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ABSTRACT

Unemployment, as a measure of market conditions, appears as an economic problem in every society and is a phenomenon with considerable negative 
social consequences. A low rate of unemployment is one of the main objectives for governmental macroeconomic policy. The main aim of this project 
is to identify the most appropriate forecasting model, i.e. the seasonal autoregressive integrated moving average (SARIMA), autoregressive conditional 
heteroskedasticity and the generalized autoregressive conditional heteroskedasticity (GARCH). Using one or a combination of these models could 
provide the best forecast for US unemployment. Applying monthly data to the US unemployment rate from January 1955 to July 2017 proved that the 
SARIMA(1,1,2)(1,1,1)12 − GARCH(1,1) is the best model to project US unemployment. Finally, this project evaluates the forecasting performance 
of the model using forecast accuracy criteria, such as the root mean square error, mean absolute percent error and Theil’s inequality coefficient.

Keywords: Unemployment Rates, Seasonal Time Series, Seasonal Autoregressive Integrated Moving Average-Generalized Autoregressive 
Conditional Heteroskedasticity Model 
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1. INTRODUCTION

Unemployment is an important macroeconomic variable that 
defines the condition of a country’s economic equilibrium and is a 
barrier to social development. Some of its economic consequences 
are loss of productive forces, loss of income, as well as a burden 
on the state budget. High and persistent unemployment increases 
economic inequality, which is a term commonly used to show 
the differences in the distribution of wealth and income that exist 
between several social groups and individuals as well as amongst 
countries. Inequality generates redistributive pressure, which 
could lead to economic distortions hindering growth by causing 
persistent unemployment. Continued and persistent unemployment 
reduces growth and appears to be related to inequality.

Unemployment is a fundamental economic issue with significant 
negative social effects which could hinder growth not only as it 
is a waste of resources for the unemployed, but also because it 
leads people into poverty by limiting the liquidity which reduces 

private consumption mobility. As a consequence, repeling or 
avoiding the negative impact of unemployment is one of the major 
developmental government objectives, which apply a range of 
various measures so that as many people as possible find work. The 
unemployment phenomenon is observed not only in developing 
countries but also in developed countries. “American Economics 
Nobel prize winner, Shiller (2013), stated that income inequality 
is one of the main problems of unemployment.”

The unemployment rate is the number of unemployed as a 
percentage of the labor force. To calculate the unemployment 
rate, the number of unemployed is divided by the total labor 
force, i.e. the sum of both the unemployed and employed, known 
as the economically active population. The labor force does 
not include people who cannot or do not desire to work, i.e. the 
economically inactive population. The significance in the amount 
of unemployment depends on the size of the labor force. For this 
reason, unemployment is measured as a percentage (%) of the 
labor force. This percentage is defined as follows:
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Unemployment rate=(Number of unemployed)*100/(Labor force)

The US has one of the world’s largest economies with a high level 
of productivity. A series of US historical facts may have affected 
its macroeconomic situation. The Great Depression of the 1930s 
caused an unemployment rate of 23.6%, the highest during that 
period. The lowest unemployment rate in the US occured in 1944, 
in World War II, at 1.2%. Since 1948, America experienced 11 
recessions. The minimum postwar rate was 2.9% in 1953, while 
the maximum was 10.8% in the early 1980s and remained above 
8% until September 2012. In 2008, economists faced an economic 
meltdown in the financial and banking sector, an international 
financial crisis that began in America and escalated in Europe. 
Between August 2005 and April 2008, unemployment was 
constantly below or equal to 5%, while rising in the second half 
of 2008 with an upward trend continuing to a maximum of 10% 
in October 2009. Remaining at the same levels until November 
2010 (9.8%), unemployment started to decrease continuously and 
reached the current figure of 4.3% in July 2017.

The unemployment rate evolution is a main topic of political 
debate in many developed countries. The projection of the 
future unemployment rate is essential for economic policy 
makers to detect, plan and halt any persistent rise in the levels of 
unemployment in a country. An important question about time 
series forecasting is which model is the most accurate.

The main objective of this project is to identify the most appropriate 
model for exploring and forecasting the future unemployment rate 
in the US using the Box-Jenkins (1976) methodology and seasonal 
autoregressive integrated moving average (SARIMA) models. 
In particular, the ARIMA model specification is used to identify 
the most appropriate model and investigate possible seasonality 
and, by extension, the best SARIMA model. Following this, the 
symmetric GARCH models are estimated using the monthly 
unemployment rate in order to explore the best model and finally 
forecast future unemployment data using the most appropriate 
model specified.

The rest of this paper is organized as follows: Firstly, in section 
2, we present a literature review about forecasting unemployment 
rates. Section 3 outlines a theoretical background about forecasting 
methodology and analysis. Section 4 outlines data and descriptive 
statistics and the empirical approach followed is analyzed in 
section 5. Section 6 proposes the forecasting methodology. Finally, 
the last section concludes the text with some closing remarks.

2. LITERATURE REVIEW

A number of research papers have used time series models for 
forecasting unemployment rates. Literature based on studies 
dealing with forecasting unemployment by using ARIMA models, 
i.e. Box-Jenkins methodology (1976) has been extensively used, 
to project future macroeconomic variables, such as unemployment 
rates. Recently, studies have also analyzed time series models with 
the incorporation of the autoregressive conditional heteroskedastic 
(ARCH) model introduced by Engle (1982). These models have 
been extended to the generalized autoregressive conditional 

heterokcedastic (GARCH) models leading to more parsimonious 
results rather than ARCH models.

Nkwatoh (2012) projected the unemployment rate in Nigeria using 
quarterly data from 1967Q1 to 2011Q4. Based on the results of 
the root mean square error (RMSE), mean absolute percent error 
(MAPE), mean absolute error (MAE) criteria and Theil’s coefficient 
it was concluded that the ARIMA(1,1,2)-ARCH(1) model is the 
most appropriate to forecast unemployment in the specific period.

Rublikova and Lubyova (2013) investigated the monthly 
unemployment rate of Slovakia for the period from January 
1999 to May 2013. The results showed that the ARIMA(0,1,2)
(0,1,1)12 - GARCH(1,1) model proved to be the best to forecast the 
conditional mean as well as the conditional variance.

Dritsaki (2016) used monthly Greek unemployment data from 
1998 to 2015 to predict the unemployment rate in both dynamic 
and static process. Using the Box-Jenkins methodology and 
SARIMA models concluded that the SARIMA(0,2,1)(1,2,1)12 
model is the best for forecasting, while the mean squared error 
(MSE), MAE criteria and Theil’s coefficient presented more 
predictive accuracy in static process.

3. THEORETICAL BACKGROUND

The development and construction of ARIMA models as 
forecasting tools of economic variable values, is known as the 
Box-Jenkins (1976) method. This approach in time series analysis 
is a method for investigating an ARIMA(p,d,q) model or φ(L)
ΔdYt=δ+θ(L)ε that adequately represents the stochastic process 
from which the sample was derived. This method includes three 
steps; model identification, model estimation and diagnostic 
checking and finally, forecasting as shown in Figure 1.

The first step of the study is to specify the ARIMA model to 
determine the appropriate values of p, d and q in order to identify 
accurately the ARIMA (p,d,q) model. At the identification phase 
the appropriate value of d is estimated in order to obtain a 
stationary time series. If the series is not stationary the first, second 
or higher order of differences as well as data transformations 
are used to convert it into a stationary series. The Box–Jenkins 
(1976) methodology for ARIMA (p,d,q) model identification uses 
the autocorrelation-AC function and partial autocorrelation-PAC 
function as well as the unit root tests of augmented Dickey-Fuller 
(ADF) (1979, 1981) and Phillips-Perron (PP) (1998). Continuing 
on from this, the lag p of the AR process and the lag q of MA 
process is specified. This specification is based on the functions 
of autocorrelation and partial autocorrelation in series. The next 
step is to estimate the α1,…, αp parameters of the AR process and 
θ1,…, θq parameters of the MA process which was identified in the 
previous step. If the series is an AR process, the coefficients can be 
estimated via the least squares method. If the series contains MA 
terms or a combination of both AR and MA terms (ARMA) then we 
can estimate the parameters using non linear estimation methods, 
such as the maximum likelihood (ML) method. The diagnostic 
checking stage then takes place to test whether the estimated model 
conforms to the specifications of a stationary process.
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If the estimated model adequately explains the process from 
which the data is derived, the residuals should behave like white 
noise, i.e. the residuals should not exhibit autocorrelation. The 
residuals are tested using the Ljung–Box (1978, 1979) Q statistic. 
If the model is inadequate, we must return to the first phase to 
reconstruct a better model. After completing the above steps, 
the forecasting process is followed to project future time series 
values, based on the most appropriate model deriving from the 
previous stages.

3.1. Autoregressive (AR) Process
Α general AR model of order p has the following form:

yt=α1yt−1+α2yt−2+…+αpyt−p+εt (1)

where,
εt ~N(0,σ2) is white noise.

and with the lag operator L:

(1−α1L−…−αpL
p)yt=εt (2)

3.2. MA Process
A general MA model of order q has the following form:

yt=µ+εt−ϑ1εt−1−ϑ2εt−2−…−ϑqεt−q (3)

and with the lag operator L:

yt=µ+(1−ϑ1L
1−ϑ2L

2−…−ϑqL
q)εt (4)

3.3. Autoregressive Moving Average Process (ARMA)
A general ARMA model of orders p and q, ARMA(p,q) has the 
following form:

yt=α1yt−1+α2yt−2+…+αpyt−p+µ+εt−ϑ1εt−1−ϑ2εt−2−…−ϑqεt−q (5)

Figure 1: Schematic representation of the Box-Jenkins methodology for time series modeling
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and with the lag operator L:

(1−α1L−…−αpL
p)yt=µ+(1−ϑ1L−ϑ2L

2−…−ϑqL
q)εt (6)

or

A(L)yt=µ+Θ(L)εt (7)

where:

A(L)=1−α1L−α2L
2−…−αpL

p
 (8)

Θ(L)=1−ϑ1L−ϑ1L
2−…−αqL

q (9)

3.4. Autoregressive Integrated Moving Average 
(ARIMA) process
An ARMA(p,q) model following differences of the d order 
required to make the series stationary is known as ARIMA model 
of order (p,d,q) and symbolized as ARIMA(p,d,q).

The ARIMA(p,d,q) model with the lag operator L is as follows:

Φ(L)yt=A(L)(1−L)dyt=µ+Θ(L)εt (10)

where:

Φ(L)=A(L)(1−L)d (11)

An ARIMA(p,d,q) process may have the following forms:
• Difference equation form, as a function of the past values and 

the past and current values of the disturbance term. Analyzing 
the polynomial:

Φ(L)=A(L)(1−L)d=1−φ1L−φ2L
2−…−φp+dL

p+d (12)

The model takes the form of:

yt=µ+φ1yt−1+…+φp+dyt−(p+d)+εt−ϑ1εt−1−…−ϑqεt−q (13)

• Inverted form, as a function of the past values and the current 
value of the disturbance term. Following inversion of the 
polynomial we obtain:

1

( ) 1 i
t j t t

j

L y L y 
∞

=

 
Π = − = 

  
∑  (14)

Therefore, the model becomes:

yt=π1yt−1+π2yt−2+…+εt (15)

• Random shock form, as a function of the disturbance term, 
current and past values:

(yt−μ)= Φ(L)−Θ(L)ε t=ε t+ψ1εt−1+ψ2εt−2+…=ψ1Lε t+ψ2L2ε t+… 
=(1+ψ1L+ψ2L2+…)εt=ψ(L)εt (16)

where:
ψ(L)=1+ψ1L+ψ2L

2+… is the random shock and
ψi is the ith parameter of ψ(L).

3.4.1. SARIMA process
In seasonal ARIMA models, seasonal differencing is required to 
turn the series into stationary, as is the case with general ARMA 
models. In non-stationary seasonal data with periodicity s the 
seasonal first order difference is defined as:

Δsyt=(1−Ls)yt=yt−yt−s (17)

While the seasonal Δ order difference is:

(1 )∆ = −D s D
s t ty L y  (18)

where the lag operator Ls shows that observations present a 
seasonal periodic behavior.

The seasonal ARMA(p,q) model for every s is defined as:

Φ(Ls)yt=θ(Ls)ut (19)

Where the random error ut is white noise and θ symbolizes the 
seasonal lag parameter ut−12

We consider that ut in (19) follows an ARMA(p,q) model in the 
form of:

A(L)ut=Θ(L)εt (20)

where εt is white noise. The polynomial A(L), Θ(L) orders are p 
and q, respectively. By replacing (20) with (19) the multiplicative 
seasonal ARMA(p,q)(P,Q)S model results in:

A(L)Φ(Ls)yt=θ(L)Θ(Ls)εt (21)

If we consider that ut in (19) are a form of ARIMA(p,d,q) model 
the multiplicative seasonal model has the following form:

A(L)Φ(Ls)(1−L)d(1−Ls)Dyt=θ(L)Θ(Ls)εt (22)

And is symbolized as ARIMA(p,d,q)(P,D,Q)s. This model is 
determined by the constants p,d,q,P,D,Q,s which are calculated 
using a method similar to Box-Jenkins (1976).

3.4.2. Estimation of SARIMA models
To estimate SARIMA models the ML method is used. Under 
the assumption of independent and distributed standardized zt, 
the log-likelihood (LL) function of {yt(θ)}, for a Τ observations 
sample, is given by:

2

1

1ln [( ), ] ln[ ( ( ), )] ln[ ( )]
2

T

t t t
t

L y D z v   
=

 = −  ∑  (23)

where,
θ is the vector of the parameters that have to be estimated for the 

conditional mean, conditional variance and density function.
zt is a sequence of independent and distributed random variables 

with mean as zero and variance as one.
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3.5. Conditional Heteroskedasticity Models: ARCH 
and GARCH
The term “conditional” mean and “conditional” variance of a 
series Yt is defined by the total available information It−1 until the 
period t−1:

1

t
t

t

Y
E

I


−

 
=     (24)

and

2
2

1

( )t t
t

t

Y
E

I



−

 −
=  

   (25)

Where µt expresses the “conditional” mean and 
2
t  the 

“conditional” variance of the series Yt. The total information It−1 
includes all finite values of the time series under investigation.

If we consider the model:

Yt=µt+εt (26)

where,

0
1 1

'
p q

t t j t j j t j
j j

X Y     − −
= =

= + + +∑ ∑  (27)

where, µt is the mean equation. Based on the definition (25) the 
“conditional” variance equals to:

2 2
2

1 1

( )t t t
t

t t

Y
E

I I
 


− −

   −
= =   
     (28)

The random variable εt is linearly uncorrelated, but not independent 
(iid), due to variance volatility. Vector Xt contains determinants 
and θʹ symbolizes the vector of their coefficients. Equation (27) 
is known as the mean equation and (28) as the variance equation 
of the time series.

3.5.1. ARCH models
The ARCH model was developed for the first time by Engle 
(1982) and is based on the idea that the random error εt is linearly 
uncorrelated, but not independent over time. The general form of 
an ARCH(q) model is given by:

εt=utσt (mean equation) (29)

where,
ut~ iid(0,1) and σt is the volatility that evolves over time.

The volatility 2
t  in the basic ARCH (q) model is defined as:

2 2 2 2 2
0 1 1 0 1 0 1

1

( )

q

t t q t q i t t
i

A L          − − − −
=

= + + + = = +∑
 

(variance equation) (30)

where
2
t  is the conditional variance,

δ0>0 and βi≥0 for 2
t  must be positive.

A(L) is the lag polynomial of squared residuals.

3.5.2. GARH models
Bollerslev (1986) extended the ARCH model into a model in which 
the conditional variance depends not only on the previous squared 
error values but also on the previous values of the variance itself. 
The proposed model is known as Generalized Autoregressive 
Conditional Heteroskedastic – the GARCH model. The general 
form of the GARCH(p,q) model is as follows:

Rt=µ+εt (mean equation) (31)

2 2 2
0

1 1

q p

t j t j j t j
j j

     − −
= =

= + +∑ ∑
 
(variance equation) (32)

or
2 2 2

0 ( ) ( )t t j t jB L D L   − −= + +  (33)

where,
µ is the mean value.
εt is the error term at time t, which is assumed to be normally 

distributed with zero mean and conditional variance 2
t .

p is the order of GARCH and q is the order of ARCH process.
µ, δ0, αj and βj are parameters for estimation. All parameters in the 

variance equation must be positive (µ>0, δ0>0, αj≥0, and βj≥0 
for 2

t  must be positive).
D(L) is the lag polynomial of the conditional variance 2

t  and
B(L) is the lag polynomial of the mean equation squared residuals.

3.5.3. Estimation of GARCH models
To estimate GARCH models (as in SARIMA models) the 
maximum likelihood (ML) method is used. The parametres of 
CARCH models are estimated by maximizing the LL function. 
Parameter estimation in the maximum LL function is obtained via 
non linear least squares using the Marquardt (1963) algorithm. 
The LL function is as follows:

2

1

1ln [( ) ] ln[ ( ( ), )] ln ( )
2

T

t t t
t

L y D z v   
=

  = −   ∑  (34)

where,
θ is the vector of the parameters that have to be estimated for the 

conditional mean, conditional variance and density function.
zt is a sequence of independent and distributed random variables 

with mean as zero and variance as one.

In our project we estimate the maximum LL function using the 
distributions; normal, t-student, and generalized error distribution 
(GED).

In the case of standard normal distribution for similar distributed 
iid(0,1) random variables {zt}, the following LL function has to 
be maximized.
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2 2

1 1

1ln [( ) ] ln(2 ) ln( )
2

T T

t t t
t t

L y T z  
= =

 
= − + + 

  
∑ ∑  (35)

where,
θ is the vector of the parameters that have to be estimated for the 

conditional mean, conditional variance and density function,
T symbolizes the observations.

Bollerslev (1987) recommended the standardized t-student 
distribution with v>2 degrees of freedom. The LL function is 
defined as follows:

[ ] [ ]t

T 2
2 t
t

t 1

v 1 v 1ln L (y , ) T ln ln ln (v 2)
2 2 2

z1 ln( ) (1 v) ln 1
2 v 2=

 +    θ = Γ − Γ − π −        
  

− σ + + +   −   
∑

 (36)

where,

1

0
( ) x vv e x dx

∞ − −Γ = ∫  is the gamma function and

v is the degree of freedom.

For v→∞, the density function of standardized t-student distribution 
converges to the density function of normal distribution.

Nelson (1991) in constrast, proposed the use of the GED and the 
LL function is defined as follows:

1

1 2

1ln (1 ) ln(2)
2ln ( ),

1 1ln ln( )
2

v
t

T

t
t

t

zv v
L y

v

 



−

=

   − − +   =      − Γ −    

∑  (37)

where,
1/2

2/

1

2
3

v v

v

 −

  Γ     =
  Γ     

4. DATA AND DESCRIPTIVE STATISTICS

The monthly data examined in our study is obtained from the 
OECD database and covers the period from January 1955 to July 
2017. In Figure 2 the US unemployment rate in levels is presented 
for the specific period.

From the diagram in Figure 2 we notice that the US unemployment 
rate presents fluctuations throughout the period under analysis. The 
highest unemployment rise (10.8%) is presented in the months 
of November and December 1982 and the lowest (3.4%) from 

September 1962 to May 1969. In Table 1 the variable estimation 
in relation to time is given to determine whether a trend exists.

In Table 1 it is observed that a trend exists in the estimated model. 
As a consequence, we can assume that the investigated series is 
non-stationary. Onwards, the autocorrelation plot is also used to 
assess the series stationarity.

From the autocorrelation plot in Figure 3 we observe that the 
autocorrelation coefficients decline slowly, which indicates 
that the series is non-stationary. The next step is therefore, to 
reapply the above tests to identify if the series is stationary in first 
differences. In Figure 4 the unemployment rates in first differences 
are displayed.

The diagram results in Figure 4 indicate that possible stationarity 
exists in first differences. Table 2 is used to assess if a trend 
exists.

Stationarity is confirmed by the absence of trend in Table 2. 
Figure 5 also verifies the stationarity of the series under 
investigation.

From the correlogram in Figure 5 it is observed that the series 
appears to show stationarity in first differences, as well as 
seasonality. The series stationarity in first differences is validated 
by the unit root tests of Dickey–Fuller (1979, 1981) and Phillips 
Perron (1998).

Figure 2: The US unemployment rate from January 1955 to July 2017

Table 1: Estimation of the US unemployment rate from 
January 1955 to July 2017
Dependent variable: UN
Method: Least squares
Sample: 1955M01 2017M07
Included observations: 751
Variable Coefficient Std. Error t-statistic Prob.
C 5.376399 0.112016 47.99667 0.0000
@TREND 0.001586 0.000259 6.132478 0.0000
R2 0.047809 Mean dependent var 5.971105
Adjusted R2 0.046538 S.D. dependent var 1.573448
S.E. of regression 1.536399 Akaike info criterion 3.699419
Sum squared resid 1768.030 Schwarz criterion 3.711726
Log likelihood −1387.132 Hannan-Ouinn criter. 3.704161
F-statistic 37.60729 Durbin-Watson stat 0.014945
Prob (F-statistic) 0.000000
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The results in Table 3 confirm that the series is stationary in 
first differences. In Table 4 the descriptive statistics of the US 
unemployment rate in levels and first differences are shown.

From the Table 4 we can see that unemployment in levels and first 
differences does not constitute normal distribution.

Also, the unemployment distribution in levels and first differences 
is leptokurtic and positively skewed.

5. EMPIRICAL RESULTS

Following this, we define the SARIMA (p,d,q)(P,D,Q)s model form 
from the diagram results in Figure 5. Figure 5 and Table 3 exhibit 
stationary behavior in first differences and thus, the value of the d 
parameter equals to 1. The parameters p and q of the ARMA model 
can be identified by the partial autocorrelation and autocorrelation 
coefficients respectively, comparing them with the critical value

2 2 0.073
750n

± = ± = ±
.

From the parameter values of partial autocorrelation and 
autocorrelation plots in Figure 5 the p value will be between 
0<p<5 and respectively, the q value will be between 0<q<7. 
Figure 6 and Table 5 then present an unemployment graph and 
a trend estimation into seasonal differences of the data in first 
differences, respectively.

The results in Table 5 indicate that stationarity exists in seasonal 
differences of the data in first differences. In the correlogram of 
Figure 7 seasonal differences are presented, which correspond to 
the unemployment series in first differences.

From the correlogram in Figure 7 we observe that the seasonal 
differences for the autocorrelation function are significant for lag 
12, while for the partial autocorrelation function, the seasonal 
differences are significant for l1, 24 and 36. Consequently, P and 
Q values will be: 0<P<3, 0<Q<1.

By using the above values of p, q, P and Q, we select the best 
SARIMA (p,1,q)(P,1,Q)12 model from the lowest values of 
the AIC, SC και HQ criteria, estimating the model using the 
numerical optimization of Berndt-Hall-Hall-Hausman (1974) 
algorithm. In the following Table 6 the values of p, q, P και Q 
are shown.

The results in Table 6 indicate that according to Akaike (AIC) 
criterion, the SARΙMA (4,1,3)(2,1,1)12 model is the most 
appropriate, while according to the Schwartz (SIC) and Hannan-

Figure 3: The autocorrelation and partial autocorrelation plots for the US unemployment rate from January 1955 to July 2017

Figure 4: The US unemployment rate in first differences from January 
1955 to July 2017

Table 2: Estimation of the US unemployment rate in first 
differences from January 1955 to July 2017
Dependent variable: DUN
Method: Least squares
Sample: 1955M01 2017M07
Included observations: 750
Variable Coefficient Std. 

Error
t-statistic Prob.

C 0.010198 0.013731 0.742717 0.4579
@TREND −2.93E-0.5 3.17E-0.5 −0.924584 0.3555
R-squared 0.001142 Mean dependent var −0.000800
Adjusted R2 −0.000194 S.D. dependent var 0.187811
S.E. of regression 0.187829 Akaike info criterion −0.503902
Sum squared resid 26.38936 Schwarz criterion −0.491582
Log likelihood 190.9632 Hannan-Ouinn criter. −0.499155
F-statistic 0.854855 Durbin-Watson stat 1.707128
Prob (F-statistic) 0.355481
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Quinn (HQ) criteria the best model is SARIMA (1,1,2)(1,1,1)12. 
In Tables 7 and 8 estimations of the above models are given.

The results in Table 7 show that for the SARΙMA (4,1,3)(2,1,1)12 
model there is a problem with coefficient significance.

The results in Table 8 show that all of the coefficients are 
statistically significant and therefore, the SARIMA (1,1,2)
(1,1,1)12 model is the best for forecasting. Figure 8 then tests for 
the existence of heteroskedasticity (ARCH(q) process test), from 
residual squares of the above model.

The results in Figure 8 show that all autocorrelation and partial 
autocorrelation coefficients are statistically significant. As a 
consequence of this, we can then argue that the ARCH-GARCH 
process exists in the model being studied. Table 9 contains the 
results of conditional heteroskedasticity ARCH(1) which confirm 
the ARCH model existence.

Through analysis of all the estimated models, the GARCH 
(1,1) model proved to be the most sutitable to test this 
process. We then estimate the symmetric SARΙMA(1,1,2)
(1,1,1)12 − GARCH(1,1) model using the three following 
different distributions:
1. Conditional normal distribution of residuals,
2. T-student distribution and
3. GED.

Parameter estimation is performed by the LL method using the 
numerical optimization of Broyden-Fletcher-Goldfarb-Shanno 
(BFGS/Marquardt) algorithm. The results of this model using 
these three distributions are presented in Table 10.

From the Table 10 we notice that for all of the distributions, the 
coefficients are statistically significant (except for t-student). 
Furthermore, no problems exist in either autocorrelation or 
conditional autocorrelation, apart from normality. In addition, the 

Table 3: Summary table of ADF and PP unit root tests
Variable ADF P-P

C C, T C C, T
un −2.4785 (5) −3.0154 (5) −2.3420 [18] −2.7867 [18]
dun −8.6906 (3)*** −8.7105 (3)*** −27.2330 [18]*** −27.204 [18]***
*,** and *** show significant at 1%, 5% and 10% levels respectively. The numbers within parentheses followed by ADF statistics represent the lag length of the dependent variable used 
to obtain white noise residuals. The lag lengths for ADF equation were selected using Schwarz Information Criterion (SIC). Mackinnon (1996) critical value for rejection of hypothesis 
of unit root applied. The numbers within brackets followed by PP statistics represent the bandwidth selected based on Newey and West (1994) method using Bartlett Kernel. C: Constant, 
T: Trend. d: First differences, ADF: Augmented Dickey–Fuller, PP: Phillips Perron

Table 4: Descriptive statistics of unemployment in levels and first differences
Variables Mean Median Maximum Minimum Std. 

Dev
Skewness Kurtosis Jarque-Berra Probability Observations

un 5.97 5.70 10.80 3.40 1.57 0.73 3.07 67.39 0.00 751
dun −0.0008 0.00 0.90 −0.70 0.19 0.55 4.70 128.40 0.00 750

Figure 5: The autocorrelation and partial autocorrelation plots for the US unemployment rate in first differences from January 1955 to July 2017

Figure 6: The US unemployment rate in seasonal differences of the 
data in first differences (lag=12)
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model has the maximum LL value in GED. Thus, we can use this 
model for forecasting.

In Figure 9 the SARΙMA(1,1,2)(1,1,1)12 − GARCH(1,1) model 
distribution of standardized residuals is presented to confirm the 
hypothesis of normality.

From the results in Figure 9 we can see that in accordance with the 
skewness (0.22) and kurtosis (3.46) coefficients, the distribution 
presents positive skewness and leptokurtosis. Moreover, Figure 9 
shows that the distribution of standardized residuals diverges 
from normality.

6. FORECASTING METHODOLOGY

In this section we present the forecasting outcomes for the 
SARΙMA (1,1,2)(1,1,1)12 − GARCH(1,1) model. To project 
unemployment we use both dynamic and static forecasting (one-
step ahead). Static forecasting extends the recursion forwards 
from the end of the sample estimation, allowing one-step ahead 
projection both in structural samples and innovations. In the 
literature, a variety of statistics are used to evaluate forecasting. 
The optimum value of forecasting is assessed by the MSE. Other 
indexes are the MAE, RMSE, MAPE and Theil’s inequality 
coefficient (1961). Having selected the form of the SARΙMA 

Table 5: Estimation of the US unemployment rate in 
seasonal differences of the data in first differences (lag=12)
Dependent variable: SDUN
Method: Least squares
Sample: 1956M02 2017M07
Included observastions: 738 after adjustments
Variable Coefficient Std. 

Error
t-statistic Prob.

C 0.006752 0.021402 0.315500 0.7525
@TREND −1.66E-05 4.90E-05 −0.339605 0.7343
R2 0.000157 Mean dependent var 0.000407
Adjusted R2 −0.001202 S.D. dependent var 0.283298
S.E. of 
regression

0.283468 Akaike info criterion 0.319271

Sum squared 
resid

59.14061 Schwarz criterion 0.331748

Log likelihood −115.8110 Hannan-Ouinn criter. 0.324082
F-statistic 0.115332 Durbin-Watson stat 1.811953
Prob (F-statistic) 0.734251

Table 6: Comparison of models with the AIC, SC και HQ 
criteria
SARIMA model AIC SC HQ
dun
(4,1,3)(2,1,1) 12 −0.726160 −0.652316 −0.697708
(1,1,2)(1,1,1) 12 −0.721747 −0.679919 −0.706397

Table 7: Estimation of the SARIMA (4,1,3)(2,1,1) 12 model
Dependent variable: DUN
Method: ARMA maximum likelihood (OPG–BHHH)
Sample: 1955M01 2017M06
Included observations: 750
Convergence achieved after 37 iterations
Coefficient covariance computed using outer product of gradients.
Variable Coefficient Std. Error t-statistic Prob.
AR (1) 2.269052 0.176319 12.86905 0.0000
AR (2) −1.745685 0.311379 −5.606304 0.0000
AR (3) 0.297328 0.191911 1.549297 0.1217
AR (4) 0.135082 0.048535 2.783183 0.0055
SAR (12) 0.522516 0.082200 6.356614 0.0000
SAR (24) −0.072128 0.043923 −1.642148 0.1010
MA (1) −2.244906 0.175973 −12.75709 0.0000
MA (2) 1.874065 0.285611 6.561602 0.0000
MA (3) −0.521351 0.149318 −3.491547 0.0005
SMA (12) −0.743396 0.071624 −10.37910 0.0000
SIGMASQ 0.027261 0.001171 23.28837 0.0000
R2 0.226115 Mean dependent var −0.000800
Adjusted R2 0.215643 S.D. dependent var 0.187811
S.E. of regression 0.166333 Akaike info criterion −0.729793
Sum squared resid 20.44567 Schwarz criterion −0.662032
Log likelihood 284.6724 Hannan-Ouinn criter. −0.703683
Durbin-Watson stat 1.997028
Inverted AR roots 0.90−0.02i 0.90+0.02i 0.84 0.81+0.44i

0.81−0.44i 0.78+0.43i 0.78−0.43i 0.77−0.46i
0.77+46i 0.46−0.77i 0.46+0.77i 0.43+0.78i

0.43−0.78i 0.02−0.90i 0.02+.90i −0.02+0.90i
−0.02−0.90i −0.19 −0.43+.78i −0.43−0.78i
−0.46+.77i −0.46−0.77i −0.77+0.46i −0.77−0.46i
−0.78+0.43i −0.78−0.43i −0.90+0.02i −0.90−0.02i

Inverted MA roots 0.98 0.84_0.49i 0.84−0.49i 0.84−0.47i
0.84+0.47i 0.56 0.49−0.84i 0.49+.84i
0.00−0.98i −0.00+0.98i −0.49−0.84i −0.49+0.84i
0.84+0.49i −0.84−0.49i −0.98
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Figure 7: The autocorrelation and partial autocorrelation plots for the US unemployment rate in seasonal differences of the data in first differences 
(lag=12)

Figure 8: ARCH(q) process test

Figure 9: The SARIMA(1,1,2)(1,1,1)12 - GARCH(1,1) model distribution of frequencies and standardized residuals (GED distribution)

Figure 10: Static forecasting for unemployment
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Table 8: Estimation of the SARIMA (1,1,2)(1,1,1) 12 model
Dependent variable: DUN
Method: ARMA maximum likelihood (OPG–BHHH)
Sample: 1955M01 2017M07
Included observations: 750
Convergence achieved after 22 iterations
Coefficient covariance computed using outer product of gradients.
Variable Coefficient Std. Error t-statistic Prob.
AR (1) 0.885978 0.030532 29.01754 0.0000
SAR (12) 0.512227 0.069498 7.370417 0.0000
MA (1) −0.848613 0.040025 −21.20182 0.0000
MA (2) 0.157021 0.037166 4.224858 0.0000
SMA (12) −0.796621 0.049251 −16.17456 0.0000
SIGMASQ 0.027737 0.001135 24.44790 0.0000
R2 0.212605 Mean dependent var −0.000800
Adjusted R2 0.207313 S.D. dependent var 0.187811
S.E. of regression 0.167214 Akaike info criterion −0.726624
Sum squared resid 20.80260 Schwarz criterion −0.689664
Log likelihood 278.4840 Hannan-Ouinn criter. −0.712382
Durbin-Watson stat 1.992193
Inverted AR roots 0.95 0.89 0.82+0.47i 0.82−0.47i

0.47+0.82i 0.47−0.82i 0.00+0.95i −0.00−0.95i
−0.47+0.82i −0.47−0.82i −0.82−0.47i −0.82+0.47i

−0.95
Inverted MA roots 0.98 0.85+0.49i 0.85−0.49i 0.58

0.49+0.85i 0.49−0.85i 0.27 0.00−0.98i
−0.00+0.98i −0.49−0.85i −0.49+0.85i −0.85−0.49i
−0.85+0.49i −0.98

Table 9: Estimation of the ARCH (1) model
Heteroskedasticity test: ARCH
F-statistic 14.77849 Prob. F (1,747) 0.0001
Obs*R2 14.53058 Prob. Chi-square (1) 0.0001

Figure 11: Dynamic forecasting for unemployment

7. CONCLUSION

All countries regard unemployment as one of the most economic 
and social hardships. On one hand, it stimulates researchers 
scientific interest while on the other, it encourages measures and 
policies to be taken by governments to confront it. The upward 
trend of unemployment plagues many countries and hence, it is 
important for researchers to investigate this trend and propose 
solutions. The use of ARIMA models is an exceptional tool to 
forecast the unemployment rate and deal with this rising trend. The 
main purpose of this study is to investigate the most appropriate 
model to project US unemployment. The results of this project 
proved that the US unemployment rate could be constructed and 
better predicted using the SARIMA(1,1,2)(1,1,1)12 − GARCH(1,1) 
model. By applying the Box-Jenkins methodology the form of the 
SARIMA(1,1,2)(1,1,1)12 − GARCH(1,1) model was estimated 
via non-linear optimization of maximum likelihood, using the 

(1,1,2)(1,1,1)12 − GARCH(1,1) model with GED distribution 
we present the graphs of actual and projected values for static 
and dynamic forecasting in Figures 10 and 11, respectively, as 
well as statistic indicators of the model for static and dynamic 
forecasting and their innovations.

From the results in Figures 10 and 11 we discern that depending on 
indicators of the MAE, RMSE and Theil’s inequality coefficient, 
static forecasting provides more accurate predictions for US 
unemployment in contrast to dynamic forecasting for the model 
in a wide confidence interval ±2SE.
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numerical optimization of the BFGS algorithm. To potentially 
forecast the model, both dynamic and static processes were used. 
The forecasting outcome showed that the projected value of 
unemployment is close to the real value. This result showed that 
the suitability of the SARIMA(1,1,2)(1,1,1)12 − GARCH(1,1) 
model could be used to project US unemployment in the years 
to come with static forecasting. Undoubtedly, this result may be 
affected by changes in both time horizon and sample data size.
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Table 10: Estimation of the SARIMA (1,1,2)
(1,1,1)12 - GARCH (1,1) model using the three distributions
Parameter Normal t-student GED
δ0

0.001 (0.018) 0.001 (0.064) 0.001 (0.048)
β1

0.080 (0.000) 0.065 (0.001) 0.073 (0.001)
α1

0.881 (0.000) 0.902 (0.000) 0.891 (0.000)
D.O.F=14.38 (0.07) PAR=1.706 (0.000)

Persistence 0.961 0.967 0.964
LL 311.8103 314.2802 313.8456
Jarque-Bera 11.146 (0.003) 13.850 (0.000) 12.850 (0.001)
ARCH (1) 1.104 (0.293) 2.563 (0.109) 1.796 (0.180)
Q2 (12) 10.427 (0.579) 13.723 (0.394) 11.176 (0.514)
Q2 (24) 19.501 (0.725) 21.452 (0.612) 20.242 (0.683)
Q2 (36) 34.132 (0.558) 35.399 (0.497) 34.643 (0.533)
The persistence is calculated as β1+α1 for SARIMA (1,1,2)(1,1,1) 12 - GARCH (1,1) 
model. Values in parentheses denote the P values. LL is the value of the log-likelihood


