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ABSTRACT

This paper presents a Bayesian approach to find the Bayesian model for the point forecast of ARMA model under normal-gamma prior assumption with quadratic
loss function in the form of mathematical expression. The conditional posterior predictive density is obtained from the combination of the posterior under
normal-gamma prior with the conditional predictive density. The marginal conditional posterior predictive density is obtained by integrating the conditional
posterior predictive density, whereas the point forecast is derived from the marginal conditional posterior predictive density. Furthermore, the forecasting
model is applied to inflation data and compare to traditional method. The results show that the Bayesian forecasting is better than the traditional forecasting.
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1. INTRODUCTION

Bayes theorem calculates the posterior distribution as proportion to the
product of a prior distribution and the likelihood function. The prior
distribution is a probability model describing the knowledge about the
parameters before observing the currently by the available data. Main
idea of Bayesian forecasting is the predictive distribution of the future
given the fast data follows directly from the joint probabilistic model.
The predictive distribution is derived from the sampling predictive
density, weighted by the posterior distribution (Bijak, 2010).

This paper is refers to Amry and Baharum (2015) discussing the
problem of Bayesian forecasting for ARMA model under Jeffrey’
prior. Other papers related to this research are Amry (2016), Fan
and Yao (2008), Kleibergen and Hoek (1996), and Uturbey (2006)
also discussed the Bayesian analysis for ARMA model. This paper
focuses to find the mathematical expression of the Bayes estimator
for the point forecast of ARMA model under normal-gamma
prior assumption with quadratic loss function and to compare to
traditional method.

2. MATERIALS AND METHODS

The materials in this paper are some theories in mathematics and
statistics such as the ARMA model, Bayes theorem, repeated
integration, and the univariate student’s t-distribution and inflation

data. The method is study of literatures by applying the Bayesian
analysis under normal-gamma prior assumption.

ARMA (p, q) model (Liu, 1995) is defined by:

P 9
V= X0+ Y 06 +e, (1)
i=1 =

Where {e} is sequence of i i d normal random variables with
e~N(0,7"), 70 and unknown, ¢, and Oj are parameters.

The Bayes theorem (Ramachandran and Tsokos, 2009) stated as:

pk) ap(xly) p, (v) 2)

Where p(y|x) is posterior distribution, p(x|y) is likelihood function
and p () is prior distribution.

A random quantity, X, is said to have a student distribution on n
degrees of freedom with mode p and scale parameter 0 if it has
the probability density function (Pole et al., 1994):
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The mean is £ (X) = ¢ and the variance is nr »ifn>2

Var(X) =
ar()n_2

In the Bayesian approach the point forecast determined based
the Bayes estimator. Rever to Bain & Engelhardt (2006), if is
an estimator of, then a quadratic loss function is any real-valued
function:

L(®;6)=(6- 6)2 (4)

For the quadratic loss function, the Bayes Estimator is the mean
of the posterior distribution (DeGroot, 2004).

3. RESULTS
The k—step—ahead point forecast of y _,, is defined by:

FK)=E@pi | S)) (5)

Where S:; =(V15Y25 5 Yurk—1)

2 p
& =r- 2 0 ymi = Zq)iet—j
i=1 j=1

Based on the equation (1) can be obtained residuals:

)4 q
€ =y - 2; @;Yi—i — Z 0e_; (6)
= =

By conditioning the first p observations and letting

e=e =..=e=0, where r=min(0, p+1—q), one may approximate
by Box &J enklns the likelihood function for parameters ¥ = (¢,,
,,. (I) 0,0,. Gq) and 7 based is:

(n+k-1)-p

Ly.t|Spae<t 2

T n+k—1 p q 2 (7)

exp 2 2 yt_zq)iyt—i_zejet—j

1=p+1 i=1 j=1
The equation (7) can be expressed as:

(n+k=1)-p

Ly,7|S,) <t 2

n+k-1 n+k—1 n+k—1 5 3

T

eXpy— % 2)’1 2W ztht1+ 2( Bt—l) ()

t=p+l1 t=p+l1 t=p+1
Where
Bt = (yt’ yt—l""’yt+l-pf'et’ ez-l,' : "et+l-q)
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Yp Y+ Yn+k-2
yp—l yp Yn+k=3
yp+l
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U= Xy =1 Pt
ep ep+1 Cntk-2
ep—l ep v k-3 Ynrk-1
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Where

p q
e =y, —ZCI)iyt_i —Zejét_j,t =p+Lp+2,..n0,
i=1 Jj=1

And are maximum likelihood estimator of . The values of e,

€, ps---€,, can be obtained via:
~T
e=y,—¥ B, ©9)
Where
t/7 = (&)1’&)2""&)p’élﬁéZ""éq)

From the likelihood function in equation (8) can be obtained:
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Such that the likelihood function in equation (8) can be expressed
as:

(n+k=1)—-p

L(‘P,T|S;)oce 2

n+k-1
exp —%[ 3 7 —Z‘PT(UTXO)Jr‘PT(UUT)‘P}

t=p+1

(10)

t=p+1

(n+k-1)-p - n+k—1
o~ D a2 2 AT T
e expl-- Y -2+

Where U" X, = Vand UU" = W

3.1. Posterior Distribution
According to Broemeling and Shaarawy’s suggestion (1988), the
normal-gamma prior of parameters ¥ and 7 is:

(¥, 1)=§ (Y[7).5, (1)

P
- (%)2 exp{—g[(W—u)T 0¥ - u)]}

x F[z(;) % exp(-pr)

()2 exp{—%[(?—uf O - u)]—ﬁr} (11

p+20¢_1

o 2

exp{—%[(‘?— w’ Q(‘P—u)+2l3]}

AL
o 2

CXP{—g[‘PTQ‘P—‘PTQ#—MTQ‘P+MTQM+2B]}

Where & ~N (1,(tQ)™), § ~GAM (0,B), Q is a positive definite
matrix of the order (p+¢), o and f are parameters. By applying the
Bayes theorem to equation (10) and (11), the posterior distribution
of and ™ is:
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Where W+Q=P and

3.2. Conditional Posterior Predictive Density

P q

Based on e =y - 2(piyt—i - Zeje,_j with e~ N (O,Ti() can
i=1 J=1

be obtained

1
fle 18, = (2ne) 2 exp{ -5 (e)? }

If expressed in y:

f(y, |S;,1P,T_1)= (271'7;_1)_%

T p q ’
ex —E yt_z(piyt—i_zejet—j
i=1 =1

Based on the equation (13), can be obtained the conditional
predictive density of ¥ _:

(13)

S Gii 18, ¥, 77 = (an‘l)_%

T p q :
exXp _5 Yok = z(piymk—i - zejemk—j
im1 =
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1 1 q ’
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Where B, ) and

1 = (-yn+k-1’ yn+k-2" : €

"yn+k-p’ en+k»1" U k2" n+k -q

T
R=B,1®B,

Based on the equation (12) and (14) can be obtained the conditional
posterior predictive density of ¥

Ly Gt 15,7 o (B, 1)) S s |5, W 77
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The conditional posterior predictive density of ¥, using norma
gamma prior is:

(n+k—1—p+20c‘)+p+1_1

.'-fp(yn+k|S:’\PsT_1)°cT 2
€X —_I:\IITGIP_\PT(V+QM+Bn+k—1yn+k)_] (15)
((V+0w) +Bl v ) Y+ yr +K

Where G =P +R

3.3. Marginal Conditional Posterior Predictive

The marginal conditional posterior predictive density of ¥ , can
be obtained by integrating the conditional posterior predictive
density in equation (15): density in equation (15):
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o (ntk-1-p+2a)+ pHl Figure 2: Plot of ACF

o< | T 2
0

B T
Vo +K - ((V+0W +Byiey Yoik)

1
expl—1 G ((V+Q.u)+Bn+k—1yn+k) dr (16) . W || L L [[Il
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By applying the formula of Gamma distribution from the equation
(16) canbe obtained: S S R R SRS R S AR R
n+k-1-2p 1 I | I I

- , __H2a+p+l ' I I | | . I ' | | I
V+ 2 , ,
y5+k +K—[( o ] . . .

+Bn+k—1 Ytk

G ((V +0W+ B, J/,,+k) Figure 4: Plot of factual data (red), Bayesian (green) and traditional
2 (blue)

Sy (vaek 157)e

__ (ntk-1-p+20)+1

[ 2 T 2
o K+ Ynvk _((V + Q,LL) + Bn+k—1 yn+k)
-1
|GV +0W)+ B,y Yosr)
(n+k-1
- _ — D+l
i T 1 -7 :
Yok — (1 - Bn+k—1 G Bn+k—1 )
—— Factual
(Bl G707 +0) — e,
- - T T T T T T
T -1
(1 - Bn+k—1 G Bn+k—1)
B -17] .
T -1 Table 1: Value of parameters and A IC
Vork = (1= Bl G By ) —
( B, G+ ro)) ARMA (0,1) - - 0.4058 335.00
| 1+4= E ARMA (1,0) 0.3544 - - 340.84
K-V +0) Gy(V +0 ARMA (1,1) 0.0686 - 0.3528 331.79
ARMA (2,0) 0.4317 -0.2129 - 333.46
ARMA (2,1) 0.5883 -0.2712 -0.1625 334.96
Table 2: Comparison of point forecast between Bayesian
with traditional forecasting
1 0.51 0.443232000 0.42096670
- - 2 -0.09 0.006368232 0.02118361
3 0.19 0.262402900 0.02374863
Figure 1: Plot of data 4 ~0.45 0.538752700 ~0.02603840
5 0.24 0.175542000 0.01485990
6 0.66 0.369192000 0.20172880
7 0.69 0.455384000 0.20085360
8 -0.02 0.027196330 0.04167132
9 0.22 0.235994600 0.27691080
10 0.14 0.123299330 0.08616260
11 0.47 0.365324000 0.27197930
12 0.42 0.469548070 0.39836110
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Table 3: Comparison of forecast accuracy

Forecast accuracy Bayesian Traditional
RMSE 0.12476883 0.2545024
MAE 0.09569079 0.1962556
MAPE 47.6807038 81.4006722
U-statistics 0.16897685 0.4092601
Table 4: Comparison of descriptive statistics
Data Min. Q1 Median Mean Q3 Max SD
Factual 1-204 140 1.14 0.5 0.55 0.9 33 0.589
Factual 1-192, Bayesian 193-204 140 1.13 0.5 0.55 0.9 33 0.590
Factual 1-192 Trad. 193-204 140 1.12 0.4 0.54 0.9 33 0.588
(n+k=1 are ARMA(0,1), ARMA(1,0), ARMA(1,1), RMA(2,0), and
- P20+ ARMA(2,1)
2 2 2

-1
1- B5+k—1
York — -1
G Bn+k—1

(Bnik_l G-IJ
V+0u)
K=V +0w' Gy(V +0u)

(n+k—1-p+20)
(l - BnT+k—1 G_an+k—l )

o<|(n+k-1-p+2a)+

Where Gy =G~ +(1- Bl G By )_l (67'rG™)

The marginal conditional posterior predictive density of ¥ is a

univariate student’s t-distribution on (n+k—( p+2a) degrees of freedom
. _ -1 _

with mode o (I_BT+k—1 G Byt ) (BnT+k—l G 1(V+Q°<))

n

3.4. Point Forecast
For quadratic loss function, the point forecastof ¥ _, is the posterior
mean of the marginal conditional posterior predictive, that is:

E(Yyui 1, =(1-Bls 1 6B )
(Briss G707 +.029)

4. APPLICATION

(17

The results of point forecast are applied to a set of time series data
that have been identified by ARMA model using normal-gamma
prior. The forecasting model is applied to the period 193-204
based on data from 1 to 192.

4.1. Data, Stationarity, Identification, and Model
Selection

Data of 204 series, y, of monthly inflation in Indonesian from
January 2000 to December 2016 is displayed in Figure 1. Plot of
ACF in Figure 2 in the form of damped sine wave, indicates that the
time series data is stationary. Plot ACF in Figure 2 is disconnected
after first lag and plot of PACF in Figure 3 is disconnected after
second lag, these indicate that the appropriate model for data

The calculation the value of parameters and the value of AIC is
presented as Table 1.

The smallest AIC value in Table 1 is 331.79 on ARMA(1,1) model,
it means the suitable model for the data is ARMA(1,1) model. In
Y, its model is written:

Y =8530606=0.3335Y,_ +e, (18)
4.2. Comparison to Traditional Method

The comparison of point forecast between Bayesian forecasting
in equation equation (17) with traditional forecasting in equation
(18) is presented in the Table 2. Columns 2 through 4 containing
the factual data, result of Bayesian forecasting, and result of
traditional forecasting.

The comparison of forecast accuracy between Bayesian method
and traditional method is presented in the Table 3. Rows 2 through
5 containing the RMSE, MAE, MAPE and U-Statistics.

The results show that the forecast accuracy value of the Bayesian
method is smaller than the traditional method, so in this case it is
concluded that the forecast accuracy for the Bayesian forecasting
is better than the traditional forecasting. The comparison of
descriptive statistics between the Bayesian method and the
traditional method is presented in the Table 4. Columns 2 through
8 containing the minimum (Min), first quartile (Q1), median,
mean, third quartile (Q3), maximum (Max), and standard deviation
for 204 factual data, 192 factual data and the result of Bayesian
forecasting for the 12 steps ahead, and 192 factual data and the
result of traditional forecasting for the 12 steps ahead.

Plot of factual data, Bayesian and traditional forecasting for the 12
steps ahead is displayed in Figure 4, shows that the plot of factual
data is more varied to the plot of Bayesian than the traditional
forecasting.

5. CONCLUSION

This paper analyzes how to find out mathematical expression
of the point forecast for Bayesian forecasting under normal-
gamma prior. The conditional posterior predictive density
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is obtained by multiplying the normal-gamma prior with
the conditional predictive density. The marginal conditional
posterior predictive density is obtained by integrating the
conditional posterior predictive density to paramaters, whereas
the point forecast is derived based on the mean of marginal
conditional posterior predictive density that has the univariate
student’s t-distribution.

The computational results show that the forecast accuracy value
of Bayesian forecasting is smaller than the traditional forecasting,
while the values of descriptive statistics show that the Bayesian
forecasting is closer to the factual data than the traditional
forecasting, it indicates that the Bayesian forecasting is better than
the traditional forecasting.
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