ = (μ1, μ2.,μn) and μt is transposed vector of μ.
• y x T X( ) = τ σα
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4.2. The Procedure of Portfolio Minimization Risk
The minimization procedure is based on NNs as shown in the 
Figure 3 (Janssen  2009).

5. CONCLUSION

In this paper we presented a new approach to minimize the VaR 
of a stock portfolio using NNs. This stock portfolio is investing in 
a market whose fluctuations follow a normal stochastic process.

The price of the stock of portfolio follow the Black-Scholes 
stochastic process that developed in discrete time assuming that 
the portfolio structure remains constant over the time horizon.
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