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ABSTRACT

Symmetric and asymmetric GARCH models-GARCH (1,1), PARCH (1,1), EGARCH (1,1), TARCH (1,1) and IGARCH (1,1) were used to examine 
stylized facts of daily USD/UGX return series from September 01, 2005 to August 30, 2018. Modeling and forecasting were performed based on 
Gaussian, Student’s t and GED distribution densities to identify the best distribution for examining stylized facts about the volatility of returns. Initial 
tests of heteroscedasticity (ARCH-LM), autocorrelation and stationarity were carried out to establish specific data requirements before modeling. 
Results for conditional variance indicated the presence of significant asymmetries, volatility clustering, leptokurtic distribution, and leverage effects. 
Effectively, PARCH (1,1) under GED distribution provided highly significant results free from serial correlation and ARCH effects, thus revealing the 
asymmetric responsiveness and persistence to shocks. Forecasting was performed across distributions and assessed based on symmetric lost functions 
(RMSE, MAE, MAPE and Thiel’s U) and information criteria (AIC, SBC and Loglikelihood). Information criteria offered preference for EGARCH 
(1,1) under GED distribution while symmetric lost functions provided very competitive choices with very slight precedence for GARCH (1,1) and 
EGARCH (1,1) under GED distribution. Following these results, we recommend PARCH (1,1) and EGARCH (1,1) for modeling and forecasting 
volatility with preference to GED distribution. Given the asymmetric responsiveness and persistence of conditional variance, macroeconomic fiscal 
adjustments in addition to stabilization of the internal political environment are advised for Uganda.

Keywords: Forecasting Volatility, GARCH Family Models, Probability Distribution Density, Forecast Accuracy 
JEL Classifications: C58, C53, G17, F31

1. INTRODUCTION

International financial cash flows tend to be hugely affected by 
uncertainties due to fluctuations in key economic markets such as 
foreign exchange and stock markets, which results into the decline 
of exports and imports, which in turn affect welfare as suggested 
by (Twamugize et al., 2017). As such, understanding volatility 
has become very necessary especially now that foreign exchange 
markets account for the largest trade volumes and liquidities in 
the world.

Influential attempts aimed at modeling volatility were introduced 
into literature through the seminal work of Engle (1982) in which 
he proposed conditionalizing variance in an autoregressive 
heteroscedastic process by introducing the autoregressive 
conditional heteroscedastic (ARCH) model. This model, however, 
posed challenges due to huge lag specifications. This weakness 
motivated Bollerslev (1986) to introduce a generalized form of 
ARCH called the GARCH model which improved on the former 
by providing flexibility to the lag structure. Over time, the literature 
on these models has grown to capture stylized facts of financial 
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series such as leverage, volatility clustering, fat-fail distributions 
(Kipkoech, 2014). Consequently, the following models have been 
developed to capture different scenarios: Exponential GARCH 
to unconditionally model asymmetries (Nelson, 1991); Power 
ARCH to model nonlinearities by specifying some restrictions 
(Ding et al., 1993); Threshold GARCH to analyze leverage effects 
based on news and Integrated GARCH to model non-stationarities. 
These models among others form the GARCH family models and 
they capture different dynamics of financial series.

The performance of the stated GARCH family models is 
unquestionably helpful, however, issues relating to high data 
frequency and increased kurtosis posit a levy distribution on return 
series (Mandelbrot, 1963). Modeling and forecasting of volatility 
should, therefore, consider the distribution of innovations that 
should not be assumed to be normal as opposed to conventional 
normality assumptions.

In recognition of these inherent gaps, this study makes attempts 
at introducing alternative distributions across models to capture 
different stylized facts of return series through careful selection 
of mean variances that consider the potential weakness of 
time series models such as the issues of autocorrelations and 
non-stationarities. The contributions of this paper to academic 
literature are twofold: The first, to the best our knowledge we 
pioneer the application of GARCH family models in Uganda’s 
exchange markets, thus augmenting Namugaya et al. (2014) who 
focused on stock markets. Following Coffie’s (2015) contributions 
on distribution densities of innovations and issues relating to 
(a)symmetries, this paper provides extensional contributions 
through the introduction of PARCH and IGARCH that capture 
different stylized facts of returns across different distributions in 
both symmetric and asymmetric frameworks.

A vast literature is available and continues to grow for GARCH 
family models that have been used under different specifications 
in various disciplines to analyze volatility and stylized facts 
related to forex and stock markets. Musa et al. (2014) examined 
the performance of GARCH models using data on Naira/USD 
for Nigeria between the periods June 2000 and July 2011. Their 
findings showed that GJR GARCH provides better performances 
over other GARCH family models. Also, they found evidence for 
the existence of significant asymmetric effects. Using symmetric 
lost functions (MAE, RMAE, MAPE and Thiel’s U), their results 
further showed that TGARCH provided accurate forecasts. Omari 
et al. (2017) used data on daily returns of KES/USD between 2003 
and 2015 to investigate stylized facts about exchange rates in 
both symmetric and asymmetric sets of models. They specifically 
investigated GARCH (1,1) and GARCH-M (1,1) for symmetric 
models and EGARCH, GJR-GARCH (1,1) and APARCH (1,1) 
for the asymmetric set under different distributions. Their results 
indicated that APARCH, GJR-GARCH model and EGARCH 
models better modeled volatility with t-distribution. Coffie (2015) 
considers the relative performance of different GARCH family 
models along with different distributions across markets. His 
interest was specifically modeling and forecasting both asymmetric 
and symmetric models in Botswana and Namibia stock markets 
using normal, t and GED distributions. His findings revealed less 

persistence of shocks and asymmetry of news in both markets 
and the existence of reverse volatility with models with fatter 
tails providing better performance. In contrast, Abdullah et al. 
(2017) adopts a similar strategy but only for a single market 
by analyzing the volatility of the Bangladesh taka against the 
USD with a series of daily returns running from January 2008 to 
April 2015. By adopting multiple mean equations to overcome 
diagnostics problems in GARCH, APARCH, EGARCH, 
TGARCH and IGARCH models, their findings revealed that 
student’s t-distribution provided better performance over normal 
distribution.

GARCH family models are not limited to forex markets, but 
also extend to stock markets in which they are used to model 
stylized facts similar to those of forex markets. With a similar 
specific focus on Kenya, Maqsood et al. (2017) delved into 
the analysis of GARCH family models to model and forecast 
volatility by employing daily returns for the Nairobi Securities 
Exchange using the NSE 20 share index. His findings revealed the 
persistence of volatility and clustering effect, leverage effect and 
asymmetric response to external shocks. It was on such a basis 
that he concluded that NSE is an inefficient market exhibiting 
stylized facts of financial markets. Ahmed and Suliman (2011) 
Undertook similar motivations to model GARCH family models 
by applying daily returns of the Khartoum stock exchange (KSE) 
from January 2006 to November 2010. By considering both 
symmetric and asymmetric models, their empirical results revealed 
that conditional variance is highly persistent (explosive process) 
and provides evidence on the existence of risk premium for the 
KSE index return series which supports the positive correlation 
hypothesis between volatility and the expected stock returns. 
Besides, they found that asymmetric models provide a better fit 
than the symmetric models, confirming the existence of leverage 
effect.

Alternative modern approaches have been advanced to model 
volatility. This includes the use of neural networks and ARIMA 
that predate GARCH family models. For instance, Ou and Wang 
(2011) aimed at modeling and predicting financial volatility, but 
on a Gaussian probabilistic process based on GARCH, EGARCH 
and GJR-GARCH models by training different kernels to train 
each of the models. Their findings revealed the prowess of hybrid 
models in capturing symmetric and asymmetric effects of news on 
volatility than the classic GARCH, EGARCH, and GJR GARCH 
methods. In similar veins, Kipkoech (2014) examined the volatility 
of the Kenyan shillings (KES) against the United States dollars 
to analyze the predictive performance of EGARCH models by 
comparing two distributions: Gaussian and Student’s. He used 
the maximum likelihood estimator and his results revealed that 
student’s distribution provides better performance over other 
specifications of EGARCH models.

Based on a comprehensive review of the literature relating to 
modeling and forecasting of exchange rates and GARCH models 
especially in East Africa and Uganda particularly, it’s evident that 
there exists a very huge gap. To the best of our knowledge, there 
have been no absolute attempts to model exchange rates using 
GARCH under any specification. Limited close cases include Etuk 
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and Natamba (2015) who applied ARIMA to forecast exchange 
rates and recommended the adoption of the SARIMA (0,1,1) 
in modeling and forecasting based on the UGX/USD exchange 
rates in Uganda between August 2014 and February 2015. 
Namugaya et al. (2014) used daily closing prices between January 
2015. They estimated both symmetric and asymmetric GARCH 
models to examine specific stylized facts such as volatility 
clustering and leverage. They employed a quasi maximum 
likelihood method for estimation and AIC and BIC for model 
selection. Their results indicated that the GARCH (1,1) model 
outperformed the other competing models in modeling volatility 
while EGARCH (1,1) performed best in forecasting volatility of 
USE returns based on MAE and MSE.

The next sections present the models and the materials. Results, 
discussions, and conclusions are presented in the last three sections 
of the paper.

2. MATERIALS AND METHODS

This section discusses data, mean equation specification, the 
GARCH family models, distributions densities and forecast 
evaluation methodologies.

2.1. Data
The data used in this study consists of daily foreign exchange rate 
series of the US Dollar (USD) against the Uganda shillings (UGX) 
ranging from September 05, 2005 to August 30, 2018, constituting 
a total of 3738 observations. The data was sourced from the official 
website of the Bank of Uganda under the statistics section (www.
bou.or.ug/bou/rates_statistics/statistics.html).

Data transformation was performed to obtain log-returns of the 
exchange rates series to overcome the difficulties of modeling 
with non-stationary data in time series. The following formula 
was used to obtain log returns:

r log
USD UGX

USD UGX
t = −






×/

/ ( )1
100

Where USD/UGX is the daily observation for the USD against 
UGX while USD/UGX (−1) is the lag of the same on day t. Table 1 
in the appendices illustrates the line plots of the two series. It can 
be observed that the USD/UGX series has a trend suggesting 
that it’s nonstationary while that of the return series reverts to its 
constant mean reflecting that it’s a stationary process. Additionally, 
volatility clustering can be deduced from the plot of the return 
series since it’s easily observable that periods of low volatility 
are followed by periods of low volatility while those of higher 
volatility are followed by the same over a lengthy period. Figure 1 
is a plot of the return series at both levels and first difference.

2.2. Mean Equation Specification
To address autocorrelation problems in the models, we first 
tested four mean equations starting from the constant to AR (4) 
models to ascertain appropriate models. Two models (the constant 
and AR [1]) were significant and, therefore, we used these two 
specifications to model various GARCH family models. The two 
models take the following functional expressions.

Constant Mean equation: rt=µ+ԑi

AR (1) Mean equation:   ∑q
t i-1 ii=1

r = + r +

According to Alexander (1961) and Andersen and Bollerslev 
(1998) the variance was modeled for the above two models on 
different GARCH models to test different issues across three 
different distributions to observe various sensitivities based on 
different tail distributions and kurtosis assumptions of financial 
series. Variance equation is given by:

t t t t iidh v wherev= ,
~ ( , )0 1

2.3. The GARCH Family Models
Volatility is a crucial element of investment whose understanding 
has very important implications for an economy that aspires to 
grow. Earlier methods for modeling volatility were always focused 
on variance and standard deviation, while ignoring conditionality 
and very important aspects of financial time series data such as 
leverage effects, heavy-tailed distribution, and volatility among 
others. In response to these shortcomings, Engle (1982) presented 
a time-varying model that conditionalizes variances of past 
innovations called the ARCH. This idea was further improved by 
Bollerslev (1986) by adding past conditional variance to overcome 
the huge lags specification of the ARCH model. This model was 
named generalized ARCH (GARCH). Other models have since 
been developed to model symmetries and asymmetries to all form 
the GARCH family discussed below.

2.3.1. ARCH
This model is attributed to Engle (1982) based on a seminal 
work in which he suggested that time-varying conditional 
heteroscedasticity be modeled by applying past innovations to 
estimate variance as follows:

ht
i

q

i t= +
=

−∑η α ε
0

1

1

2

where 
( )t−1
2  represents the ARCH 1 process.

2.3.2. Generalized ARCH
Bollerslev (1986) advanced the ideas of Engle (1982) by suggesting 
a generalized form of ARCH which overcomes the difficulty of 
huge lags specifications. Precisely, he proposed a model in which 
heteroscedasticity is determined by past innovations and past 
conditional variance as a set of regressors represented as a higher-
order ARCH represented as follows:
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Table 1: Summary statistics for the USD/UGX returns series
Observations 3238
Mean −0.000225
Std. Dev. 0.004874
Skewness 0.362888
Kurtosis 20.79384
Jarque-bera 42788.50***
Source: Authors’ calculations
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where ( )t−1
2  is the ARCH term while is the GARCH term with 

restrictions imposed as ղ0>0, αi≥0 and βi≥0. The sum of ARCH 
and GARCH coefficients determines the persistence of shocks 
αi+β<1 to ensure that εt is stationary with positive variance.

2.3.3. Exponential GARCH
This is an exponential model developed by Nelson (1991) to 
model asymmetric tendencies in volatility. This model relaxes the 
non-negativity constraint restrictions placed on Alpha and Beta 
in the GARCH model. This model takes conditional variance as 
a function of lagged innovations as illustrated below:

ln lnh
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In this model, the leverage effect is exponential irrespective of 
the sign on the coefficients. λi<0 stands for negative parameters 
implying negativity shocks will have higher effects on expected 
volatility than positive shocks of the same magnitude. Here, λi, αi 
and βi represent leverage effect, shocks magnitude and persistence, 
respectively. Nelson and Cao (1992) suggest that this model gives 
freedom to positive and negative shocks to determine volatility 
and lets large shocks have a superior influence on volatility.

2.3.4. Threshold GARCH (TGARCH)
This model is also known as the GJR-GARCH model named after 
Glosten et al. (1993). The model introduces the aspects of good news 
and bad news with different effects on the conditional variance. 
The model is just an augmentation of the standard GARCH with 
additional ARCH term conditional on past disturbances.

ln ( )h I ht
i

q

i t i t t
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p
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− − −
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1

1
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2

1
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λi measures leverage effects and I is a dummy equal to 1 where ԑi is 
negative. The good news is ԑt–i>0 and bad news is ԑt–i>0 good news 
influences conditional variance by αi while bad news influences 
conditional variance by αi+λi When λi>0 bad news increases 
volatility and it implies an increase in leverage effects. Glosten 
et al. (1993) notes that if λi≠0 the bad news impact is asymmetric.

2.3.5. Power GARCH (PARCH) model
This model was developed by Ding et al. (1993) to model 
nonlinearities by asymmetric power ARCH of (p, q) order 
presented as follows:

h ht
i

q

i t i i t i
j

p

i t j
δ δ δα α ε λ ε β= + − +

=
− −

=
−∑ ∑0

1 1

( )

where αi βi are where αi and βi are the standard ARCH and GARCH 
parameters. λi and δ represent leverage effects and power terms, 
respectively. Restrictions here are that δ>0 and | | 1 ≤i .

2.3.6. Integrated GARCH (IGARCH)
This is a special form of GARCH developed to deal with series that 
have a unit root. It was first introduced by Engle and Bollerslev 
(1986). The model integrates the series to achieve stationarity. 
The parameters of the GARCH are restricted to a sum equal to 
1 and the constant is ignored to transform a standard GARCH 
model into IGARCH.

h ht i t i i j= + −− −α ε α
1

2
1( )

Here, additional constraints are {α+(1–αi)}=1 and 0<αi<1.

2.4. Distributions Densities
In modeling GARCH family models, variance is assumed to 
be stochastic although there is variance in GARCH. GARCH 
structures generate heavy-tailed outputs even for returns. 
Therefore, leptokurtic returns can be compatible with normal 
standardized errors. This study, therefore, considers these 
distributions associated with the GARCH family.

2.4.1. The Gaussian distribution
The Gaussian distribution is also known as the normal distribution 
and best represented as follows:

L = ln 2 +ln +Zgaussian t
2

t
-1
2

( [ ])π σ[ ]
=
∑
i

T

1

where T is the number of observations, σ is the standard deviation 
and π is the constant pi.

2.4.2. The student’s t-distribution
This is also called the T distribution and it’s almost identical to 
the normal distribution curve, only that it’s a bit shorter and fatter. 
Under this distribution, the log-likelihood is computed as follows;

Student's = ln v+ - ln v - ln v -

- ln +
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2.4.3. The generalized error distribution
This is a generalized form of the normal distribution that has 
a natural multivariate form with an unbounded top parametric 
kurtosis. It has cases similar to the Gaussian and character which 
controls for kurtosis. This can be represented as follows:
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ln v Z - +v

ln - ln 1
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2.5. Forecast Evaluation Methodologies
Forecast accuracy in this study is evaluated based on the mean 
square error (MSE), root mean square error (RMSE), mean 
absolute percentage error (MAPE), Thiel’s U1 and Thiel’s U2 
statistics and models are selected based on information criteria.

2.5.1. MAE
It measures the deviation from the original values. The closer the 
MAE to zero, the better the goodness of fit and thus the better the 
forecast. MAE is represented by the following equation.
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2.5.2. MSE
The closer the MSE of a model to zero, the preferable the model. 
MSE takes the following representation:

MSE
n

e
t

n

t=
=
∑1
1

2

2.5.3. RMSE
This has similar interpretations as the MSE in the choice of the 
most preferable model.

MSE

2.5.4. MAPE
This criterion is a relative measure of MAE which provides 
relatives performances of different forecast items. The lower the 
percentage MAPE, the better the forecast model.

MAE
n

e
y
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= ×

=∑1 100
1

| |
%

2.5.5. Theil’s U
Thiel’s U is a normalized measure of forecast accuracy. There are 
two types of this Thiel’s U. The first (U1) is a measure of forecast 
accuracy (Theil, 1958. p. 31-42); The second (U2) is a measure 
of forecast quality.
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Where Ai represents the actual observations and Pi is the 
corresponding predictions for the case of U1 whereas in Thiel 
U2 they represent proposed U2 a pair of predicted and observed 
changes. Perfect forecasts are those with U1 closer to the 0 
bound while worst forecasts are those closer to 1. U2 can be 
interpreted as the RMSE of the proposed forecasting model 
divided by the RMSE of a no-change model. U2 values lower 
than 1.0 show an improvement over the simple no-change 
forecast.

3. RESULTS

This section presents the description of the data and results 
obtained from the estimation of the various GARCH models.

3.1. Descriptive Statistics of the USD/UGX Return 
Series
Descriptive statistics of the series provide a general glimpse into 
the behavior of the return series. The following summary statistics 
are obtained from the series.

Table 1 above provides descriptive statistics for the USD/UGX 
return series from which a negative mean can be observed, 
reflecting the depreciation of the exchange rates over time. 
The returns exhibit a non-symmetric distribution since they are 
positively skewed thus indicating a depreciation of the Shillings. 
A look at the coefficient of kurtosis is suggestive of the leptokurtic 
(fail-tail) distribution of the returns series. The series doesn’t also 
follow a normal distribution as justified by a Jarqua-Bera test 
which rejects normality assumption at a 1% level of significance. 
The standard deviation is positive, indicative of high fluctuations 
in the exchange market.

A further graphical examination of the distribution characteristics 
of the return series using Q-Q and histogram as in Figure 2 in the 
appendices shows that observations are scattered in an S-shape 
pattern far away from the 45-degree line confirming Ahmed and 
Suliman (2011) who argue that such a scatter pattern is evidence 
for non-normal distribution in series, which is also confirmed by 
the histogram below the Q-Q plot. An examination of the incidence 
of serial correlation shows that the series is autocorrelated except 
at the first and second lags.

3.2. Stationarity
Unit root analysis is a prerequisite in time series modeling and as 
such, preliminary unit root tests were examined on the USD/UGX 
series. The series exhibited trend just from the basic graphical 
examination and we couldn’t reject the null hypothesis from the 
ADF test of unit root implying that the series wasn’t stationary. 
Following these results, we obtained returns from the USD/UGX 
through a log transformation of the first lag in a process explained 
above. Displayed below in Table 2 are results of the ADF unit 
root tests.

3.3. Tests for Heteroscedasticity: ARCH Effects
Modeling GARCH models requires securing certainty over the 
presence or absence of the ARCH effects. This can be effectively 
executed through the Lagrange multiplier test for ARCH (Engle, 
1982). The LM proposes that given ԑt=rt–µ as the residual for the 
mean equation t

2 is then used to test conditional heteroscedasticity, 
known as the ARCH-LM effect. The AR (1) model for the 
conditional mean was estimated and the ARCH-LM test was done 
for the first lag. From the results of the test in Table 3 below, the 
null hypothesis of No ARCH effects is rejected at 95% confidence 
interval. This indicates the presence of ARCH effects implying 
that there is fluctuating variance in the return series.

Table 2: Unit roots for the return series
Tests at different 
levels

ADF test PP test
t-stat. P-value Lag t-stat. P-value Lag

Intercept −38.04378 0.0000*** 1 −37.91004 0.0000*** 1
Intercept and trend −38.04626 0.0000*** 1 −37.90714 0.0000*** 1
None −37.96551 0.0000*** 1 −38.15968 0.0000*** 1
Source: Authors’ calculations
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3.4. Results of Estimation of GARCH Models
The results reported in Tables 4-6 below are estimates of 
intercept, variance equations and diagnostics of both symmetric 
and asymmetric GARCH models under Gaussian, Student’s T 
and GED distributions. The tables report estimations for the two 
mean equations: The intercept (1) and the AR (1). Table 7 above 
presents the volatility forecast performance of the models across 
distributions on the basis of information criteria using the whole 
sample. Additionally, Table 8, shows the forecast accuracy of 
competing models examined using out-sample data between the 
periods September 01, 2005 and June 029, 2018.

4. DISCUSSIONS

Having established the presence of volatility from the ARCH-LM 
test, initial GARCH models were estimated to model variance 
dynamics and asymmetric effects of volatility through GARCH 
(1,1) and PARCH (1,1), respectively under normal distribution, 
as reported in Table 4. The results of GARCH (1,1) in the mean 
equation indicate that the intercept µ for both equations is 
significant at 1%. The AR (1) coefficient of the dependent variable 
(φ) is also significant at 1%. Volatility equation for the GARCH 
(1,1) reveals that the constant (η), ARCH (α) and GARCH (β) 
terms are all positive and statistically significant at 1%, with the 
sums of α and β exceeding 1, implying indefinite variance due 
to non-stationarity in the residuals. Diagnostic tests for serial 
correlation using the Ljung-Box Q-statistics for standardized 
residuals (Q1) and their squared values (Q2) on the 4th and 8th lags 
as advanced by Tse (1998) revealed the presence of autocorrelation 
as Q1 statistics were significant at 5% level.

Although the AR (1) equation provides evidence of no ARCH 
effects, the F-statistic for first the mean equation was significant at 
5% justifying the presence of ARCH effects. Given the shortcomings 
of the Gaussian distribution manifested by skewness and excess 
kurtosis of return series as shown in Figure 2 in the appendices, 
other distribution assumptions were tested. Specifically, student’s 
t and GED were examined following Bollerslev (1987). The 
results under normal distribution are similar to the results under 
the assumptions of T and GED distributions except that the ARCH 
effect is eliminated under the two distributions. However, the 

problem of autocorrelation is persistent as reported in the GARCH 
(1,1) models in Tables 5 and 6.

The results of PARCH (1,1) tabulated in Table 4 indicate that 
AR (1) is positive and significant and so are ARCH and GARCH 
coefficients at 1% levels which reflect the responsiveness and 
persistence to shocks, respectively. In this model, α captures the 
response of conditional volatility to appreciation or depreciation 
of the Ugandan shillings while β captures its persistence to market 
shocks. Since their sum goes beyond 1, evidence of an infinite 
nonstationary variance is established. The leverage coefficient (λ) 
is positive and significant implying a higher influence of negative 
past innovations on volatility than positive values of the similar 
magnitudes on conditional variance. The results of a negative 
coefficient on leverage would produce interpretations that are 
vice versa to the ones realized above. These results established 
that appreciation or depreciation of the Ugandan shillings 
against the dollar doesn’t have a directional effect on volatility. 
However, the model is not a standard GARCH model given the 
positive value and significance of δ, which is <2 in the model, 
Ding et al. (1993). The statistics for the diagnostics indicate the 
presence of autocorrelation and the absence of ARCH effects as 
shown by significant Q1 statistics and insignificant F-statistic. 
Similar findings are realized when the distribution is changed 
to student’s T or GED under PARCH (1,1) in Tables 5 and 6 
respectively. Under T distribution, ARCH effects are no longer 
a problem although serial autocorrelation continues to affect the 
model as manifested by highly significant Q statistics. However, 
better results are observed under the GED assumption, in which 
both autocorrelation and ARCH effects are eliminated in the AR 
(1) mean equation.

Under the EGARCH (1,1) model in Table 4 with the assumption 
of the normal distribution, the AR (1) coefficient is positive and 
significant just like α and β coefficients which are the asymmetric 
and size parameters, respectively. This model considers 
nonnegative restrictions placed on variance. The asymmetric term 
(λ) is negative and significant at 5% revealing the presence of 
asymmetric effects implying that negative shocks to the Ugandan 
Shillings will have a higher influence on expected volatility than 
positive shocks of the same magnitude. The coefficients for the 
intercept and AR (1) mean equations are significant at 1%. There 
are no ARCH effects although there is evidence of autocorrelation 
in the residuals as indicated by very significant Q statistics. 
A change of distribution to student’s t for the EGARCH (1,1) 
as reported in Table 5 provides no improvement either in terms 
of diagnostics, although both mean, and variance coefficients 
remain similar. However, a further change of distribution to GED 
in Table 6 deteriorates the model. Both the ARCH and GARCH 
parameters remain positive and significant, but the asymmetric 
parameter becomes insignificant, although it’s negative.

Starting with the Gaussian distribution assumption in Table 4, 
the results of TARCH (1,1) provide a highly significant level 
for the AR (1) coefficient in the mean equation. In the variance 
equation, The ARCH (α) and GARCH (β) coefficients are 
also largely significant. The asymmetric parameter (λ) is 
negative and significant with no evidence of ARCH effects 

Table 3: Estimation of different conditional means and 
testing ARCH effect
Variable (1) (2)
Dependent variables Return c Returns c returns (−1)
C −0.000225*** −0.000142**

(8.57E-05) (8.01E-05)
AR (1) 0.357624***

(0.016414)
ARCH effects

Constant 1.70E-05*** 1.66E-05***
(1.83E-06) (1.71E-06)

Lag error squared 0.282662*** 0.199036***
(0.016865) (0.017233)

Ho: No. Arch effect
F-stat. 280.9180 133.4015
Prob. 0.0000 0.0000

Source: Authors’ calculation
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further establishing the evidence for asymmetric effects. The 
model, however, suffers from autocorrelation. Unlike results 
from the Gaussian assumption, the asymmetric parameter is 
insignificant in the AR (1) type mean equation, the parameter 
is positive under both mean equations although diagnostics 
don’t support the model when distribution assumption is made 
as a student’s t or GED as can been seen in the TARCH (1,1) 
tabulated in Tables 5 and 6 respectively. No ARCH effects, but 
autocorrelation persists. Variance also continues not to be well 
behaved given the fact that the persistence parameters are still 
higher than the unitary value.

The autoregressive coefficient for the lag dependent variable under 
IGARCH (1,1) indicates a positive and significant parameter φ 
from the results under normal distribution in Table 4. This model 
imposes the persistence parameter, to sum up to unit restrictions on 
the model. Here, the restrictions placed on the model are positive 
and significant. However, they don’t overcome the diagnostics 
problems of autocorrelation and ARCH effects established by 

significant Q and F statistics. Alteration of distributions doesn’t 
change anything either since similar results are obtained under 
both T and GED distributions as observed from the IGARCH 
(1,1) results in Tables 5 and 6 respectively.

Table 7 above presents the volatility forecast performance of the 
models across distributions compared based on information criteria 
using the whole sample. Log-likelihood (LLK), Schwartz Bayesian 
(SBC) and Akaike information criteria (AIC) are used. It can be 
observed that although student’s t distribution out-performed 
Gaussian, the general performance of the models improved when 
GED distribution was used since the LLK increased while AIC 
and SBC decreased. Specifically, an examination of the models 
under GED distribution reveals that EGARCH (1,1) provided the 
best fit among the models used.

Forecast accuracy of competing models was examined using 
out-sample data between the periods September 01, 2005 and 
June 29, 2018 as presented in Table 8 and Figure 3. The models 
were estimated and used to make a month ahead forecast of 
exchange rates starting from July 02, 2018 to August 30, 2018. 
The performance was compared based on symmetric lost functions 
which include: RMSE, MAE and Thiel’s inequality. A comparison 
was made across distributions and as it can be observed, similar 
observations to comparisons based on symmetric lost functions 
can be made. Better forecasts are realized when student’s t and 
GED are used. However, GED provides much better results with 
lesser values of RMSE, MAPE and Thiel’s U. All models produced 
very slightly superior performances overall in different criteria. 
However, overly; EGARCH (1,1) and GARCH (1,1) have shown 
plausible consistency in minimizing RMSE, MAE and providing 
better fit based on Thiel’s U.

5. CONCLUSION

This study drew motivations from the knowledge that volatility has 
important economic implications for international investment, risk 
management, remittances, and stock pricing among others. This 
is particularly relevant for developing economies such as Uganda 
seeking to expand their share of international trade and realize 
stable trade balances. We model volatility using GARCH family 
models by taking into consideration the assumptions on distribution 

Table 8: Forecast evaluation for GARCH family models 
based symmetric lost functions
Measures 
of 
Accuracy 

GARCH PARCH EGARCH TARCH IGARCH

Normal distribution
RMSE 0.004299 0.004302 0.004290 0.004302 0.004327
MAE 0.002973 0.002976 0.002964 0.002976 0.003014
MAPE 95.97247 95.51312 97.78375 95.51312 101.4370
Theil’s U1 0.979852 0.977650 0.988710 0.977650 0.957424
Thiel’s U2 1.008709 1.009915 1.004672 1.009915 1.025187

Student’s T distribution
RMSE 0.004283 0.004283 0.004283 0.004283 0.004281
MAE 0.002956 0.002957 0.002957 0.002957 0.002954
MAPE 99.23984 99.07129 99.07102 99.15368 99.64783
Theil’s U1 0.996071 0.995208 0.995307 0.995629 0.998172
Thiel’s U2 1.002243 1.002487 1.002487 1.002366 1.001694

GED distribution
RMSE 0.004279 0.004280 0.004280 0.004280 0.004280
MAE 0.002953 0.002953 0.002953 0.002953 0.002956
MAPE 100.0000 99.89787 99.89788 99.89788 99.89697
Theil’s U1 1.000000 0.999469 0.999469 0.999469 0.999464
Thiel’s U2 1.001267 1.001387 1.001387 1.001387 1.001388
Source: Author’s calculations

Table 7: Forecast models evaluation based on information criteria
Criteria GARCH TARCH EGARCH IGARCH PARCH

Normal distribution
LLK 14221.47 14224.45 14265.72 14086.35 14239.77
AIC −8.783735 −8.784954 −8.810456 −8.701483 −8.79380
SBC −8.774340 −8.773680 −8.799182 −8.695846 −8.780649

Student t-distribution
LLK 14569.37 14571.83 14580.91 14502.41 14574.99
AIC −8.998067 −8.998968 −9.004578 −8.957931 −9.000301
SBC −8.986793 −8.985815 −8.991425 −8.950415 −8.985269

GED distribution
LLK 14573.01 14574.53 14588.06 14513.56 14580.39
AIC −9.000316 −9.000634 −9.008998 −8.964817 −9.003637
SBC −8.989042 −8.987481 −8.995844 −8.957301 −8.988605
Source: Authors’ calculations
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densities and making forecasts to determine appropriate models. 
Findings established various stylized facts of returns such as 
volatility clustering, leverage and leptokurtic nature of the series. 
Specifically, although all models showed phenomenal performance 
in establishing symmetries (GARCH [1,1] and asymmetries 
PARCH [1,1], EGARCH [1,1]), TGARCH (1,1); only PARCH 
(1,1) under the student’s t distribution assumption was able to 
overcome diagnostics issues of autocorrelation and ARCH effects. 
Since the leverage coefficient (λ) was positive and significant in 
PARCH (1,1), it could easily be established that negative past 
innovations influenced volatility than positive values of similar 
magnitudes. This implies that the appreciation or depreciation of the 
Ugandan shillings against the dollar didn’t have directional effect 
on volatility. Coefficients capturing responsiveness and persistence 
provided evidence that the Ugandan shillings was responsive to 
shocks and that conditional variance is most likely to persist. This 
is demonstrated by conditional variance in Figure 4. In modeling 
volatility, student’s t distribution provided better performance 
since loglikelihood increased compared to Gaussian and GED 
distributions. On the other hand, forecasting was done under 
two strands: the entire sample and in-sample strands evaluated 
based on information criteria and symmetric lost function criteria 
respectively. EGARCH (1,1) provided the best goodness of fit 
when AIC, SBC, and LLK were used because it produced smaller 
AIC and SBC values and higher LLK values compared to other 
models. All models were very competitive when symmetric lost 
functions were used, however, GARCH (1,1) and EGARCH (1,1) 
produced slightly better results based on RMSE, MAPE, MSE and 
Thiel’s U which were on average observed to be slightly lower. 
All models improved when distribution was changed to student’s 
t or GED, although GED provided the overall best performance 
in forecasting. Useful conclusions are that the volatility in the 
Ugandan shillings is very responsive to shocks (explosive) 
which have been established to be persistent and whose forecast 
is expected to persist. Countermeasures are advised through 
macroeconomic and fiscal adjustments in addition to enhancing a 
stable political environment. Finally, this study provides a ground 
for subsequent studies to approach GARCH volatility modeling 
using other methods such as non-parametric Bayesian methods in 
machine learning and neural networks. Plausible contributions will 
have been made should future studies consider stock markets and 
new variables such as inflation and interest rates across distributions 
in a comprehensive scope of both symmetric and asymmetric 
GARCH models, and in a panel of several markets/countries.
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APPENDICES

Figure 1: Line plots of USD/UGX and return series

Source: Authors’ illustrations

Figure 2: Empirical quantiles and histogram tests for normality

Source: Authors’ illustrations
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Figure 3: Returns and variance forecast graphs for the GARCH family models

Source: Authors’ illustrations
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Source: Authors’ illustrations

Figure 4: Conditional variance and standard deviation for the return series


